Physical Activity in the Prevention and Treatment of Coronary Artery Disease

Ephraim Bernhard Winzer, Felix Woitek, Axel Linke, Ephraim Bernhard Winzer, Felix Woitek, Axel Linke

No abstract available

Keywords: coronary artery disease; endothelium; exercise training; physical exercise; prevention.

Figures

Figure 1
Figure 1
Impact of regular physical activity on mortality in primary prevention. Low cardiorespiratory fitness, obesity, arterial hypertension, diabetes mellitus, and dyslipidemia contribute to increased mortality (+). Regular physical activity improves fitness (+) and counteracts the development of risk factors (−).
Figure 2
Figure 2
Endothelial function and repair. Endothelial NO synthase (eNOS) produces NO via conversion of l‐arginine (l‐Arg.) to l‐citrulline in the presence of tetrahydrobiopterin (BH4) and calcium‐calmodulin. Shear stress activates eNOS activity by phosphorylation at serine 1177 (S1177). This process is mediated by phosphatidylinositol 3‐kinase (PI3K), phosphoinositide‐dependent kinase (PDK), and protein kinase B (AKT). NO easily diffuses through plasma membranes. In smooth muscle cells, NO activates guanylate cyclase, which, in turn, converts GTP to cGMP. A reduction of the intracellular calcium concentration (Ca2+) leads to hyperpolarization of the cell membrane and, consequently, smooth muscle relaxation. NO is broken down in the presence of reactive oxygen species (ROS), mainly superoxide, generating peroxynitrite. Peroxynitrite, in turn, oxidates BH4 and promotes eNOS uncoupling, resulting in eNOS‐derived superoxide production. Additional sources of superoxide are heme oxygenase (HO1/2), myeloperoxidase, cytochrome P450, the mitochondrial electron transport chain, and nicotinamide‐adenine dinucleotide [phosphate], reduced form (NAD[P]H) oxidase, which is activated by tumor necrosis factor α and angiotensin II via the angiotensin II receptor type 1 (AT1‐R). Extracellular superoxide dismutase (ecSOD) scavenges superoxide. Vessel growth and arteriolarization of capillaries are mediated by vascular endothelial growth factor (VEGF), transforming growth factor ß (TGF), platelet‐derived growth factor (PDGF), fibroblast growth factors 1 and 2 (FGFs 1/2), and insulin‐like growth factor (IGF). Circulating progenitor cells (CPCs), mobilized from the bone marrow, contribute to repair of the damaged endothelium and the formation of new vascular structures. Homing of CPCs is mediated by the binding of CXC‐chemokine receptor type 4 (CXCR4) to stromal cell–derived factor‐1 (SDF‐1), which is secreted at the site of injury. The adhesion molecule P‐selectin mediates the rolling of blood cells on the surface of the endothelium and initiates the activation of platelets and adhesion of leukocytes at the site of injury, allowing them to transmigrate the endothelial layer and perpetuate an inflammatory atherosclerotic process via the secretion of interleukins and chemokines. Question marks indicate that there are several other endothelial‐derived relaxing and constricting factors that affect different ion channels, transporters, and second messengers. Further alterations within the vascular smooth muscle cell and perivascular adipose tissue are involved in the regulation of the vascular tone, but they are not in the focus herein.
Figure 3
Figure 3
Mechanisms of improved collateral blood flow. Improvement of collateral blood flow in occlusive coronary artery disease in response to exercise training might be a consequence of the following: (1) angiogenesis, which is the sprouting of endothelial cells from preexisting capillaries and the formation of a capillary network; (2) the arteriolarization of capillaries and microvessels; or (3) improved vasomotor function of conduit arteries and resistance vessels of the collateral supply arteries.

References

    1. Linke A, Erbs S, Hambrecht R. Effects of exercise training upon endothelial function in patients with cardiovascular disease. Front Biosci. 2008;13:424–432.
    1. Brown MD. Exercise and coronary vascular remodelling in the healthy heart. Exp Physiol. 2003;88:645–658.
    1. Erbs S, Linke A, Hambrecht R. Effects of exercise training on mortality in patients with coronary heart disease. Coron Artery Dis. 2006;17:219–225.
    1. Morris JN, Chave SP, Adam C, Sirey C, Epstein L, Sheehan DJ. Vigorous exercise in leisure‐time and the incidence of coronary heart‐disease. Lancet. 1973;1:333–339.
    1. Sattelmair J, Pertman J, Ding EL, Kohl HW III, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta‐analysis. Circulation. 2011;124:789–795.
    1. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Noorani H, Rees K, Skidmore B, Stone JA, Thompson DR, Oldridge N. Exercise‐based rehabilitation for patients with coronary heart disease: systematic review and meta‐analysis of randomized controlled trials. Am J Med. 2004;116:682–692.
    1. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise‐based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta‐analysis. J Am Coll Cardiol. 2016;67:1–12.
    1. Gould KL. Intense exercise and native collateral function in stable moderate coronary artery disease: incidental, causal, or clinically important? Circulation. 2016;133:1431–1434.
    1. Chen YW, Apostolakis S, Lip GY. Exercise‐induced changes in inflammatory processes: implications for thrombogenesis in cardiovascular disease. Ann Med. 2014;46:439–455.
    1. Paffenbarger RS Jr, Hyde RT, Wing AL, Hsieh CC. Physical activity, all‐cause mortality, and longevity of college alumni. N Engl J Med. 1986;314:605–613.
    1. Paffenbarger RS Jr, Hyde RT, Wing AL, Lee IM, Jung DL, Kampert JB. The association of changes in physical‐activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328:538–545.
    1. Sesso HD, Paffenbarger RS Jr, Lee IM. Physical activity and coronary heart disease in men: the Harvard Alumni Health Study. Circulation. 2000;102:975–980.
    1. Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure‐time running reduces all‐cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64:472–481.
    1. Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32:541–556.
    1. Haapanen N, Miilunpalo S, Vuori I, Oja P, Pasanen M. Characteristics of leisure time physical activity associated with decreased risk of premature all‐cause and cardiovascular disease mortality in middle‐aged men. Am J Epidemiol. 1996;143:870–880.
    1. Schnohr P, O'Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long‐term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol. 2015;65:411–419.
    1. Mons U, Hahmann H, Brenner H. A reverse J‐shaped association of leisure time physical activity with prognosis in patients with stable coronary heart disease: evidence from a large cohort with repeated measurements. Heart. 2014;100:1043–1049.
    1. Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the extremes: the amount of exercise to reduce cardiovascular events. J Am Coll Cardiol. 2016;67:316–329.
    1. O'Keefe JH, Patil HR, Lavie CJ, Magalski A, Vogel RA, McCullough PA. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc. 2012;87:587–595.
    1. Lee DC, Lavie CJ, Vedanthan R. Optimal dose of running for longevity: is more better or worse? J Am Coll Cardiol. 2015;65:420–422.
    1. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793–801.
    1. Lee DC, Sui X, Ortega FB, Kim YS, Church TS, Winett RA, Ekelund U, Katzmarzyk PT, Blair SN. Comparisons of leisure‐time physical activity and cardiorespiratory fitness as predictors of all‐cause mortality in men and women. Br J Sports Med. 2011;45:504–510.
    1. Swain DP. Moderate or vigorous intensity exercise: which is better for improving aerobic fitness? Prev Cardiol. 2005;8:55–58.
    1. Schnohr P, Marott JL, Jensen JS, Jensen GB. Intensity versus duration of cycling, impact on all‐cause and coronary heart disease mortality: the Copenhagen City Heart Study. Eur J Prev Cardiol. 2012;19:73–80.
    1. Khera AV, Emdin CA, Drake I, Natarajan P, Bick AG, Cook NR, Chasman DI, Baber U, Mehran R, Rader DJ, Fuster V, Boerwinkle E, Melander O, Orho‐Melander M, Ridker PM, Kathiresan S. Genetic risk, adherence to a healthy lifestyle, and coronary disease. N Engl J Med. 2016;375:2349–2358.
    1. Grontved A, Koivula RW, Johansson I, Wennberg P, Ostergaard L, Hallmans G, Renstrom F, Franks PW. Bicycling to work and primordial prevention of cardiovascular risk: a cohort study among Swedish men and women. J Am Heart Assoc. 2016;5:e004413 DOI: .
    1. Carlsson S, Andersson T, Lichtenstein P, Michaelsson K, Ahlbom A. Physical activity and mortality: is the association explained by genetic selection? Am J Epidemiol. 2007;166:255–259.
    1. Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis. 2015;57:443–453.
    1. Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation: alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis. 2006;48:270–284.
    1. Furchgott RF. The 1996 Albert Lasker Medical Research Awards: the discovery of endothelium‐derived relaxing factor and its importance in the identification of nitric oxide. JAMA. 1996;276:1186–1188.
    1. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation. Nature. 1999;399:601–605.
    1. Hambrecht R, Adams V, Erbs S, Linke A, Krankel N, Shu Y, Baither Y, Gielen S, Thiele H, Gummert JF, Mohr FW, Schuler G. Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation. 2003;107:3152–3158.
    1. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74:349–353.
    1. Woodman CR, Price EM, Laughlin MH. Shear stress induces eNOS mRNA expression and improves endothelium‐dependent dilation in senescent soleus muscle feed arteries. J Appl Physiol. 2005;98:940–946.
    1. Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium‐derived nitric oxide function in humans. J Physiol. 2004;561:1–25.
    1. Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius‐Winkler S, Gummert JF, Mohr FW, Schuler G, Hambrecht R. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111:555–562.
    1. Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation. 1997;96:3264–3265.
    1. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury, part I: basic mechanisms and in vivo monitoring of ROS. Circulation. 2003;108:1912–1916.
    1. Fukai T, Siegfried MR, Ushio‐Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000;105:1631–1639.
    1. Landmesser U, Merten R, Spiekermann S, Buttner K, Drexler H, Hornig B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium‐dependent vasodilation. Circulation. 2000;101:2264–2270.
    1. Stepp DW, Merkus D, Nishikawa Y, Chilian WM. Nitric oxide limits coronary vasoconstriction by a shear stress‐dependent mechanism. Am J Physiol Heart Circ Physiol. 2001;281:H796–H803.
    1. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation. 2010;122:1221–1238.
    1. Deindl E, Hoefer IE, Fernandez B, Barancik M, Heil M, Strniskova M, Schaper W. Involvement of the fibroblast growth factor system in adaptive and chemokine‐induced arteriogenesis. Circ Res. 2003;92:561–568.
    1. Koyama T, Xie Z, Gao M, Suzuki J, Batra S. Adaptive changes in the capillary network in the left ventricle of rat heart. Jpn J Physiol. 1998;48:229–241.
    1. Neri Serneri GG, Boddi M, Modesti PA, Cecioni I, Coppo M, Padeletti L, Michelucci A, Colella A, Galanti G. Increased cardiac sympathetic activity and insulin‐like growth factor‐I formation are associated with physiological hypertrophy in athletes. Circ Res. 2001;89:977–982.
    1. Zheng W, Brown MD, Brock TA, Bjercke RJ, Tomanek RJ. Bradycardia‐induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res. 1999;85:192–198.
    1. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302:H10–H23.
    1. White FC, Bloor CM, McKirnan MD, Carroll SM. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol. 1998;85:1160–1168.
    1. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967.
    1. Kalka C, Masuda H, Takahashi T, Kalka‐Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000;97:3422–3427.
    1. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999;85:221–228.
    1. Aicher A, Heeschen C, Mildner‐Rihm C, Urbich C, Ihling C, Technau‐Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003;9:1370–1376.
    1. Cubbon RM, Murgatroyd SR, Ferguson C, Bowen TS, Rakobowchuk M, Baliga V, Cannon D, Rajwani A, Abbas A, Kahn M, Birch KM, Porter KE, Wheatcroft SB, Rossiter HB, Kearney MT. Human exercise‐induced circulating progenitor cell mobilization is nitric oxide‐dependent and is blunted in South Asian men. Arterioscler Thromb Vasc Biol. 2010;30:878–884.
    1. Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol. 1999;19:1156–1161.
    1. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109:220–226.
    1. Moebius‐Winkler S, Schuler G, Adams V. Endothelial progenitor cells and exercise‐induced redox regulation. Antioxid Redox Signal. 2011;15:997–1011.
    1. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, Schoene N, Schuler G. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–460.
    1. Lu TM, Ding YA, Charng MJ, Lin SJ. Asymmetrical dimethylarginine: a novel risk factor for coronary artery disease. Clin Cardiol. 2003;26:458–464.
    1. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, Tarnok A, Gielen S, Emmrich F, Schuler G, Hambrecht R. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise‐induced ischemia. Arterioscler Thromb Vasc Biol. 2004;24:684–690.
    1. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003;93:e17–e24.
    1. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease: a 30th anniversary update. Acta Physiol (Oxf). 2017;219:22–96.
    1. März W, Kleber ME, Scharnagl H, Speer T, Zewinger S, Ritsch A, Parhofer KG, von Eckardstein A, Landmesser U, Laufs U. HDL cholesterol: reappraisal of its clinical relevance. Clin Res Cardiol. 2017;106:663–675.
    1. Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N, Mueller M, Akhmedov A, Daniil G, Manes C, Templin C, Wyss C, Maier W, Tanner FC, Matter CM, Corti R, Furlong C, Lusis AJ, von Eckardstein A, Fogelman AM, Luscher TF, Landmesser U. Mechanisms underlying adverse effects of HDL on eNOS‐activating pathways in patients with coronary artery disease. J Clin Invest. 2011;121:2693–2708.
    1. Sturek M. Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. J Appl Physiol (1985). 2011;111:573–586.
    1. Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf). 2017;219:124–137.
    1. Boden WE, O'Rourke RA, Teo KK, Maron DJ, Hartigan PM, Sedlis SP, Dada M, Labedi M, Spertus JA, Kostuk WJ, Berman DS, Shaw LJ, Chaitman BR, Mancini GB, Weintraub WS. Impact of optimal medical therapy with or without percutaneous coronary intervention on long‐term cardiovascular end points in patients with stable coronary artery disease (from the COURAGE Trial). Am J Cardiol. 2009;104:1–4.
    1. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, Budaj A, Bugiardini R, Crea F, Cuisset T, Di Mario C, Ferreira JR, Gersh BJ, Gitt AK, Hulot JS, Marx N, Opie LH, Pfisterer M, Prescott E, Ruschitzka F, Sabate M, Senior R, Taggart DP, van der Wall EE, Vrints CJ, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Knuuti J, Valgimigli M, Bueno H, Claeys MJ, Donner‐Banzhoff N, Erol C, Frank H, Funck‐Brentano C, Gaemperli O, Gonzalez‐Juanatey JR, Hamilos M, Hasdai D, Husted S, James SK, Kervinen K, Kolh P, Kristensen SD, Lancellotti P, Maggioni AP, Piepoli MF, Pries AR, Romeo F, Ryden L, Simoons ML, Sirnes PA, Steg PG, Timmis A, Wijns W, Windecker S, Yildirir A, Zamorano JL. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.
    1. Hambrecht R, Walther C, Mobius‐Winkler S, Gielen S, Linke A, Conradi K, Erbs S, Kluge R, Kendziorra K, Sabri O, Sick P, Schuler G. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109:1371–1378.
    1. Belardinelli R, Paolini I, Cianci G, Piva R, Georgiou D, Purcaro A. Exercise training intervention after coronary angioplasty: the ETICA trial. J Am Coll Cardiol. 2001;37:1891–1900.
    1. Pitsavos C, Chrysohoou C, Koutroumbi M, Aggeli C, Kourlaba G, Panagiotakos D, Michaelides A, Stefanadis C. The impact of moderate aerobic physical training on left ventricular mass, exercise capacity and blood pressure response during treadmill testing in borderline and mildly hypertensive males. Hellenic J Cardiol. 2011;52:6–14.
    1. Estorch M, Flotats A, Serra‐Grima R, Mari C, Prat T, Martin JC, Berna L, Catafau AM, Tembl A, Carrio I. Influence of exercise rehabilitation on myocardial perfusion and sympathetic heart innervation in ischaemic heart disease. Eur J Nucl Med. 2000;27:333–339.
    1. Hambrecht R, Niebauer J, Marburger C, Grunze M, Kalberer B, Hauer K, Schlierf G, Kubler W, Schuler G. Various intensities of leisure time physical activity in patients with coronary artery disease: effects on cardiorespiratory fitness and progression of coronary atherosclerotic lesions. J Am Coll Cardiol. 1993;22:468–477.
    1. Somers VK, Conway J, Johnston J, Sleight P. Effects of endurance training on baroreflex sensitivity and blood pressure in borderline hypertension. Lancet. 1991;337:1363–1368.
    1. Neto OB, de Sordi CC, da Mota GR, Marocolo M, Chriguer RS, da Silva VJD. Exercise training improves hypertension‐induced autonomic dysfunction without influencing properties of peripheral cardiac vagus nerve. Auton Neurosci. 2017;208:66–72.
    1. Sandri M, Kozarez I, Adams V, Mangner N, Hollriegel R, Erbs S, Linke A, Mobius‐Winkler S, Thiery J, Kratzsch J, Teupser D, Mende M, Hambrecht R, Schuler G, Gielen S. Age‐related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction Study. Eur Heart J. 2012;33:1758–1768.
    1. Amundsen BH, Rognmo O, Hatlen‐Rebhan G, Slordahl SA. High‐intensity aerobic exercise improves diastolic function in coronary artery disease. Scand Cardiovasc J. 2008;42:110–117.
    1. Ellingsen O, Halle M, Conraads V, Stoylen A, Dalen H, Delagardelle C, Larsen AI, Hole T, Mezzani A, Van Craenenbroeck EM, Videm V, Beckers P, Christle JW, Winzer E, Mangner N, Woitek F, Hollriegel R, Pressler A, Monk‐Hansen T, Snoer M, Feiereisen P, Valborgland T, Kjekshus J, Hambrecht R, Gielen S, Karlsen T, Prescott E, Linke A. High‐intensity interval training in patients with heart failure with reduced ejection fraction. Circulation. 2017;135:839–849.
    1. Kemi OJ, Wisloff U. Mechanisms of exercise‐induced improvements in the contractile apparatus of the mammalian myocardium. Acta Physiol (Oxf). 2010;199:425–439.
    1. Ditchey RV, Watkins J, McKirnan MD, Froelicher V. Effects of exercise training on left ventricular mass in patients with ischemic heart disease. Am Heart J. 1981;101:701–706.
    1. Henderson KK, Turk JR, Rush JW, Laughlin MH. Endothelial function in coronary arterioles from pigs with early‐stage coronary disease induced by high‐fat, high‐cholesterol diet: effect of exercise. J Appl Physiol. 2004;97:1159–1168.
    1. Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol. 2017;313:H72–H88.
    1. Adams V, Besler C, Fischer T, Riwanto M, Noack F, Hollriegel R, Oberbach A, Jehmlich N, Volker U, Winzer EB, Lenk K, Hambrecht R, Schuler G, Linke A, Landmesser U, Erbs S. Exercise training in patients with chronic heart failure promotes restoration of high‐density lipoprotein functional properties. Circ Res. 2013;113:1345–1355.
    1. Wesnigk J, Bruyndonckx L, Hoymans VY, De Guchtenaere A, Fischer T, Schuler G, Vrints CJ, Adams V. Impact of lifestyle intervention on HDL‐induced eNOS activation and cholesterol efflux capacity in obese adolescent. Cardiol Res Pract. 2016;2016:2820432.
    1. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow‐induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16:1256–1262.
    1. Rudic RD, Shesely EG, Maeda N, Smithies O, Segal SS, Sessa WC. Direct evidence for the importance of endothelium‐derived nitric oxide in vascular remodeling. J Clin Invest. 1998;101:731–736.
    1. Indolfi C, Torella D, Coppola C, Curcio A, Rodriguez F, Bilancio A, Leccia A, Arcucci O, Falco M, Leosco D, Chiariello M. Physical training increases eNOS vascular expression and activity and reduces restenosis after balloon angioplasty or arterial stenting in rats. Circ Res. 2002;91:1190–1197.
    1. Eckstein RW. Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res. 1957;5:230–235.
    1. Heaps CL, Parker JL. Effects of exercise training on coronary collateralization and control of collateral resistance. J Appl Physiol (1985). 2011;111:587–598.
    1. Belardinelli R, Georgiou D, Ginzton L, Cianci G, Purcaro A. Effects of moderate exercise training on thallium uptake and contractile response to low‐dose dobutamine of dysfunctional myocardium in patients with ischemic cardiomyopathy. Circulation. 1998;97:553–561.
    1. Niebauer J, Hambrecht R, Marburger C, Hauer K, Velich T, von Hodenberg E, Schlierf G, Kubler W, Schuler G. Impact of intensive physical exercise and low‐fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol. 1995;76:771–775.
    1. Seiler C, Fleisch M, Billinger M, Meier B. Simultaneous intracoronary velocity‐ and pressure‐derived assessment of adenosine‐induced collateral hemodynamics in patients with one‐ to two‐vessel coronary artery disease. J Am Coll Cardiol. 1999;34:1985–1994.
    1. Zbinden R, Zbinden S, Meier P, Hutter D, Billinger M, Wahl A, Schmid JP, Windecker S, Meier B, Seiler C. Coronary collateral flow in response to endurance exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14:250–257.
    1. Mobius‐Winkler S, Uhlemann M, Adams V, Sandri M, Erbs S, Lenk K, Mangner N, Mueller U, Adam J, Grunze M, Brunner S, Hilberg T, Mende M, Linke AP, Schuler G. Coronary collateral growth induced by physical exercise: results of the impact of intensive exercise training on coronary collateral circulation in patients with stable coronary artery disease (EXCITE) trial. Circulation. 2016;133:1438–1448.
    1. Zbinden R, Zbinden S, Windecker S, Meier B, Seiler C. Direct demonstration of coronary collateral growth by physical endurance exercise in a healthy marathon runner. Heart. 2004;90:1350–1351.
    1. Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, McLanahan SM, Kirkeeide RL, Brand RJ, Gould KL. Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial Lancet. 1990;336:129–133.
    1. Haskell WL, Alderman EL, Fair JM, Maron DJ, Mackey SF, Superko HR, Williams PT, Johnstone IM, Champagne MA, Krauss RM. Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease: the Stanford Coronary Risk Intervention Project (SCRIP). Circulation. 1994;89:975–990.
    1. Sixt S, Beer S, Bluher M, Korff N, Peschel T, Sonnabend M, Teupser D, Thiery J, Adams V, Schuler G, Niebauer J. Long‐ but not short‐term multifactorial intervention with focus on exercise training improves coronary endothelial dysfunction in diabetes mellitus type 2 and coronary artery disease. Eur Heart J. 2010;31:112–119.
    1. Tani S, Nagao K, Anazawa T, Kawamata H, Furuya S, Takahashi H, Iida K, Matsumoto M, Washio T, Kumabe N, Hirayama A. Coronary plaque regression and lifestyle modification in patients treated with pravastatin: assessment mainly by daily aerobic exercise and an increase in the serum level of high‐density lipoprotein cholesterol. Circ J. 2010;74:954–961.
    1. Madssen E, Moholdt T, Videm V, Wisloff U, Hegbom K, Wiseth R. Coronary atheroma regression and plaque characteristics assessed by grayscale and radiofrequency intravascular ultrasound after aerobic exercise. Am J Cardiol. 2014;114:1504–1511.
    1. Nytroen K, Rustad LA, Erikstad I, Aukrust P, Ueland T, Lekva T, Gude E, Wilhelmsen N, Hervold A, Aakhus S, Gullestad L, Arora S. Effect of high‐intensity interval training on progression of cardiac allograft vasculopathy. J Heart Lung Transplant. 2013;32:1073–1080.
    1. Iwasaki H, Kawamoto A, Ishikawa M, Oyamada A, Nakamori S, Nishimura H, Sadamoto K, Horii M, Matsumoto T, Murasawa S, Shibata T, Suehiro S, Asahara T. Dose‐dependent contribution of CD34‐positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation. 2006;113:1311–1325.
    1. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten‐Johansen J. Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol. 2008;103:525–536.
    1. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Krankel N, Lenz D, Erbs S, Scheinert D, Mohr FW, Schuler G, Hambrecht R. Effects of exercise and ischemia on mobilization and functional activation of blood‐derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation. 2005;111:3391–3399.
    1. Erbs S, Hollriegel R, Linke A, Beck EB, Adams V, Gielen S, Mobius‐Winkler S, Sandri M, Krankel N, Hambrecht R, Schuler G. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3:486–494.
    1. Siegel‐Axel D, Langer H, Lindemann S, Gawaz M. Role of platelets in atherosclerosis and inflammation. Med Klin (Munich). 2006;101:467–475.
    1. Hilberg T, Menzel K, Glaser D, Zimmermann S, Gabriel HH. Exercise intensity: platelet function and platelet‐leukocyte conjugate formation in untrained subjects. Thromb Res. 2008;122:77–84.
    1. Andreotti F, Lanza GA, Sciahbasi A, Fischetti D, Sestito A, De Cristofaro R, Maseri A. Low‐grade exercise enhances platelet aggregability in patients with obstructive coronary disease independently of myocardial ischemia. Am J Cardiol. 2001;87:16–20.
    1. Scalone G, Coviello I, Barone L, Pisanello C, Sestito A, Lanza GA, Crea F. Brief low‐workload myocardial ischaemia induces protection against exercise‐related increase of platelet reactivity in patients with coronary artery disease. Heart. 2010;96:263–268.
    1. Battipaglia I, Scalone G, Milo M, Di Franco A, Lanza GA, Crea F. Upper arm intermittent ischaemia reduces exercise‐related increase of platelet reactivity in patients with obstructive coronary artery disease. Heart. 2011;97:1298–1303.
    1. Wang JS, Jen CJ, Chen HI. Effects of exercise training and deconditioning on platelet function in men. Arterioscler Thromb Vasc Biol. 1995;15:1668–1674.
    1. Keating FK, Schneider DJ, Savage PD, Bunn JY, Harvey‐Berino J, Ludlow M, Toth MJ, Ades PA. Effect of exercise training and weight loss on platelet reactivity in overweight patients with coronary artery disease. J Cardiopulm Rehabil Prev. 2013;33:371–377.
    1. Chen YC, Ho CW, Tsai HH, Wang JS. Interval and continuous exercise regimens suppress neutrophil‐derived microparticle formation and neutrophil‐promoted thrombin generation under hypoxic stress. Clin Sci (Lond). 2015;128:425–436.
    1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Lochen ML, Lollgen H, Marques‐Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM, De Backer G, Roffi M, Aboyans V, Bachl N, Bueno H, Carerj S, Cho L, Cox J, De Sutter J, Egidi G, Fisher M, Fitzsimons D, Franco OH, Guenoun M, Jennings C, Jug B, Kirchhof P, Kotseva K, Lip GY, Mach F, Mancia G, Bermudo FM, Mezzani A, Niessner A, Ponikowski P, Rauch B, Ryden L, Stauder A, Turc G, Wiklund O, Windecker S, Zamorano JL. 2016 European guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts): developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur J Prev Cardiol. 2016;23:NP1–NP96.
    1. Frith E, Loprinzi PD. Accelerometer‐assessed light‐intensity physical activity and mortality among those with mobility limitations. Disabil Health J. Available at: . Accessed February 1, 2018.
    1. Moholdt T, Wisloff U, Nilsen TI, Slordahl SA. Physical activity and mortality in men and women with coronary heart disease: a prospective population‐based cohort study in Norway (the HUNT study). Eur J Cardiovasc Prev Rehabil. 2008;15:639–645.
    1. Conraads VM, Pattyn N, De Maeyer C, Beckers PJ, Coeckelberghs E, Cornelissen VA, Denollet J, Frederix G, Goetschalckx K, Hoymans VY, Possemiers N, Schepers D, Shivalkar B, Voigt JU, Van Craenenbroeck EM, Vanhees L. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX‐CAD study. Int J Cardiol. 2015;179:203–210.
    1. Gomes‐Neto M, Duraes AR, Reis HFCD, Neves VR, Martinez BP, Carvalho VO. High‐intensity interval training versus moderate‐intensity continuous training on exercise capacity and quality of life in patients with coronary artery disease: a systematic review and meta‐analysis. Eur J Prev Cardiol. 2017;24:1696–1707.
    1. Rognmo O, Moholdt T, Bakken H, Hole T, Molstad P, Myhr NE, Grimsmo J, Wisloff U. Cardiovascular risk of high—versus moderate‐intensity aerobic exercise in coronary heart disease patients. Circulation. 2012;126:1436–1440.
    1. Abell B, Glasziou P, Hoffmann T. The contribution of individual exercise training components to clinical outcomes in randomised controlled trials of cardiac rehabilitation: a systematic review and meta‐regression. Sports Med Open. 2017;3:19.
    1. Hansen D, Dendale P, Coninx K, Vanhees L, Piepoli MF, Niebauer J, Cornelissen V, Pedretti R, Geurts E, Ruiz GR, Corra U, Schmid JP, Greco E, Davos CH, Edelmann F, Abreu A, Rauch B, Ambrosetti M, Braga SS, Barna O, Beckers P, Bussotti M, Fagard R, Faggiano P, Garcia‐Porrero E, Kouidi E, Lamotte M, Neunhauserer D, Reibis R, Spruit MA, Stettler C, Takken T, Tonoli C, Vigorito C, Voller H, Doherty P. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: a digital training and decision support system for optimized exercise prescription in cardiovascular disease: concept, definitions and construction methodology. Eur J Prev Cardiol. 2017;24:1017–1031.
    1. Achttien RJ, Vromen T, Staal JB, Peek N, Spee RF, Niemeijer VM, Kemps HM. Development of evidence‐based clinical algorithms for prescription of exercise‐based cardiac rehabilitation. Neth Heart J. 2015;23:563–575.
    1. Taylor C, Tsakirides C, Moxon J, Moxon JW, Dudfield M, Witte K, Ingle L, Carroll S. Exercise dose and all‐cause mortality within extended cardiac rehabilitation: a cohort study. Open Heart. 2017;4:e000623.
    1. Walther C, Gaede L, Adams V, Gelbrich G, Leichtle A, Erbs S, Sonnabend M, Fikenzer K, Korner A, Kiess W, Bruegel M, Thiery J, Schuler G. Effect of increased exercise in school children on physical fitness and endothelial progenitor cells: a prospective randomized trial. Circulation. 2009;120:2251–2259.
    1. Meyer P, Kayser B, Kossovsky MP, Sigaud P, Carballo D, Keller PF, Martin XE, Farpour‐Lambert N, Pichard C, Mach F. Stairs instead of elevators at workplace: cardioprotective effects of a pragmatic intervention. Eur J Cardiovasc Prev Rehabil. 2010;17:569–575.
    1. Rongen A, Robroek SJ, van Lenthe FJ, Burdorf A. Workplace health promotion: a meta‐analysis of effectiveness. Am J Prev Med. 2013;44:406–415.
    1. Robroek SJ, van Lenthe FJ, van Empelen P, Burdorf A. Determinants of participation in worksite health promotion programmes: a systematic review. Int J Behav Nutr Phys Act. 2009;6:26.
    1. Coffeng JK, van der Ploeg HP, Castellano JM, Fernandez‐Alvira JM, Ibanez B, Garcia‐Lunar I, van der Beek AJ, Fernandez‐Ortiz A, Mocoroa A, Garcia‐Leal L, Cardenas E, Rojas C, Martinez‐Castro MI, Santiago‐Sacristan S, Fernandez‐Gallardo M, Mendiguren JM, Bansilal S, van Mechelen W, Fuster V. A 30‐month worksite‐based lifestyle program to promote cardiovascular health in middle‐aged bank employees: design of the TANSNIP‐PESA randomized controlled trial. Am Heart J. 2017;184:121–132.
    1. Schaller A, Dejonghe L, Alayli‐Goebbels A, Biallas B, Froboese I. Promoting physical activity and health literacy: study protocol for a longitudinal, mixed methods evaluation of a cross‐provider workplace‐related intervention in Germany (the AtRisk study). BMC Public Health. 2016;16:626.
    1. Mitchell M, White L, Oh P, Kwan M, Gove P, Leahey T, Faulkner G. Examining incentives to promote physical activity maintenance among hospital employees not achieving 10,000 daily steps: a web‐based randomized controlled trial protocol. JMIR Res Protoc. 2016;5:e231.
    1. Kotseva K, Wood D, De Bacquer D, De Backer G, Ryden L, Jennings C, Gyberg V, Amouyel P, Bruthans J, Castro CA, Cifkova R, Deckers JW, De Sutter J, Dilic M, Dolzhenko M, Erglis A, Fras Z, Gaita D, Gotcheva N, Goudevenos J, Heuschmann P, Laucevicius A, Lehto S, Lovic D, Milicic D, Moore D, Nicolaides E, Oganov R, Pajak A, Pogosova N, Reiner Z, Stagmo M, Stork S, Tokgozoglu L, Vulic D. EUROASPIRE IV: a European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur J Prev Cardiol. 2016;23:636–648.
    1. Frederix I, Solmi F, Piepoli MF, Dendale P. Cardiac telerehabilitation: a novel cost‐efficient care delivery strategy that can induce long‐term health benefits. Eur J Prev Cardiol. 2017;24:1708–1717.
    1. Skobel E, Knackstedt C, Martinez‐Romero A, Salvi D, Vera‐Munoz C, Napp A, Luprano J, Bover R, Gloggler S, Bjarnason‐Wehrens B, Marx N, Rigby A, Cleland J. Internet‐based training of coronary artery patients: the Heart Cycle Trial. Heart Vessels. 2017;32:408–418.
    1. Minneboo M, Lachman S, Snaterse M, Jorstad HT, Ter RG, Boekholdt SM, Scholte Op Reimer WJM, Peters RJG. Community‐based lifestyle intervention in patients with coronary artery disease: the RESPONSE‐2 Trial. J Am Coll Cardiol. 2017;70:318–327.

Source: PubMed

3
Abonnieren