A comprehensive overview on osteoporosis and its risk factors

Farkhondeh Pouresmaeili, Behnam Kamalidehghan, Maryam Kamarehei, Yong Meng Goh, Farkhondeh Pouresmaeili, Behnam Kamalidehghan, Maryam Kamarehei, Yong Meng Goh

Abstract

Osteoporosis is a bone disorder with remarkable changes in bone biologic material and consequent bone structural distraction, affecting millions of people around the world from different ethnic groups. Bone fragility is the worse outcome of the disease, which needs long term therapy and medical management, especially in the elderly. Many involved genes including environmental factors have been introduced as the disease risk factors so far, of which genes should be considered as effective early diagnosis biomarkers, especially for the individuals from high-risk families. In this review, a number of important criteria involved in osteoporosis are addressed and discussed.

Keywords: BMD; HPT; atherosclerosis; bone and hip fractures; bone mineral density; hyperparathyroidism.

Conflict of interest statement

Disclosure The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Common osteoporosis risk factors involved in pathways associated with bone formation and osteoporotic fractures. Note: RA, smoking, glucocorticoids, diabetes mellitus and tumors, the most common risk factors, negatively control the bone organization pathway, resulting in osteoporotic fractures. Abbreviations: IL, interleukin; M-CSF, macrophage colony stimulating factor; OPG, osteoprotegerin; PPARγ, peroxisome proliferator-activated receptor-γ; PTH, parathyroid hormone; RA, rheumatoid arthritis; RANKL, RANK with its ligand; TNF, tumor necrosis factor; DM, diabetes mellitus; AP2, adipocyte fatty acid binding protein 2; RANK, receptor activator of nuclear factor κ.

References

    1. Bouillon R, Burckhardt P, Christiansen C, et al. Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med. 1991;90:107–110.
    1. Kanis JA, Melton LJ, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–1141.
    1. Consensus N. Development panel on osteoporosis: prevention, diagnosis and therapy. JAMA. 2001;285:785–795.
    1. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:671–685.
    1. Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol. 2006;194:S3–S11.
    1. Roubenoff R, Kehayias JJ. The meaning and measurement of lean body mass. Nutr Rev. 1991;49:163–175.
    1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–1733.
    1. Kepley AL, Nishiyama KK, Zhou B, et al. Differences in bone quality and strength between Asian and Caucasian young men. Osteoporos Int. 2017;28:549–558.
    1. Lei S, Chen Y, Xiong D, Li L, Deng H. Ethnic difference in osteoporosis-related phenotypes and its potential underlying genetic determination. J Musculoskelet Neuronal Interact. 2006;6:36.
    1. Cauley JA. Defining ethnic and racial differences in osteoporosis and fragility fractures. Clin Orthop Relat Res. 2011;469:1891–1899.
    1. Sugimoto T, Sato M, Dehle FC, Brnabic AJ, Weston A, Burge R. Lifestyle-related metabolic disorders, osteoporosis, and fracture risk in Asia: a systematic review. Value Health Reg Issues. 2016;9:49–56.
    1. Melton LJ. The prevalence of osteoporosis. J Bone Miner Res. 1997;12:1769–1771.
    1. Klibanski A, Adams-Campbell L, Bassford TL, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–795.
    1. Cooper C, Campion G, Melton LR. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2:285–289.
    1. Melton L. Hip fractures: a worldwide problem today and tomorrow. Bone. 1993;14:1–8.
    1. Sterling RS. Gender and race/ethnicity differences in hip fracture incidence, morbidity, mortality, and function. Clin Orthop Relat Res. 2011;469:1913–1918.
    1. Haentjens P, Magaziner J, Colón-Emeric CS, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010;152:380–390.
    1. Hawkes WG, Wehren L, Orwig D, Hebel JR, Magaziner J. Gender differences in functioning after hip fracture. J Gerontol A Biol Sci Med Sci. 2006;61:495–499.
    1. Melton LJ, Kan SH, Frye MA, Wahner HW, O’Fallon WM, Riggs BL. Epidemiology of vertebral fractures in women. Am J Epidemiol. 1989;129:1000–1011.
    1. Cooper C, O’Neill T, Silman A, EVOS Group The epidemiology of vertebral fractures. Bone. 1993;14:89–97.
    1. Oglesby AK, Minshall ME, Shen W, Xie S, Silverman SL. The impact of incident vertebral and non-vertebral fragility fractures on health-related quality of life in established postmenopausal osteoporosis: results from the teriparatide randomized, placebo-controlled trial in postmenopausal women. J Rheumatol. 2003;30:1579–1583.
    1. Nevitt MC, Ettinger B, Black DM, et al. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800.
    1. Felsenberg D, Silman A, Lunt M, et al. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS) J Bone Miner Res. 2002;17:716–724.
    1. Furlleipnlsz A. Vertebral fractures and mortality in older women. Arch Intern Med. 1999;159:1215–1220.
    1. Licata A, Geusens P, Flowers K, Seeman E. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–323.
    1. Duan Y, Parfitt AM, Seeman E. Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res. 1999;14:1796–1802.
    1. Vega E, Ghiringhelli G, Mautalen C, Rey Valzacchi G, Scaglia H, Zylberstein C. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int. 1998;62:465–469.
    1. Briggs A, Greig A, Wark J. The vertebral fracture cascade in osteoporosis: a review of aetiopathogenesis. Osteoporos Int. 2007;18:575–584.
    1. Nellans KW, Kowalski E, Chung KC. The epidemiology of distal radius fractures. Hand Clinics. 2012;28:113–125.
    1. Shin E, Jupiter J. Current concepts in the management of distal radius fractures. Acta Chir Orthop Traumatol Cech. 2007;74:233–246.
    1. Brogren E, Petranek M, Atroshi I. Incidence and characteristics of distal radius fractures in a southern Swedish region. BMC Musculoskeletal Disorders. 2007;8:48.
    1. O’neill T, Cooper C, Finn J, et al. UK Colles’ Fracture Study Incidence of distal forearm fracture in British men and women. Osteoporos Int. 2001;12:555–558.
    1. Nevitt MC, Cummings SR. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures. J Am Geriatr Soc. 1993;41:1226–1234.
    1. Omsland TK, Ahmed LA, Grønskag A, et al. More forearm fractures among urban than rural women: the NOREPOS study based on the Tromsø study and the HUNT study. J Bone Miner Res. 2011;26:850–256.
    1. Cuddihy MT, Gabriel SE, Crowson C, O’Fallon W, Melton LJ. Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int. 1999;9:469–475.
    1. Mallmin H, Ljunghall S, Persson I, Naessén T, Krusemo UB, Bergström R. Fracture of the distal forearm as a forecaster of subsequent hip fracture: a population-based cohort study with 24 years of follow-up. Calcif Tissue Int. 1993;52:269–272.
    1. Lauritzen JB, Schwarz P, McNair P, Lund B, Transbøl I. Radial and humeral fractures as predictors of subsequent hip, radial or humeral fractures in women, and their seasonal variation. Osteoporos Int. 1993;3:133–137.
    1. Goulding A. Risk factors for fractures in normally active children and adolescents. In: Daly RM, Petit MA, editors. Optimizing Bone Mass and Strength. Basel: Karger Publishers; 2007. pp. 102–120.
    1. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289:1504–1508.
    1. Zaidi M. Skeletal remodeling in health and disease. Nat Med. 2007;13:791–801.
    1. Cohen JE, Wakefield CE, Cohn RJ. Nutritional interventions for survivors of childhood cancer. Cochrane Database Syst Rev. 2016;8:CD009678.
    1. Levis S, Lagari VS. The role of diet in osteoporosis prevention and management. Curr Osteoporos Rep. 2012;10:296–302.
    1. Shin S, Sung J, Joung H. A fruit, milk and whole grain dietary pattern is positively associated with bone mineral density in Korean healthy adults. Eur J Clin Nutr. 2015;69:442–448.
    1. Chan R, Chan D, Woo J. A cross sectional study to examine the association between dietary patterns and cognitive impairment in older Chinese people in Hong Kong. J Nutr Health Aging. 2013;17:757–765.
    1. Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas) 2015;14:34–39.
    1. Watanabe D, Hotta M, Ichihara A. Osteomalacia, severe thoracic deformities and respiratory failure in a young woman with anorexia nervosa. Intern Med. 2015;54:929–934.
    1. Sommer I, Erkkila AT, Jarvinen R, et al. Alcohol consumption and bone mineral density in elderly women. Public Health Nutr. 2013;16:704–712.
    1. Nachtigall MJ, Nazem TG, Nachtigall RH, Goldstein SR. Osteoporosis risk factors and early life-style modifications to decrease disease burden in women. Clin Obstet Gynecol. 2013;56:650–653.
    1. Zhang X, Yu Z, Yu M, Qu X. Alcohol consumption and hip fracture risk. Osteoporos Int. 2015;26:531–542.
    1. Paccou J, Edwards MH, Ward K, et al. Relationships between bone geometry, volumetric bone mineral density and bone microarchitecture of the distal radius and tibia with alcohol consumption. Bone. 2015;78:122–129.
    1. Ortego-Centeno N, Munoz-Torres M, Jodar E, Hernandez-Quero J, Jurado-Duce A, de la Higuera Torres-Puchol J. Effect of tobacco consumption on bone mineral density in healthy young males. Calcif Tissue Int. 1997;60:496–500.
    1. Kline J, Tang A, Levin B. Smoking, alcohol and caffeine in relation to two hormonal indicators of ovarian age during the reproductive years. Maturitas. 2016;92:115–122.
    1. Krall EA, Dawson-Hughes B. Smoking and bone loss among postmenopausal women. J Bone Miner Res. 1991;6:331–338.
    1. Krall EA, Dawson-Hughes B. Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res. 1999;14:215–220.
    1. Jensen J, Christiansen C, Rødbro P. Cigarette smoking, serum estrogens, and bone loss during hormone-replacement therapy early after menopause. N Engl J Med. 1985;313:973–975.
    1. Jick H, Porter J, Morrison A. Relation between smoking and age of natural menopause: report from the Boston Collaborative Drug Surveillance Program, Boston University Medical Center. The Lancet. 1977;309:1354–1355.
    1. Talmage RV, Mobley H. Calcium homeostasis: reassessment of the actions of parathyroid hormone. Gen Comp Endocrinol. 2008;156:1–8.
    1. Norman AW. Vitamin D metabolism and calcium absorption. Am J Med. 1979;67:989–998.
    1. Brot C, Jorgensen N, Sorensen O. The influence of smoking on vitamin D status and calcium metabolism. Eur J Clin Nutr. 1999;53:920–926.
    1. Ko CH, Chan RL, Siu WS, et al. Deteriorating effect on bone metabolism and microstructure by passive cigarette smoking through dual actions on osteoblast and osteoclast. Calcif Tissue Int. 2015;96:389–400.
    1. Bunce CM, Brown G, Hewison M. Vitamin D and hematopoiesis. Trends Endocrinol Metab. 1997;8:245–251.
    1. Ferrari S, Bonjour JP, Rizzoli R. The vitamin D receptor gene and calcium metabolism. Trends Endocrinol Metab. 1998;9:259–265.
    1. Walters MR. Newly identified actions of the vitamin D endocrine system. Endocr Rev. 1992;13:719–764.
    1. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of transacting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci U S A. 1992;89:6665–6669.
    1. Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998;13:325–449.
    1. Kurabayashi T, Matsushita H, Tomita M, et al. Association of vitamin D and estrogen receptor gene polymorphism with the effects of longterm hormone replacement therapy on bone mineral density. J Bone Miner Metab. 2004;22:241–247.
    1. Morrison NA, Qi JC, Tokita A, et al. Prediction of bone density from vitamin D receptor alleles. Nature. 1994;367:284–287.
    1. Sainz J, Van Tornout JM, Loro ML, Sayre J, Roe TF, Gilsanz V. Vitamin D–receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med. 1997;337:77–82.
    1. Gennari L, Becherini L, Masi L, et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab. 1998;83:939–944.
    1. Liu YZ, Liu YJ, Recker RR, Deng HW. Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol. 2003;177:147–196.
    1. Dawson-Hughes B, Harris SS, Finneran S. Calcium absorption on high and low calcium intakes in relation to vitamin D receptor genotype. J Clin Endocrinol Metab. 1995;80:3657–3661.
    1. Willing M, Sowers M, Aron D, et al. Bone mineral density and its change in white women: estrogen and vitamin D receptor genotypes and their interaction. J Bone Miner Res. 1998;13:695–705.
    1. Pouresmaeili FJJ, Azargashb E, Samangouee S. Association between vitamin D receptor gene BsmI polymorphism and bone mineral density in a population of 146 Iranian women. Cell J. 2013;15:78–82.
    1. Cheng J, Belgrader P, Zhou X, Maquat LE. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol Cell Biol. 1994;14:6317–6325.
    1. Nesic D, Cheng J, Maquat LE. Sequences within the last intron function in RNA 3′-end formation in cultured cells. Mol Cell Biol. 1993;13:3359–3369.
    1. Spector T, Keen R, Arden N, et al. Influence of vitamin D receptor genotype on bone mineral density in postmenopausal women: a twin study in Britain. BMJ. 1995;310:1357–1360.
    1. Gross C, Eccleshall TR, Malloy PJ, Villa ML, Marcus R, Feldman D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J Bone Miner Res. 1996;11:1850–1855.
    1. Arai H, Miyamoto KI, Taketani Y, et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J Bone Miner Res. 1997;12:915–921.
    1. Zajíčková K, Ofková I, Bahbouh R, Křepelová A. Vitamin D receptor gene polymorphisms, bone mineral density and bone turnover: FokI genotype is related to postmenopausal bone mass. Physiol Res. 2002;51:501–509.
    1. Mitra S, Desai M, Khatkhatay MI. Vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Indian women. Maturitas. 2006;55:27–35.
    1. Arai H, Miyamoto KI, Yoshida M, et al. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res. 2001;16:1256–1264.
    1. Yamamoto H, Miyamoto KI, Li B, et al. The caudal-related homeodo-main protein Cdx-2 regulates vitamin D receptor gene expression in the small intestine. J Bone Miner Res. 1999;14:240–247.
    1. Yoon K, Rutledge S, Buenaga RF, Rodan GA. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1, 25-dihydroxyvitamin D3. Biochemistry. 1988;27:8521–8526.
    1. Tokitan A, Matsumoto H, Morrison NA, et al. Vitamin D receptor alleles, bone mineral density and turnover in premenopausal Japanese women. J Bone Miner Res. 1996;11:1003–1009.
    1. Gennari L, Merlotti D, De Paola V, et al. Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am J Epidemiol. 2005;161:307–320.
    1. Korach KS. Estrogen receptor knock-out mice: molecular and endocrine phenotypes. J Soc Gynecol Investig. 2000;7:S16–S17.
    1. Vidal O, Lindberg MK, Hollberg K, et al. Estrogen receptor specificity in the regulation of skeletal growth and maturation in male mice. Proc Natl Acad Sci U S A. 2000;97:5474–5479.
    1. Windahl S, Vidal O, Andersson G, Gustafsson J-A, Ohlsson C. Increased cortical bone mineral content but unchanged trabecular bone mineral density in female ERβ−/− mice. J Clin Invest. 1999;104:895–901.
    1. Lindberg M, Alatalo S, Halleen J, Mohan S, Gustafsson JA, Ohlsson C. Estrogen receptor specificity in the regulation of the skeleton in female mice. J Endocrinol. 2001;171:229–236.
    1. Jurada S, Marc J, Preželj J, Kocijančič A, Komel R. Codon 325 sequence polymorphism of the estrogen receptor α gene and bone mineral density in postmenopausal women. J Steroid Biochem Mol Biol. 2001;78:15–20.
    1. Ongphiphadhanakul B, Chanprasertyothin S, Payattikul P, et al. Association of a T262C transition in exon 1 of estrogen-receptor-α gene with skeletal responsiveness to estrogen in post-menopausal women. J Endocrinol Invest. 2001;24:749–755.
    1. Ongphiphadhanakul B, Chanprasertyothin S, Payattikul P, et al. Association of a G2014A transition in exon 8 of the estrogen receptor-α gene with postmenopausal osteoporosis. Osteoporos Int. 2001;12:1015–1019.
    1. Langdahl BL, Løkke E, Carstens M, Stenkjaer LL, Eriksen EF. A TA repeat polymorphism in the estrogen receptor gene is associated with osteoporotic fractures but polymorphisms in the first exon and intron are not. J Bone Miner Res. 2000;15:2222–2230.
    1. Kobayashi T, Sugimoto T, Kobayashi A, Chihara K. Vitamin D receptor genotype is associated with cortical bone loss in Japanese patients with primary hyperparathyroidism. Endocr J. 1998;45:123–125.
    1. Kobayashi N, Fujino T, Shirogane T, et al. Estrogen receptor α polymorphism as a genetic marker for bone loss, vertebral fractures and susceptibility to estrogen. Maturitas. 2002;41:193–201.
    1. Mizunuma H, Hosoi T, Okano H, et al. Estrogen receptor gene polymorphism and bone mineral density at the lumbar spine of pre- and postmenopausal women. Bone. 1997;21:379–383.
    1. Albagha OM, McGuigan FE, Reid DM, Ralston SH. Estrogen receptor α gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. J Bone Miner Res. 2001;16:128–134.
    1. Pouresmaeili F, Roohi A, Tehrani M, et al. Osteoporosis and its association with estrogen receptor-alpha gene polymorphism in a population of iranian women referring to loghman hospital. Int J Endocrinol Metab. 2009;2009:193–199.
    1. van Meurs JB, Schuit SC, Weel AE, et al. Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet. 2003;12:1745–1754.
    1. Nawata H, Tanaka S, Tanaka S, et al. Aromatase in bone cell: association with osteoporosis in postmenopausal women. J Steroid Biochem Mol Biol. 1995;53:165–174.
    1. Tran BN, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Enhancement of absolute fracture risk prognosis with genetic marker: the collagen I alpha 1 gene. Calcif Tissue Int. 2009;85:379.
    1. Chu M, De Wet W, Bernard M, Ramirez F. Fine structural analysis of the human pro-alpha 1 (I) collagen gene. Promoter structure, AluI repeats, and polymorphic transcripts. J Biol Chem. 1985;260:2315–2320.
    1. Rossouw C, Vergeer W, Du Plooy S, Bernard M, Ramirez F, De Wet W. DNA sequences in the first intron of the human pro-alpha 1 (I) collagen gene enhance transcription. J Biol Chem. 1987;262:15151–15157.
    1. Brown MA, Haughton MA, Grant SF, Gunnell AS, Henderson NK, Eisman JA. Genetic control of bone density and turnover: role of the collagen 1α1, estrogen receptor, and vitamin D receptor genes. J Bone Miner Res. 2001;16:758–764.
    1. Keen R, Snieder H, Molloy H, et al. Evidence of association and linkage disequilibrium between a novel polymorphism in the transforming growth factor β1 gene and hip bone mineral density: a study of female twins. Rheumatology. 2001;40:48–54.
    1. Yamada Y, Miyauchi A, Takagi Y, Tanaka M, Mizuno M, Harada A. Association of the C–509→ T polymorphism, alone or in combination with the T869→ C polymorphism, of the transforming growth factor-β1 gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J Mol Med (Berl) 2001;79:149–156.
    1. Ralston SH. Analysis of gene expression in human bone biopsies by polymerase chain reaction: evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res. 1994;9:883–890.
    1. Murray R, McGuigan F, Grant S, Reid D, Ralston S. Polymorphisms of the interleukin-6 gene are associated with bone mineral density. Bone. 1997;21:89–92.
    1. Tsukamoto K, Yoshida H, Watanabe S, et al. Association of radial bone mineral density with CA repeat polymorphism at the interleukin 6 locus in postmenoposal Japanese women. J Hum Genet. 1999;44:148–151.
    1. Ferrari S, Garnero P, Emond S, Montgomery H, Humphries S, Greenspan S. A functional polymorphic variant in the interleukin-6 gene promoter associated with low bone resorption in postmenopausal women. Arthritis Rheum. 2001;44:196–201.
    1. Gray T, Mohan S, Linkhart T, Baylink D. Estradiol stimulates invitro the secretion of insulin-like growth factors by the clonal osteoblastic cell line, UMR106. Biochem Biophys Res Commun. 1989;158:407–412.
    1. Kurland ES, Rosen CJ, Cosman F, et al. Insulin-Like Growth Factor-I in Men with Idiopathic Osteoporosis 1. J Clin Endocrinol Metab. 1997;82:2799–2805.
    1. Kurland ES, Chan FK, Rosen CJ, Bilezikian JP. Normal growth hormone secretory reserve in men with idiopathic osteoporosis and reduced circulating levels of insulin-like growth factor-I 1. J Clin Endocrinol Metab. 1998;83:2576–2579.
    1. Braga V, Mottes M, Mirandola S, et al. Association of CTR and COLIA1 alleles with BMD values in peri- and postmenopausal women. Calcif Tissue Int. 2000;67:361–366.
    1. Masi L, Becherini L, Colli E, et al. Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Commun. 1998;248:190–195.
    1. Taboulet J, Frenkian M, Frendo J, Feingold N, Jullienne A, De Vernejoul M. Calcitonin receptor olymorphism is associated with a decreased fracture risk in post-menopausal women. Hum Mol Genet. 1998;7:2129–2133.
    1. Keen R, Woodford-Richens K, Lanchbury J, Spector T. Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine. Bone. 1998;23:367–371.
    1. Lennard A, Gorman P, Carrier M, et al. Cloning and chromosome mapping of the human interleukin-1 receptor antagonist gene. Cytokine. 1992;4:83–89.
    1. Wong SYS, Lau EMC, Li M, Chung T, Sham A, Woo J. The prevalence of Apo E4 genotype and its relationship to bone mineral density in Hong Kong Chinese. J Bone Miner Metab. 2005;23:261–265.
    1. Ling X, Aimin L, Xihe Z, Xiaoshu C, Cummings SR. Very low rates of hip fracture in Beijing, People’s Republic of China: the Beijing Osteoporosis Project. Am J Epidemiol. 1996;144:901–907.
    1. Fujiwara NK, Marti B, Gutzwiller F. Hip fracture mortality and morbidity in Switzerland and Japan: a cross-cultural comparison. Sozialund Präventivmedizin. 1993;38:8–14.
    1. Buehring B, Viswanathan R, Binkley N, Busse W. Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol. 2013;132:1019–1030.
    1. Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep. 2005;3:98–102.
    1. Ramsey-Goldman R. Missed opportunities in physician management of glucocorticoid-induced osteoporosis? Arthritis Rheum. 2002;46:3115–3120.
    1. Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R. Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun. 2005;329:177–181.
    1. Canalis E, Centrella M, Burch W, McCarthy TL. Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest. 1989;83:60.
    1. Lundgren E, Rastad J, Thurfjell E, Åkerström G, Ljunghall S. Population-based screening for primary hyperparathyroidism with serum calcium and parathyroid hormone values in menopausal women. Surgery. 1997;121:287–294.
    1. Wishart J, Horowitz M, Need A, Nordin B. Relationship between forearm and vertebral mineral density in postmenopausal women with primary hyperparathyroidism. Arch Intern Med. 1990;150:1329–1331.
    1. Vestergaard P, Mollerup CL, Frøkjær VG, Christiansen P, Blichert-Toft M, Mosekilde L. Cohort study of risk of fracture before and after surgery for primary hyperparathyroidism. BMJ. 2000;321:598–602.
    1. Sneddon WB, Magyar CE, Willick GE, et al. Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: conditional efficacy of PTH peptide fragments. Endocrinology. 2004;145:2815–2823.
    1. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ. Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. TRPV5 & TRPV6. Kidney Int. 2005;68(4):1708–1721.
    1. Brenza HL, Kimmel-Jehan C, Jehan F, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci U S A. 1998;95:1387–1391.
    1. Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone. 2007;40:1434–1446.
    1. Kroll MH. Parathyroid hormone temporal effects on bone formation and resorption. Bull Math Biol. 2000;62:163–188.
    1. Razzaque MS, Lanske B. The emerging role of the fibroblast growth factor-23–klotho axis in renal regulation of phosphate homeostasis. J Endocrinol. 2007;194:1–10.
    1. Gravallese E. Bone destruction in arthritis. Ann Rheum Dis. 2002;61:ii84–ii6.
    1. Cooper C, Coupland C, Mitchell M. Rheumatoid arthritis, corticosteroid therapy and hip fracture. Ann Rheum Dis. 1995;54:49–52.
    1. Van Staa T, Geusens P, Bijlsma J, Leufkens H, Cooper C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheumatism. 2006;54:3104–3112.
    1. Nampei A, Hashimoto J, Koyanagi J, et al. Characteristics of fracture and related factors in patients with rheumatoid arthritis. Mod Rheumatol. 2008;18:170–176.
    1. Arai K, Hanyu T, Sugitani H, et al. Risk factors for vertebral fracture in menopausal or postmenopausal Japanese women with rheumatoid arthritis: a cross-sectional and longitudinal study. J Bone Miner Metab. 2006;24:118–124.
    1. De Nijs R, Jacobs J, Bijlsma J, et al. Prevalence of vertebral deformities and symptomatic vertebral fractures in corticosteroid treated patients with rheumatoid arthritis. Rheumatology. 2001;40:1375–1383.
    1. Peel N, Moore D, Barrington N, Bax D, Eastell R. Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. Ann Rheum Dis. 1995;54:801–806.
    1. Goldring SR, Gravallese EM. Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res. 1999;2:33.
    1. Chu CQ, Field M, Feldmann M, Maini R. Localization of tumor necrosis factor α in synovial tissues and at the cartilage–pannus junction in patients with rheumatoid arthritis. Arthritis Rheumatology. 1991;34:1125–1132.
    1. Chu CQ, Field M, Allard S, Abney E, Feldmann M, Maini R. Detection of cytokines at the cartilage/pannus junction in patients with rheumatoid arthritis: implications for the role of cytokines in cartilage destruction and repair. Rheumatology. 1992;31:653–661.
    1. Deleuran B, Chu CQ, Field M, et al. Localization of interleukin-1α, type 1 interleukin-1 receptor and interleukin-1 receptor antagonist in the synovial membrane and cartilage/pannus junction in rheumatoid arthritis. Rheumatology. 1992;31:801–809.
    1. Romas E, Martin T. Cytokines in the pathogenesis of osteoporosis. Osteoporos Int. 1997;7:47–53.
    1. Kotake S, Udagawa N, Takahashi N, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103:1345–1352.
    1. Chabaud M, Durand JM, Buchs N, et al. Human interleukin-17. Arthritis Rheum. 1999;42:963–970.
    1. Funk JL, Cordaro LA, Wei H, Benjamin JB, Yocum DE. Synovium as a source of increased amino-terminal parathyroid hormone-related protein expression in rheumatoid arthritis. A possible role for locally produced parathyroid hormone-related protein in the pathogenesis of rheumatoid arthritis. J Clin Invest. 1998;101:1362.
    1. McClung M. Role of RANKL inhibition in osteoporosis. Arthritis Res Ther. 2007;9(Suppl 1):S3.
    1. Lacativa PGS, Farias MLFD. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol. 2010;54(2):123–132.
    1. Mundy GR. Osteoporosis and inflammation. Nut Rev. 2007;65(12 Pt 2):S147–S151.
    1. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427–435.
    1. Roux C. Osteoporosis in inflammatory joint diseases. Osteoporos Int. 2011;22(2):421–433.
    1. Diarra D, Stolina M, Polzer K, et al. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13(2):156–163.
    1. Weitzmann MN, Pacifici R. The role of T lymphocytes in bone metabolism. Immunol Rev. 2005;208:154–168.
    1. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–787.
    1. Schwartz AV. Diabetes mellitus: does it affect bone? Calcif Tissue Int. 2003;73(6):515–519.
    1. Mokdad AH, Ford ES, Bowman BA, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA. 2003;289(1):76–79.
    1. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.
    1. Al-Homood IA, Sheshah I, Mohammed AGA, Gasim GI. The prevalence and risk factors of osteoporosis among a Saudi female diabetic population. Open Access Maced J Med Sci. 2017;5(2):177–181.
    1. Raska I, Jr, Broulik P. The impact of diabetes mellitus on skeletal health: an established phenomenon with inestablished causes. Prague Med Rep. 2005;106(2):137–148.
    1. Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes. 2011;2(3):41–48.
    1. Inzerillo AM, Epstein S. Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord. 2004;5:261–268.
    1. Leidig-Bruckner G, Ziegler R. Diabetes mellitus a risk for osteoporosis? Exp Clin Endocrinol Diabetes. 2001;109:S493–S514.
    1. Tuominen JT, Impivaara O, Puukka P, Rönnemaa T. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care. 1999;22(7):1196–1200.
    1. Isidro ML, Ruano B. Bone disease in diabetes. Curr Diabetes Rev. 2010;6(3):144–155.
    1. Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Study of Osteoporotic Features Research Group Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab. 2001;86(1):32–38.
    1. Nicodemus KK, Folsom AR, Iowa Women’s Health Study Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24(7):1192–1197.
    1. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic Review of Type 1 and Type 2 Diabetes Mellitus and Risk of Fracture. Oxford: Oxford Univ Press; 2007.
    1. Farmer ME, White LR, Brody JA, Bailey KR. Race and sex differences in hip fracture incidence. Am J Public Health. 1984;74(12):1374–1380.
    1. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. N Engl J Med. 1995;332(12):767–774.
    1. Kumeda Y. Osteoporosis in diabetes. Clin Calcium. 2008;18(5):589–599. Japanese.
    1. Yang J, Zhang X, Wang W, Liu J. Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct. 2010;28(4):334–341.
    1. Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop. 2007;18:444–448.
    1. Wang W, Zhang X, Zheng J, Yang J. High glucose stimulates adipogenic and inhibits osteogenic differentiation in MG-63 cells through cAMP/protein kinase A/extracellular signal-regulated kinase pathway. Mol Cell Biochem. 2010;338(1–2):115–122.
    1. Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-γ2 expression in type I diabetic mice. Endocrinology. 2005;146(8):3622–3631.
    1. Lecka-Czernik B, Moerman EJ, Grant DF, Lehmann JM, Manolagas SC, Jilka RL. Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology. 2002;143(6):2376–2384.
    1. Diascro DD, Jr, Vogel RL, Johnson TE, et al. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res. 1998;13(1):96–106.
    1. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005;434(7032):514–520.
    1. Shi Y, Yadav VK, Suda N, et al. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc Natl Acad Sci U S A. 2008;105(51):20529–20533.
    1. Hie M, Iitsuka N, Otsuka T, Tsukamoto I. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med. 2011;28(3):455–462.
    1. Lin CL, Wang JY, Ko JY, Huang YT, Kuo YH, Wang FS. Dick-kopf-1 promotes hyperglycemia–induced accumulation of mesangial matrix and renal dysfunction. J Am Soc Nephrol. 2010;21(1):124–135.
    1. García-Martín A, Rozas-Moreno P, Reyes-García R, et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(1):234–241.
    1. Kane R, Stevenson L, Godson C, Stitt A, O’Brien C. Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose. Br J Ophthalmol. 2005;89(12):1638–1642.
    1. Alyasin S, Momen T, Kashef S, Alipour A, Amin R. The relationship between serum 25 hydroxy vitamin d levels and asthma in children. Allergy Asthma Immunol Res. 2011;3(4):251–255.
    1. Modesti A, Bertolozzi I, Gamberi T, et al. Hyperglycemia activates JAK2 signaling pathway in human failing myocytes via angiotensin II-mediated oxidative stress. Diabetes. 2005;54(2):394–401.
    1. Kim HJ, Kim SH, Yun JM. Fisetin inhibits hyperglycemia-induced proinflammatory cytokine production by epigenetic mechanisms. Evid Based Complement Alternat Med. 2012;2012:639469.
    1. Gonzalez Y, Herrera MT, Soldevila G, et al. High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes. BMC Immunol. 2012;13:19.
    1. Binkley N. Vitamin D and osteoporosis-related fracture. Arch Biochem Biophys. 2012;523(1):115–122.
    1. Palomer X, González-Clemente J, Blanco-Vaca F, Mauricio D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes Metab. 2008;10(3):185–197.
    1. Menegazzo L, Albiero M, Avogaro A, Fadini GP. Endothelial progenitor cells in diabetes mellitus. Biofactors. 2012;38(3):194–202.
    1. Hamann C, Kirschner S, Günther KP, Hofbauer LC. Bone, sweet bone-osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol. 2012;8(5):297–305.
    1. Sugimoto K, Yasujima M, Yagihashi S. Role of advanced glycation end products in diabetic neuropathy. Curr Pharm Des. 2008;14(10):953–961.
    1. Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Transl Res. 2012;159(5):355–365.
    1. Catalano A, Morabito N, Di Vieste G, et al. Phalangeal quantitative ultrasound and metabolic control in pre-menopausal women with type 1 diabetes mellitus. J Endocrinol Invest. 2013;36(5):347–351.
    1. Neumann T, Lodes S, Kastner B, et al. Trabecular bone score in type 1 diabetes-a cross-sectional study. Osteoporos Int. 2016;27(1):127–133.
    1. Walsh JS, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528–535.
    1. Moayeri A, Mohamadpour M, Mousavi SF, Shirzadpour E, Mohamadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:455–468.
    1. Tysiewicz-Dudek M, Pietraszkiewicz F, Drozdzowska B. Alzheimer’s disease and osteoporosis: common risk factors or one condition predisposing to the other? Ortop Traumatol Rehabil. 2007;10(4):315–323. Polish.
    1. Weller I, Schatzker J. Hip fractures and Alzheimer’s disease in elderly institutionalized Canadians. Ann Epidemiol. 2004;14(5):319–324.
    1. Baker NL, Cook MN, Arrighi HM, Bullock R. Hip fracture risk and subsequent mortality among Alzheimer’s disease patients in the United Kingdom, 1988–2007. Age Ageing. 2011;40(1):49–54.
    1. Haasum Y, Fastbom J, Fratiglioni L, Johnell K. Undertreatment of osteoporosis in persons with dementia? A population-based study. Osteoporos Int. 2012;23(3):1061–1068.
    1. Butterfield DA. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res. 2002;36(12):1307–1313.
    1. Behl C, Davis J, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell. 1994;77(6):817–827.
    1. Jules J, Zhang P, Ashley JW, et al. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem. 2012;287(19):15728–15738.
    1. Biver E, Hardouin P, Caverzasio J. The “bone morphogenic proteins” pathways in bone and joint diseases: translational perspectives from physiopathology to therapeutic targets. Cytokine Growth Factor Rev. 2013;24(1):69–81.
    1. Kim MS, Yang YM, Son A, et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem. 2010;285(10):6913–6921.
    1. Park HS, Lee SH, Park D, et al. Sequential activation of phosphati-dylinositol 3-kinase, βPix, Rac1, and Nox1 in growth factor-induced production of H2O2. Mol Cell Biol. 2004;24(10):4384–4394.
    1. Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci. 2002;27(1):19–26.
    1. Luckhaus C, Mahabadi B, Grass-Kapanke B, et al. Blood biomarkers of osteoporosis in mild cognitive impairment and Alzheimer’s disease. J Neural Transm (Vienna) 2009;116(7):905–911.
    1. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12(20 Pt 2):6243s–6249s.
    1. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2002;2(8):584–593.
    1. Zhang J, Dai J, Qi Y, et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001;107(10):1235–1244.
    1. Boyde A, Maconnachie E, Reid SA, Delling G, Mundy G. Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc. 1986;(Pt 4):1537–1554.
    1. Rizzoli R, Body JJ, Brandi ML, et al. International Osteoporosis Foundation Committee of Scientific Advisors Working Group on Cancer-Induced Bone Disease Cancer-associated bone disease. Osteoporos Int. 2013;24(12):2929–2953.
    1. Lau YK, Lee E, Prior HJ, Lix LM, Metge CJ, Leslie WD. Fracture risk in androgen deprivation therapy: a Canadian population based analysis. Can J Urol. 2009;16(6):4908–4914.
    1. Bondy SJ, Iscoe NA, Rothwell DM, et al. Trends in hormonal management of prostate cancer: a population-based study in Ontario. Med Care. 2001;39(4):384–396.
    1. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106(12):1553–1560.
    1. Dickman PW, Adolfsson J, ÅstrÖm K, Steineck G. Hip fractures in men with prostate cancer treated with orchiectomy. J Urol. 2004;172(6 Pt 1):2208–2212.
    1. Handforth C, D’Oronzo S, Coleman R, Brown J. Cancer treatment and bone health. Calcified Tissue International. 2018:1–14.
    1. Reid IR, Ibbertson HK. Calcium supplements in the prevention of steroid-induced osteoporosis. Am J Clin Nutr. 1986;44(2):287–290.
    1. Lane NE, Kelman A. A review of anabolic therapies for osteoporosis. Arthritis Res Ther. 2003;5(5):214–222.
    1. Mosekilde L. Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf) 2008;69(1):1–19.
    1. Cremers SC, Pillai G, Papapoulos SE. Pharmacokinetics/pharmaco-dynamics of bisphosphonates: use for optimisation of intermittent therapy for osteoporosis. Clin Pharmacokinet. 2005;44(6):551–570.
    1. Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84(7):632–638.
    1. Cauley JA, Seeley DG, Ensrud K, Ettinger B, Black D, Cummings SR. Estrogen replacement therapy and fractures in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1995;122(1):9–16.
    1. Berning B, Kuijk CV, Kuiper JW, Bennink HJ, Kicovic PM, Fauser BC. Effects of two doses of tibolone on trabecular and cortical bone loss in early postmenopausal women: a two-year randomized, placebo-controlled study. Bone. 1996;19(4):395–399.
    1. Delmas PD, Ensrud KE, Adachi JD, et al. Mulitple Outcomes of Raloxifene Evaluation Investigators Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002;87(8):3609–3617.
    1. Kharode Y, Bodine PV, Miller CP, Lyttle CR, Komm BS. The pairing of a selective estrogen receptor modulator, bazedoxifene, with conjugated estrogens as a new paradigm for the treatment of menopausal symptoms and osteoporosis prevention. Endocrinology. 2008;149(12):6084–6091.
    1. Bone HG, McClung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25(5):937–947.
    1. Babatunde OT, Marquez S, Taylor A. Osteoporosis knowledge and health beliefs among men in midlife years. J Nutr Educ Behav. 2017;49(9):759.e1–763.e1.
    1. Harding AT, Beck BR. Exercise, osteoporosis, and bone geometry. Sports. 2017;5:29.
    1. Zhu K, Prince RL. Lifestyle and osteoporosis. Curr Osteoporos Rep. 2015;13(1):52–59.
    1. Yang P, Chen C, Chiou HY, Li YL, Hsu GSW. The exercise intervention may influence the dietary intake and reduce the risk of osteoporosis and sarcopenia in menopausal women. FASEB J. 2017;31:967–969.
    1. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis 1. Endocr Rev. 2000;21(2):115–137.
    1. Dawson-Hughes B, Gold D, Rodbard H, et al. Physician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC, USA: National Osteoporosis Foundation; 2003.
    1. Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E. FRAX® and its applications to clinical practice. Bone. 2009;44(5):734–743.
    1. Vuori IM. Dose-response of physical activity and low back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc. 2001;33(6 Suppl):S551–S586.
    1. Drinkwater BL. Does physical activity play a role in preventing osteoporosis? Res Q Exerc Sport. 1994;65:197–206.
    1. Aldahr MHS. Bone mineral status response to aerobic versus resistance exercise training in postmenopausal women. World Appl Sci J. 2012;16(6):806–813.
    1. Shackelford LC, LeBlanc AD, Driscoll TB, et al. Resistance exercise as a countermeasure to disuse-induced bone loss. J Appl Physiol (1985) 2004;97(1):119–129.
    1. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–847.
    1. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene-environment interactions in the skeletal response to nutrition and exercise during growth. Optimizing Bone Mass and Strength. Karger Publishers. Med Sport Sci. 2007;51:64–80.
    1. Watts NB, Lewiecki EM, Miller PD, Baim S. National osteoporosis foundation 2008 clinician’s guide to prevention and treatment of osteoporosis and the world health organization Fracture Risk Assessment Tool (FRAX): what they mean to the bone densitometrist and bone technologist. J Clin Densitom. 2008;11(4):473–477.
    1. Council Nr. DRI (Dietary Reference Intakes) for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. Washington, DC, USA: National Academy Press; 1997.
    1. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337(10):670–676.
    1. Kendler DL, Marin F, Zerbini CA, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. The Lancet. 2018;391(10117):230–240.
    1. Kanis JA, Odén A, McCloskey EV, Johansson H, Wahl DA, Cooper C. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporosis International. 2012;23(9):2239–2256.
    1. Evatt ML, DeLong MR, Khazai N, Rosen A, Triche S, Tangpricha V. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Archives of Neurology. 2008;65(10):1348–1352.
    1. Durrin LK, Haile RW, Ingles SA, Coetzee GA. Vitamin D receptor 3′-untranslated region polymorphisms: lack of effect on mRNA stability. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 1999;1453(3):311–320.
    1. Remes T, Väisänen SB, Mahonen A, et al. Bone mineral density, body height, and vitamin D receptor gene polymorphism in middle-aged men. Annals of Medicine. 2005;37(5):383–392.
    1. Lambrinoudaki I, Kaparos G, Armeni E, et al. BsmI vitamin D receptor’s polymorphism and bone mineral density in men and premeno-pausal women on long-term antiepileptic therapy. European Journal of Neurology. 2011;18(1):93–98.
    1. Wang L, Ma J, Manson JE, Buring JE, Gaziano JM, Sesso HD. A prospective study of plasma vitamin D metabolites, vitamin D receptor gene polymorphisms, and risk of hypertension in men. European Journal of Nutrition. 2013;52(7):1771–1779.
    1. Ioannidis JP, Ralston SH, Bennett ST, et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA. 2004;292(17):2105–2114.
    1. Yamada Y, Ando F, Niino N, Ohta S, Shimokata H. Association of polymorphisms of the estrogen receptor α gene with bone mineral density of the femoral neck in elderly Japanese women. Journal of Molecular Medicine. 2002;80(7):452–460.
    1. Tang L, Cheng G-L, Xu Z-H. Association between estrogen receptor α gene (ESR1) PvuII (C/T) and XbaI (A/G) polymorphisms and hip fracture risk: evidence from a meta-analysis. PloS One. 2013;8(12):e82806.
    1. Ogawa S, Fujita M, Ishii Y, et al. Impaired estrogen sensitivity in bone by inhibiting both estrogen receptor α and β pathways. Journal of Biological Chemistry. 2000;275(28):21372–21379.
    1. Lau H, Ho A, Luk K, Kung A. Estrogen receptor β gene polymorphisms are associated with higher bone mineral density in premeno-pausal, but not postmenopausal southern Chinese women. Bone. 2002;31(2):276–281.
    1. Scariano J, Simplicio S, Montoya G, Garry P, Baumgartner R. Estrogen receptor β dinucleotide (CA) repeat polymorphism is significantly associated with bone mineral density in postmenopausal women. Calcified Tissue International. 2004;74(6):501–508.
    1. Kung AW, Lai BM, Ng MY, Chan V, Sham PC. T-1213C polymorphism of estrogen receptor beta is associated with low bone mineral density and osteoporotic fractures. Bone. 2006;39(5):1097–1106.
    1. Miyao M, Hosoi T, Emi M, et al. Association of bone mineral density with a dinucleotide repeat polymorphism at the calcitonin (CT) locus. Journal of Human Genetics. 2000;45(6):346–350.
    1. Magana J, Gomez R, Cisneros B, et al. Association of the CT gene (CA) polymorphism with BMD in osteoporotic Mexican women. Clinical Genetics. 2006;70(5):402–408.
    1. Tural S, Kara N, Alayli G, Tomak L. Association between osteoporosis and polymorphisms of the bone Gla protein, estrogen receptor 1, collagen 1-A1 and calcitonin receptor genes in Turkish postmenopausal women. Gene. 2013;515(1):167–172.
    1. Hosoi T, Miyao M, Inoue S, et al. Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calcified Tissue International. 1999;64(3):205–208.
    1. Minagawa M, Yasuda T, Watanabe T, et al. Association between AAAG repeat polymorphism in the P3 promoter of the human parathyroid hormone (PTH)/PTH-related peptide receptor gene and adult height, urinary pyridinoline excretion, and promoter activity. The Journal of Clinical Endocrinology & Metabolism. 2002;87(4):1791–1796.
    1. Napoli N, Rastelli A, Ma C, et al. Genetic polymorphism at Val80 (rs700518) of the CYP19A1 gene is associated with aromatase inhibitor associated bone loss in women with ER (+) breast cancer. Bone. 2013;55(2):309–314.
    1. Zmuda JM, Cauley JA, Kuller LH, Ferrell RE. A common promoter variant in the cytochrome P450c17α (CYP17) gene is associated with bioavailable testosterone levels and bone size in men. Journal of Bone and Mineral Research. 2001;16(5):911–917.
    1. Sharp L, Cardy AH, Cotton SC, Little J. CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. American Journal of Epidemiology. 2004;160(8):729–740.
    1. Huizenga NA, de Lange P, Koper JW, et al. Human adrenocorticotro-pin-secreting pituitary adenomas show frequent loss of heterozygosity at the glucocorticoid receptor gene locus. The Journal of Clinical Endocrinology & Metabolism. 1998;83(3):917–921.
    1. Tsukamoto K, Orimo H, Hosoi T, et al. Association of bone mineral density with polymorphism of the human calcium-sensing receptor locus. Calcified Tissue International. 2000;66(3):181–183.
    1. Langdahl BL, Stenkjaer L, Carstens M, Tofteng C, Eriksen E. A CAG repeat polymorphism in the androgen receptor gene is associated with reduced bone mass and increased risk of osteoporotic fractures. Calcified Tissue International. 2003;73(3):237–243.
    1. Langdahl BL, Carstens M, Stenkjær L, Eriksen EF. Polymorphisms in the transforming growth factor beta 1 gene and osteoporosis. Bone. 2003;32(3):297–310.
    1. Rivadeneira F, Houwing-Duistermaat JJ, Vaessen N, et al. Association between an insulin-like growth factor I gene promoter polymorphism and bone mineral density in the elderly: the Rotter-dam Study. The Journal of Clinical Endocrinology & Metabolism. 2003;88(8):3878–3884.
    1. Arko B, Preželj J, Kocijančič A, Komel R, Marc J. Association of the osteoprotegerin gene polymorphisms with bone mineral density in postmenopausal women. Maturitas. 2005;51(3):270–279.
    1. Garcia-Unzueta M, Riancho J, Zarrabeitia M, et al. Association of the 163A/G and 1181G/C osteoprotegerin polymorphism with bone mineral density. Hormone and Metabolic Research. 2008;40(03):219–224.
    1. Jurado S, Nogués X, Agueda L, et al. Polymorphisms and haplo-types across the osteoprotegerin gene associated with bone mineral density and osteoporotic fractures. Osteoporosis International. 2010;;21(2):287–296.
    1. Mencej S, Albagha OM, Preželj J, Kocjan T, Marc J. Tumour necrosis factor superfamily member 11 gene promoter polymorphisms modulate promoter activity and influence bone mineral density in postmenopausal women with osteoporosis. Journal of Molecular Endocrinology. 2008;40(6):273–279.
    1. Hoshino S, Hosoi T, Shiraki M, Orimo H, Ouchi Y, Inoue S. Association of tumor necrosis factor receptor 1 gene polymorphism with bone mineral density. Geriatrics & Gerontology International. 2003;3(2):101–105.
    1. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I α 1 gene. Nature Genetics. 1996;14(2):203.
    1. Lau E, Choy D, Li M, Woo J, Chung T, Sham A. The relationship between COLI A1 polymorphisms (Sp 1) and COLI A2 polymorphisms (Eco R1 and Puv II) with bone mineral density in Chinese men and women. Calcified Tissue International. 2004;75(2):133–137.
    1. Chen HY, Tsai HD, Chen WC, Wu JY, Tsai FJ, Tsai CH. Relation of polymorphism in the promotor region for the human osteocalcin gene to bone mineral density and occurrence of osteoporosis in postmenopausal Chinese women in Taiwan. Journal of Clinical Laboratory Analysis. 2001;15(5):251–255.
    1. McGuigan F, Kumar J, Ivaska KK, Obrant KJ, Gerdhem P, Åkesson K. Osteocalcin gene polymorphisms influence concentration of serum osteocalcin and enhance fracture identification. Journal of Bone and Mineral Research. 2010;25(6):1392–1399.
    1. Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. Journal of Biological Chemistry. 2002;277(6):4388–4394.
    1. Eichner JE, Friedrich CA, Cauley JA, et al. Alpha 2-HS glycoprotein phenotypes and quantitative hormone and bone measures in postmenopausal women. Calcified Tissue International. 1990;47(6):345–349.
    1. Johnston JM, Cauley JA, Ganguli M. APOE 4 and hip fracture risk in a community-based study of older adults. Journal of the American Geriatrics Society. 1999;47(11):1342–1345.
    1. Cauley JA, Zmuda JM, Yaffe K, et al. Apolipoprotein E polymorphism: A new genetic marker of hip fracture risk–The Study of Osteoporotic Fractures. J Bone Miner Res. 1999;14(7):1175–1181.
    1. Villadsen MM, Bünger MH, Carstens M, Stenkjær L, Langdahl BL. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism is associated with osteoporotic vertebral fractures, but is a weak predictor of BMD. Osteoporosis International. 2005;16(4):411–416.
    1. Urano T, Inoue S. Genetics of osteoporosis. Biochemical and Biophysical Research Communications. 2014;452(2):287–293.
    1. Douroudis K, Tarassi K, Athanassiades T, et al. HLA alleles as predisposal factors for postmenopausal osteoporosis in a Greek population. Tissue Antigens. 2007;69(6):592–596.
    1. Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genetics. 2000;26(1):76.
    1. Albagha O, McGuigan F, Reid D, Ralston S. Novel polymorphism in the human Fos related antigen-1gene is associated with bone mineral density in women from the UK. Paper presented at: Journal of Bone and Mineral Research. 2002
    1. Vaughan T, Pasco JA, Kotowicz MA, Nicholson GC, Morrison NA. Alleles of RUNX2/CBFA1 gene are associated with differences in bone mineral density and risk of fracture. Journal of Bone and Mineral Research. 2002;17(8):1527–1534.
    1. Doecke JD, Day CJ, Stephens AS, et al. Association of functionally different RUNX2 P2 promoter alleles with BMD. Journal of Bone and Mineral Research. 2006;21(2):265–273.
    1. Kawano KI, Ogata N, Chiano M, et al. Klotho gene polymorphisms associated with bone density of aged postmenopausal women. Journal of Bone and Mineral Research. 2002;17(10):1744–1751.
    1. Ogata N, Shiraki M, Hosoi T, Koshizuka Y, Nakamura K, Kawaguchi H. A polymorphic variant at the Werner helicase (WRN) gene is associated with bone density, but not spondylosis, in postmenopausal women. Journal of Bone and Mineral Metabolism. 2001;19(5):296–301.
    1. Babij P, Zhao W, Small C, et al. High bone mass in mice expressing a mutant LRP5 gene. Journal of Bone and Mineral Research. 2003;18(6):960–974.
    1. Ai M, Holmen SL, Van Hul W, Williams BO, Warman ML. Reduced affinity to and inhibition by DKK1 form a common mechanism by which high bone mass-associated missense mutations in LRP5 affect canonical Wnt signaling. Molecular and Cellular Biology. 2005;25(12):4946–4955.
    1. Giraudeau FS, Mcginnis RE, Gray IC, et al. Characterization of common genetic variants in cathepsin K and testing for association with bone mineral density in a large cohort of perimenopausal women from Scotland. Journal of Bone and Mineral Research. 2004;19(1):31–41.
    1. Babu LR, Wilson S, Dick I, Islam F, Devine A, Prince R. Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone. 2005;36(3):555–561.
    1. Pettersson U, Albagha OM, Mirolo M, et al. Polymorphisms of the CLCN7 gene are associated with BMD in women. Journal of Bone and Mineral Research. 2005;20(11):1960–1967.
    1. Kornak U, Ostertag A, Branger S, Benichou O, de Vernejoul M-C. Polymorphisms in the CLCN7 gene modulate bone density in postmenopausal women and in patients with autosomal dominant osteopetrosis type II. The Journal of Clinical Endocrinology & Metabolism. 2006;91(3):995–1000.
    1. Lee S-H, Rho J, Jeong D, et al. v-ATPase V 0 subunit d2–deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nature Medicine. 2006;12(12):1403.
    1. Marini F, Falchetti A, Silvestri S, et al. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Current Medical Research and Opinion. 2008;24(9):2609–2615.
    1. Gartland A, Skarratt KK, Hocking LJ, et al. Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women. European Journal of Human Genetics. 2012;20(5):559.

Source: PubMed

3
Abonnieren