Daily exposure to virtual nature reduces symptoms of anxiety in college students

Matthew H E M Browning, Seunguk Shin, Gabrielle Drong, Olivia McAnirlin, Ryan J Gagnon, Shyam Ranganathan, Kailan Sindelar, David Hoptman, Gregory N Bratman, Shuai Yuan, Vishnunarayan Girishan Prabhu, Wendy Heller, Matthew H E M Browning, Seunguk Shin, Gabrielle Drong, Olivia McAnirlin, Ryan J Gagnon, Shyam Ranganathan, Kailan Sindelar, David Hoptman, Gregory N Bratman, Shuai Yuan, Vishnunarayan Girishan Prabhu, Wendy Heller

Abstract

Exposure to natural environments offers an array of mental health benefits. Virtual reality provides simulated experiences of being in nature when outdoor access is limited. Previous studies on virtual nature have focused mainly on single "doses" of virtual nature. The effects of repeated exposure remain poorly understood. Motivated by this gap, we studied the influence of a daily virtual nature intervention on symptoms of anxiety, depression, and an underlying cause of poor mental health: rumination. Forty college students (58% non-Hispanic White, median age = 19) were recruited from two U.S. universities and randomly assigned to the intervention or control group. Over several weeks, anxious arousal (panic) and anxious apprehension (worry) decreased with virtual nature exposure. Participants identifying as women, past VR users, experienced with the outdoors, and engaged with the beauty in nature benefited particularly strongly from virtual nature. Virtual nature did not help symptoms of anhedonic depression or rumination. Further research is necessary to distinguish when and for whom virtual nature interventions impact mental health outcomes.

Conflict of interest statement

The authors declare no competing interests.

© 2023. The Author(s).

Figures

Figure 1
Figure 1
Impacts of virtual nature relative to a control condition (no intervention) on two dimensions of anxiety symptoms (worry (A) and panic (B)), depressive symptoms (C), and an underlying cause of poor mental health: rumination (D) (N = 40). Greater decreases correspond to stronger benefits of exposure for mental health. Red lines connect median values pre- and post-intervention. The time between the pre- and post-intervention was three weeks for the 18 students (45% of the total sample) who participated before the COVID-19 pandemic and four weeks for the 22 students (55% of the total sample) who participated during the COVID-19 pandemic.
Figure 2
Figure 2
Moderating effects of gender (A), VR experience (B), exposure to outdoor nature (C, D), and engagement with beauty (E, F) for impacts of virtual nature on changes in worry (N = 23). Greater negative values correspond to stronger mental health exposure benefits. Red lines show changes in median values between conditions.
Figure 3
Figure 3
360-degree videos shown in the virtual nature intervention (Courtesy of INVIROVR).

References

    1. Yang B-Y, et al. Greenspace and human health: An umbrella review. Innovation. 2021;2:100164.
    1. Maas J, et al. Morbidity is related to a green living environment. J. Epidemiol. Community Health. 2009;63:967–973. doi: 10.1136/jech.2008.079038.
    1. Werner, C. A. Population trends in incorporated places: 2000 to 2013. (2015).
    1. Wolch JR, Byrne J, Newell JP. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014;125:234–244. doi: 10.1016/j.landurbplan.2014.01.017.
    1. Hitchings R. Studying the preoccupations that prevent people from going into green space. Landsc. Urban Plan. 2013;118:98–102. doi: 10.1016/j.landurbplan.2012.09.006.
    1. Zarr R, Cottrell L, Merrill C. Park Prescription (DC Park Rx): A New Strategy to Combat Chronic Disease in Children. J. Phys. Act. Health. 2017;14:1–2. doi: 10.1123/jpah.2017-0021.
    1. Sun Y, et al. Physiological and affective responses to green space virtual reality among pregnant women. Environ. Res. 2022 doi: 10.1016/j.envres.2022.114499.
    1. Anderson AP, Stankovic A, Cowan D, Fellows A, Buckey J. Natural scene virtual reality as a behavioral health countermeasure in isolated, confined, and extreme environments: Three isolated, confined, extreme analog case studies. Hum. Factors J. Hum. Factors Ergonom. Soc. 2022 doi: 10.1177/00187208221100693.
    1. Reese G, Stahlberg J, Menzel C. Digital shinrin-yoku: Do nature experiences in virtual reality reduce stress and increase well-being as strongly as similar experiences in a physical forest? Virtual Real-london. 2022;26:1245–1255. doi: 10.1007/s10055-022-00631-9.
    1. Browning MHEM, et al. An actual natural setting improves mood better than its virtual counterpart: A meta-analysis of experimental data. Front. Psychol. 2020;11:2200. doi: 10.3389/fpsyg.2020.02200.
    1. Browning MHEM, Saeidi-Rizi F, McAnirlin O, Yoon H, Pei Y. The role of methodological choices in the effects of experimental exposure to simulated natural landscapes on human health and cognitive performance: A systematic review. Environ. Behav. 2020;53:687–731. doi: 10.1177/0013916520906481.
    1. Liszio, S., Graf, L. & Mausch, M. The relaxing effect of virtual nature: Immersive technology provides relief in acute stress situations. in 87–93 (2018).
    1. Naef AC, et al. Investigating the role of auditory and visual sensory inputs for inducing relaxation during virtual reality stimulation. Sci. Rep.-UK. 2022;12:17073. doi: 10.1038/s41598-022-21575-9.
    1. Bolouki A. The impact of virtual reality natural and built environments on affective responses: A systematic review and meta-analysis. Int. J. Environ. Heal. R. 2022 doi: 10.1080/09603123.2022.2130881.
    1. Frost S, et al. Virtual immersion in nature and psychological well-being: A systematic literature review. J. Environ. Psychol. 2022 doi: 10.1016/j.jenvp.2022.101765.
    1. White MP, et al. A prescription for “nature”–the potential of using virtual nature in therapeutics. Neuropsych. Dis. Treat. 2018;14:3001–3013. doi: 10.2147/NDT.S179038.
    1. Murray C, et al. The state of US health, 1990–2010: Burden of diseases, injuries, and risk factors. JAMA. 2013;310:591–606. doi: 10.1001/jama.2013.13805.
    1. Mohr DC, et al. Perceived barriers to psychological treatments and their relationship to depression. J. Clin. Psychol. 2010;27:394–409.
    1. Bratman GN, et al. Affective benefits of nature contact: The role of rumination. Front Psychol. 2021;12:643866. doi: 10.3389/fpsyg.2021.643866.
    1. Bratman GN, Hamilton JP, Hahn KS, Daily GC, Gross JJ. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl. Acad. Sci. 2015;112:8567–8572. doi: 10.1073/pnas.1510459112.
    1. Veling W, Lestestuiver B, Jongma M, Hoenders HJR, van Driel C. Virtual reality relaxation for patients with a psychiatric disorder: Crossover randomized controlled trial. J. Med. Internet Res. 2021;23:e17233. doi: 10.2196/17233.
    1. Lakhani A, et al. What is the impact of engaging with natural environments delivered via virtual reality on the psycho-emotional health of people with spinal cord injury receiving rehabilitation in hospital? Findings from a pilot randomized controlled trial. Arch. Phys. Med. Rehab. 2020;101:1532–1540. doi: 10.1016/j.apmr.2020.05.013.
    1. Reynolds LM, et al. The benefits and acceptability of virtual reality interventions for women with metastatic breast cancer in their homes; a pilot randomised trial. BMC Cancer. 2022;22:360. doi: 10.1186/s12885-021-09081-z.
    1. Chin S, et al. An investigation of virtual reality nature experiences in patients with metastatic breast cancer: Secondary analysis of a randomized controlled trial. Jmir. Cancer. 2022;8:e38300. doi: 10.2196/38300.
    1. Jaung W. Digital forest recreation in the metaverse: Opportunities and challenges. Technol. Forecast. Soc. 2022;185:122090. doi: 10.1016/j.techfore.2022.122090.
    1. Sharp PB, Miller GA, Heller W. Transdiagnostic dimensions of anxiety: Neural mechanisms, executive functions, and new directions. Int. J. Psychophysiol. 2015;98:1–13. doi: 10.1016/j.ijpsycho.2015.07.001.
    1. Nitschke JB, Heller W, Imig JC, McDonald RP, Miller GA. Distinguishing dimensions of anxiety and depression. Cogn. Ther. Res. 2001;25:1–22. doi: 10.1023/A:1026485530405.
    1. Spielberg JM, et al. Transdiagnostic dimensions of anxiety and depression moderate motivation-related brain networks during goal maintenance. Depress. Anxiety. 2014;31:805–813. doi: 10.1002/da.22271.
    1. Clark LA, Watson D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991;100:316–336. doi: 10.1037/0021-843X.100.3.316.
    1. Suppakittpaisarn P, et al. Durations of virtual exposure to built and natural landscapes impact self-reported stress recovery: Evidence from three countries. Landsc. Ecol. Eng. 2022 doi: 10.1007/s11355-022-00523-9.
    1. Zhang JW, Howell RT, Iyer R. Engagement with natural beauty moderates the positive relation between connectedness with nature and psychological well-being. J. Environ. Psychol. 2014;38:55–63. doi: 10.1016/j.jenvp.2013.12.013.
    1. Lopes S, Lima M, Silva K. Nature can get it out of your mind the rumination reducing effects of contact with nature and the mediating role of awe and mood. J. Environ. Psychol. 2020 doi: 10.1016/j.jenvp.2020.101489.
    1. Golding S, Gatersleben B, Cropley M. An experimental exploration of the effects of exposure to images of nature on rumination. Int. J. Environ. Res. Public Health. 2018;15:300. doi: 10.3390/ijerph15020300.
    1. Leung G, Hazan H, Chan CS. Exposure to nature in immersive virtual reality increases connectedness to nature among people with low nature affinity. J. Environ. Psychol. 2022 doi: 10.1016/j.jenvp.2022.101863.
    1. Brambilla E, et al. Effects of immersive virtual nature on nature connectedness: A systematic review protocol. Digital Heal. 2022;8:205520762211203. doi: 10.1177/20552076221120324.
    1. Olbrecht VA, et al. Guided relaxation-based virtual reality versus distraction-based virtual reality or passive control for postoperative pain management in children and adolescents undergoing Nuss repair of pectus excavatum: Protocol for a prospective, randomised, controlled trial (FOREVR Peds trial) BMJ Open. 2020;10:e040295. doi: 10.1136/bmjopen-2020-040295.
    1. Sillman, D., Rigolon, A., Browning, M. H. E. M., Yoon, H. (Violet) & McAnirlin, O. Do sex and gender modify the association between green space and physical health? A systematic review. Environ. Res. 209, 112869 (2022).
    1. Browning MHEM, Mimnaugh KJ, van Riper CJ, Laurent HK, LaValle SM. Can simulated nature support mental health? Comparing short, single-doses of 360-degree nature videos in virtual reality with the outdoors. Front. Psychol. 2020;10:2667. doi: 10.3389/fpsyg.2019.02667.
    1. Vermeesch, A. L. et al. Nature-based feasibility intervention to influence mitigation strategies for perceived stress. Int. J. Environ. Res. Public Health (2022).
    1. Yuan S, et al. A virtual reality investigation of factors influencing landscape preferences: Natural elements, emotions, and media creation. Landsc. Urban Plan. 2023;230:104616. doi: 10.1016/j.landurbplan.2022.104616.
    1. Berman MG, Kardan O, Kotabe HP, Nusbaum HC, London SE. The promise of environmental neuroscience. Nat. Hum. Behav. 2019;1:1–4.
    1. Hopman RJ, LoTemplio SB, Scott EE, McKinney TL, Strayer DL. Resting-state posterior alpha power changes with prolonged exposure in a natural environment. Cognit. Res.: Princ. Implic. 2020;5:1–13.
    1. Kühn S, et al. Spend time outdoors for your brain–an in-depth longitudinal MRI study. World J. Biol. Psychiat. 2021 doi: 10.1080/15622975.2021.1938670.
    1. Olszewska-Guizzo A, Sia A, Fogel A, Ho R. Features of urban green spaces associated with positive emotions, mindfulness and relaxation. Sci. Rep-UK. 2022;12:20695. doi: 10.1038/s41598-022-24637-0.
    1. Norwood MF, et al. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019;65:101321. doi: 10.1016/j.jenvp.2019.101321.
    1. Mavrantza AM, Bigliassi M, Calogiuri G. Psychophysiological mechanisms underlying the effects of outdoor green and virtual green exercise during self-paced walking. Int. J. Psychophysiol. 2022 doi: 10.1016/j.ijpsycho.2022.12.006.
    1. Annerstedt M, et al. Inducing physiological stress recovery with sounds of nature in a virtual reality forest–results from a pilot study. Physiol. Behav. 2013;118:240–250. doi: 10.1016/j.physbeh.2013.05.023.
    1. Olszewska-Guizzo A, et al. Hemodynamic response to three types of urban spaces before and after Lockdown during the COVID-19 pandemic. Int. J. Environ. Res. Pu. 2021;18:6118. doi: 10.3390/ijerph18116118.
    1. Agnieszka O-G, Anna F, Nicolas E, Roger H. Effects of COVID-19-related stay-at-home order on neuropsychophysiological response to urban spaces: Beneficial role of exposure to nature? J. Environ. Psychol. 2021 doi: 10.1016/j.jenvp.2021.101590.
    1. Nukarinen T, et al. Measures and modalities in restorative virtual natural environments: An integrative narrative review. Comput. Hum. Behav. 2021;126:107008. doi: 10.1016/j.chb.2021.107008.
    1. Golding JF. Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 1998;47:507–516. doi: 10.1016/S0361-9230(98)00091-4.
    1. Kennedy, R. S. & Graybiel, A. The dial test: A standardized procedure for the experimental production of canal sickness symptomatology in a rotating environment. 10.21236/ad0625863 (1965).
    1. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 2009;3:203–220. doi: 10.1207/s15327108ijap0303_3.
    1. Prabhu, V. G., Stanley, L., Morgan, R. & Shirley, B. Comparing the efficacy of a video and virtual reality intervention to mitigate surgical pain and anxiety. In Human Interaction, Emerging Technologies and Future Systems V, Proceedings of the 5th International Virtual Conference on Human Interaction and Emerging Technologies, IHIET 2021, August 27–29, 2021 and the 6th IHIET: Future Systems (IHIET-FS 2021), October 28–30, 2021, France 1041–1048 (2022). 10.1007/978-3-030-85540-6_133.
    1. Prabhu VG, Stanley L, Morgan R. A biofeedback enhanced adaptive virtual reality environment for managing surgical pain and anxiety. Int. J. Semant. Comput. 2020;14:375–393. doi: 10.1142/S1793351X20400152.
    1. Chang E, Kim HT, Yoo B. Virtual reality sickness: A review of causes and measurements. Int. J. Hum. Comput. Interact. 2020;36:1658–1682. doi: 10.1080/10447318.2020.1778351.
    1. Howard MC, Zandt ECV. A meta-analysis of the virtual reality problem: Unequal effects of virtual reality sickness across individual differences. Virtual Real-london. 2021 doi: 10.1007/s10055-021-00524-3.
    1. Litleskare S, Calogiuri G. Camera stabilization in 360° videos and its impact on cyber sickness, environmental perceptions, and psychophysiological responses to a simulated nature walk: A single-blinded randomized trial. Front. Psychol. 2019;10:2436. doi: 10.3389/fpsyg.2019.02436.
    1. Hemmerich W, Keshavarz B, Hecht H. Visually induced motion sickness on the horizon. Front. Virtual Real. 2020;1:456–510. doi: 10.3389/frvir.2020.582095.
    1. Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn W. Visual discomfort and visual fatigue of stereoscopic displays: A review. J. Imaging Sci. Techn. 2009;53:30201. doi: 10.2352/J.ImagingSci.Technol.2009.53.3.030201.
    1. Souchet AD, Lourdeaux D, Pagani A, Rebenitsch L. A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: Cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload. Virtual Real-london. 2022 doi: 10.1007/s10055-022-00672-0.
    1. Madigan S, Eirich R, Pador P, McArthur BA, Neville RD. Assessment of changes in child and adolescent screen time during the COVID-19 pandemic. Jama Pediatr. 2022;176:1188–1198. doi: 10.1001/jamapediatrics.2022.4116.
    1. Trott M, Driscoll R, Irlado E, Pardhan S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: A systematic review and meta-analysis. Eclinicalmedicine. 2022;48:101452. doi: 10.1016/j.eclinm.2022.101452.
    1. Chirico A, Gaggioli A. When virtual feels real: Comparing emotional responses and presence in virtual and natural environments. Cyberpsychol. Behav. Soc. Netw. 2019;22:220–226. doi: 10.1089/cyber.2018.0393.
    1. Browning MHEM, et al. Psychological impacts from COVID-19 among university students: Risk factors across seven states in the United States. PLoS ONE. 2021;16:e0245327. doi: 10.1371/journal.pone.0245327.
    1. Litleskare S, Calogiuri G. Seasonal variations in the effectiveness of immersive virtual nature. Herd Heal Environ. Res. Des. J. 2022 doi: 10.1177/19375867221127420.
    1. Moyle W, Jones C, Dwan T, Petrovich T. Effectiveness of a virtual reality forest on people with dementia: A mixed methods pilot study. Gerontologist. 2017;58:478–487. doi: 10.1093/geront/gnw270.
    1. Li H, et al. Beyond “bluespace” and “greenspace”: A narrative review of possible health benefits from exposure to other natural landscapes. Sci. Total Environ. 2022;856:159292. doi: 10.1016/j.scitotenv.2022.159292.
    1. Hartig T, Mitchell RJ, de Vries S, Frumkin H. Nature and health. Ann. Rev. Public Health. 2014;35:207–228. doi: 10.1146/annurev-publhealth-032013-182443.
    1. Masters R, Interrante V, Watts M, Ortega F. Virtual nature: Investigating the effect of biomass on immersive virtual reality forest bathing applications for stress reduction. Acm. Symp. Appl. Percept. 2022;2022:1–10. doi: 10.1145/3548814.3551459.
    1. Yin J, Bratman GN, Browning MHEM, Spengler JD, Olvera-Alvarez HA. Stress recovery from virtual exposure to a brown (desert) environment versus a green environment. J. Environ. Psychol. 2022;81:101775. doi: 10.1016/j.jenvp.2022.101775.
    1. Pool, U. The impact of water and anthropogenic objects on implicit evaluations of natural scenes: a restorative environments perspective. (University of Central Lancaster, 2017).
    1. Browning M, Suppakittpaisarn P, Jiang S, Joseph A. Human health assessments of green infrastructure designs using virtual reality. Landsc. Archit. 2020;27:00–00.
    1. Meyer TJ, Miller ML, Metzger RL, Borkovec TD. Development and validation of the Penn state worry questionnaire. Behav. Res. Ther. 1990;28:487–495. doi: 10.1016/0005-7967(90)90135-6.
    1. Watson D, et al. Testing a tripartite model: I. evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J. Abnorm. Psychol. 1995;104:3–14. doi: 10.1037/0021-843X.104.1.3.
    1. Watson D, et al. Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples. J. Abnorm. Psychol. 1995;104:15–25. doi: 10.1037/0021-843X.104.1.15.
    1. Merino H, Senra C, Ferreiro F. Are worry and rumination specific pathways linking neuroticism and symptoms of anxiety and depression in patients with generalized anxiety disorder, major depressive disorder and mixed anxiety-depressive disorder? PLoS ONE. 2016;11:e0156169–e156214. doi: 10.1371/journal.pone.0156169.
    1. Nolen-Hoeksema S. The role of rumination in depressive disorders and mixed anxiety/depressive symptoms. J. Abnorm. Psychol. 2000;109:504–511. doi: 10.1037/0021-843X.109.3.504.
    1. Trapnell, P. D. RRQ. (1999).
    1. Godin G, Shephard RJ. A simple method to assess exercise behavior in the community. Can. J. Appl. Sport Sci. 1985;10:141–146.
    1. Diessner R, Solom RC, Frost NK, Parsons L, Davidson J. Engagement with beauty: Appreciating natural, artistic, and moral beauty. J. Psychol. 2008;142:303–329. doi: 10.3200/JRLP.142.3.303-332.
    1. Browning MHEM, Stern MJ, Ardoin NM, Heimlich JE. Factors that contribute to community members’ support of local nature centers. Environ. Educ. Res. 2018;24:326–342. doi: 10.1080/13504622.2016.1217397.
    1. Enders, C. K. Applied missing data analysis. (Guildford, 2022).
    1. Little RJ. A test of missing completely at random for multivariate data with missing values. J. Am. Stat. Assoc. 1986;83:1198. doi: 10.1080/01621459.1988.10478722.

Source: PubMed

3
Abonnieren