Assessing Brain Tissue Viability on Nonenhanced Computed Tomography After Ischemic Stroke

Awad Alzahrani, Xinyu Zhang, Adel Albukhari, Joanna M Wardlaw, Grant Mair, Awad Alzahrani, Xinyu Zhang, Adel Albukhari, Joanna M Wardlaw, Grant Mair

Abstract

Background: Treatment for ischemic stroke can be offered beyond conventional time limits for patients with favorable computed tomography perfusion (CTP), but this is not universally available. We sought a threshold for brain attenuation on nonenhanced computed tomography (NECT) to differentiate CTP-defined penumbra vs core, and correlated NECT features with CTP.

Methods: We retrospectively assessed consecutive patients presenting to King Abdulaziz University Hospital with ischemic stroke (2017-2020), baseline NECT, and a visible defect on concurrent CTP. Using CTP as the reference standard, we measured the attenuation of ischemic and healthy contralateral brain on NECT to produce attenuation ratios (ischemic/normal) for penumbra and core. We used area under the receiver operating characteristic curve to estimate the optimal computed tomography (CT) attenuation ratio for penumbra. Per patient, we qualitatively assessed 8 regions within the affected cerebral hemisphere: on NECT as normal, hypoattenuating (with/out swelling), or isolated swelling and on CTP as normal, penumbra, or core. We sought associations between isolated swelling and penumbra, and between hypoattenuation and core.

Results: We include 142 patients (86 male), mean age 61±14 years. Median 261 minutes (interquartile range, 173-382) to NECT. We measured 206 ischemic lesions (124 penumbra, 82 core). Optimal CT attenuation ratio for identifying penumbra was >0.87, with 86% sensitivity 91% specificity (area under the receiver operating characteristic curve, 0.95 [95% CI, 0.92-0.98]; P<0.0001). We qualitatively assessed 976 cerebral regions (72 isolated swelling, 254 hypoattenuation). On NECT, isolated swelling usually corresponded to CTP penumbra (70/72, 97%), whereas visible NECT hypoattenuation was found with core (141/254, 56%) and penumbra (109/254, 43%). CTP core lesions were rarely normal on NECT (13/155, 8%).

Conclusions: After ischemic stroke, brain tissue viability can be assessed using NECT. Isolated swelling is highly specific to penumbra. Visible hypoattenuation does not always represent core, nearly half of such lesions were penumbral on concurrent CTP and can be differentiated by measuring lesion attenuation.

Keywords: brain; ischemia; perfusion; stroke; tomography.

Figures

Figure 1.
Figure 1.
Measuring nonenhanced computed tomography (NECT) attenuation ratio for core and penumbral lesions in a 60-year-old patient with left-sided ischemia. NECT with measurements (A) and coregistered concurrently acquired computed tomography (CT) perfusion maps (B–D) demonstrate areas of lesion core (decreased cerebral blood flow [CBF; B] and cerebral blood volume (CBV; C) with increased mean transit time (MTT; D) and penumbra (decreased CBF with maintained or increased CBV and increased MTT). On NECT (A): left upper ROI measured CT attenuation of core lesion (32 Hounsfield units [HU]) mirrored to corresponding normal right hemisphere (39 HU), attenuation ratio 0.82; left lower ROI measured CT attenuation of penumbral lesion (40 HU) mirrored to corresponding normal right hemisphere (41 HU), attenuation ratio 0.98.
Figure 2.
Figure 2.
Example computed tomography (CT) scan assessment of 2 brain regions from the IST-3 trial (Third International Stroke Trial) template for the same patient. A, (1) Posterior half of peripheral middle cerebral artery (MCA) territory, (2) isolated focal swelling on nonenhanced CT (NECT), (3) decreased cerebral blood flow (CBF), (4) normal cerebral blood volume (CBV), and (5) increased mean transit time (MTT). B, (1) most of peripheral MCA territory + lateral part of basal ganglia, (2) subtle parenchymal hypoattenuation on NECT, (3) decreased CBF, (4) decreased CBV, (5) increased MTT.
Figure 3.
Figure 3.
Flowchart for patient selection. CTP indicates computed tomography perfusion; KAUH, King Abdulaziz University Hospital; and NECT, nonenhanced computed tomography.
Figure 4.
Figure 4.
Receiver operating characteristic analysis testing the expected discriminative ability of the optimal attenuation ratio (>0.87) to distinguish penumbra from core on baseline nonenhanced computed tomography. Area under curve 0.955.

References

    1. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, Yavagal DR, Ribo M, Cognard C, Hanel RA, et al. . Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442
    1. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, Cheripelli B, Cho TH, Fazekas F, Fiehler J, et al. . MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379:611–622. doi: 10.1056/NEJMoa1804355
    1. Ma H, Campbell BC, Parsons MW, Churilov L, Levi CR, Hsu C, Kleinig TJ, Wijeratne T, Curtze S, Dewey HM, et al. . Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–1803. doi: 10.1056/NEJMoa1813046
    1. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, et al. . Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–e418. doi: 10.1161/STR.0000000000000211
    1. Wintermark M, Luby M, Bornstein NM, Demchuk A, Fiehler J, Kudo K, Lees KR, Liebeskind DS, Michel P, Nogueira RG, et al. . International survey of acute Stroke imaging used to make revascularization treatment decisions. Int J Stroke. 2015;10:759–762. doi: 10.1111/ijs.12491
    1. Bhatia K, Bhagavan S, Bains N, French B, Siddiq F, Gomez CR, Qureshi AI. Current endovascular treatment of acute ischemic stroke. Missouri Med. 2020;117:480.
    1. Goyal M, Menon BK, van Zwam WH, Dippel DW, Mitchell PJ, Demchuk AM, Dávalos A, Majoie CB, van der Lugt A, De Miquel MA, et al. . Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X
    1. Butcher KS, Lee SB, Parsons MW, Allport L, Fink J, Tress B, Donnan G, Davis SM. Differential prognosis of isolated cortical swelling and hypoattenuation on CT in acute stroke. Stroke. 2007;38:941–947. doi: 10.1161/01.STR.0000258099.69995.b6
    1. Parsons MW, Pepper EM, Bateman GA, Wang Y, Levi CR. Identification of the penumbra and infarct core on hyperacute noncontrast and perfusion CT. Neurology. 2007;68:730–736. doi: 10.1212/01.wnl.0000256366.86353.ff
    1. Bardutzky J, Schwab S. Antiedema therapy in ischemic stroke. Stroke. 2007;38:3084–3094. doi: 10.1161/STROKEAHA.107.490193
    1. Mair G, Alzahrani A, Lindley RI, Sandercock PA, Wardlaw JM. Feasibility and diagnostic accuracy of using brain attenuation changes on CT to estimate time of ischemic stroke onset. Neuroradiology. 2021;63:869–878. doi: 10.1007/s00234-020-02591-w
    1. Dzialowski I, Weber J, Doerfler A, Forsting M, Von Kummer R. Brain tissue water uptake after middle cerebral artery occlusion assessed with CT. J Neuroimag. 2004;14:42–48. doi: 10.1111/j.1552-6569.2004.tb00214.x
    1. Unger E, Littlefield J, Gado M. Water content and water structure in CT and MR signal changes: Possible influence in detection of early stroke. AJNR. 1988;9:687–691.
    1. Kucinski T, Vaterlein O, Glauche V, Fiehler J, Klotz E, Eckert B, Koch C, Rother J, Zeumer H. Correlation of apparent diffusion coefficient and computed tomography density in acute ischemic stroke. Stroke. 2002;33:1786–1791. doi: 10.1161/01.str.0000019125.80118.99
    1. Barber PA, Darby DG, Desmond PM, Gerraty RP, Yang Q, Li T, Jolley D, Donnan GA, Tress BM, Davis SM. Identification of major ischemic change: diffusion-weighted imaging versus computed tomography. Stroke. 1999;30:2059–2065. doi: 10.1161/01.str.30.10.2059
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, De Vet HC, et al. . STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem. 2015;6:1446–1452. doi: 10.1373/clinchem.2015.246280
    1. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. JCM. 2016;15:155–163. doi: 10.1016/j.jcm.2016.02.012
    1. Wardlaw JM, Sellar R. A simple practical classification of cerebral infarcts on CT and its interobserver reliability. AJNR. 1994;15:1933–1939.
    1. Pexman JW, Barber PA, Hill MD, Sevick RJ, Demchuk AM, Hudon ME, Hu WY, Buchan AM. Use of the Alberta Stroke Program Early CT Score (ASPECTS) for assessing CT scans in patients with acute stroke. AJNR. 2001;22:1534–1542.
    1. Na DG, Kim EY, Ryoo JW, Lee KH, Roh HG, Kim SS, Song IC, Chang KH. CT sign of brain swelling without concomitant parenchymal hypoattenuation: comparison with diffusion- and perfusion-weighted MR imaging. Radiology. 2005;235:992–948. doi: 10.1148/radiol.2353040571
    1. Hage V. The NIH stroke scale: a window into neurological status. Nurs Spectr. 2011;24:44–49.
    1. Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, McTaggart RA, Torbey MT, Kim-Tenser M, Leslie-Mazwi T, et al. . Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973
    1. Demeestere J, Garcia-Esperon C, Garcia-Bermejo P, Ombelet F, McElduff P, Bivard A, Parsons M, Levi C. Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume. Neurology. 2017;88:2248–2253. doi: 10.1212/WNL.0000000000004028
    1. Mokin M, Primiani CT, Siddiqui AH, Turk AS. ASPECTS (Alberta Stroke Program Early CT Score) measurement using Hounsfield unit values when selecting patients for stroke thrombectomy. Stroke. 2017;48:1574–1579. doi: 10.1161/STROKEAHA.117.016745
    1. Batchelor C, Pordeli P, d’Esterre CD, Najm M, Al-Ajlan FS, Boesen ME, McDougall C, Hur L, Fainardi E, Shankar JJ, et al. . Use of noncontrast computed tomography and computed tomographic perfusion in predicting intracerebral hemorrhage after intravenousalteplase therapy. Stroke. 2017;48:1548–1553. doi: 10.1161/STROKEAHA.117.016616
    1. Reidler P, Thierfelder KM, Rotkopf LT, Fabritius MP, Puhr-Westerheide D, Dorn F, Forkert ND, Kemmling A, Kunz WG. Attenuation changes in ASPECTS regions: a surrogate for CT perfusion–based ischemic core in acute ischemic stroke. Radiology. 2019;291:451–458. doi: 10.1148/radiol.2019182041
    1. Saver JL, Goyal M, Van der Lugt AA, Menon BK, Majoie CB, Dippel DW, Campbell BC, Nogueira RG, Demchuk AM, Tomasello A, et al. . Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: a meta-analysis. JAMA. 2016;316:1279–1288. doi: 10.1001/jama.2016.13647
    1. Goyal M, Jadhav AP, Bonafe A, Diener H, Mendes Pereira V, Levy E, Baxter B, Jovin T, Jahan R, Menon BK, et al. ; SWIFT PRIME investigators. Analysis of workflow and time to treatment and the effects on outcome in endovascular treatment of acute ischemic stroke: results from the SWIFT PRIME randomized controlled trial. Radiology. 2016;279:888–897. doi: 10.1148/radiol.2016160204
    1. Muir KW, Baird-Gunning J, Walker L, Baird T, McCormick M, Coutts SB. Can the ischemic penumbra be identified on noncontrast CT of acute stroke?. Stroke. 2007;38:2485–2490. doi: 10.1161/STROKEAHA.107.484592
    1. Grond M, Von Kummer R, Sobesky J, Schmulling S, Rudolf J, Terstegge K, Heiss WD. Early x-ray hypoattenuation of brain parenchyma indicates extended critical hypoperfusion in acute stroke. Stroke. 2000;31:133–139. doi: 10.1161/01.str.31.1.133
    1. Von Kummer R, Bourquain H, Bastianello S, Bozzao L, Manelfe C, Meier D, Hacke W. Early prediction of irreversible brain damage after ischemic stroke at CT. Radiology. 2001;219:95–100. doi: 10.1148/radiology.219.1.r01ap0695
    1. Dzialowski I, Klotz E, Goericke S, Doerfler A, Forsting M, von Kummer R. Ischemic brain tissue water content: CT monitoring during middle cerebral artery occlusion and reperfusion in rats. Radiology. 2007;243:720–726. doi: 10.1148/radiol.2432060137
    1. von Kummer R, Dzialowski I. Imaging of cerebral ischemic edema and neuronal death. Neuroradiology. 2017;59:545–553. doi: 10.1007/s00234-017-1847-6
    1. Mair G, Wardlaw JM. Normal appearing ischaemic brain tissue on CT and outcome after intravenous alteplase. Front Radiol. 2022;2:902165. doi: 10.3389/fradi.2022.902165
    1. Bouchez L, Sztajzel R, Vargas MI, Machi P, Kulcsar Z, Poletti PA, Pereira VM, Lövblad KO. CT imaging selection in acute stroke. Eur J Radiol. 2017;96:153–161. doi: 10.1016/j.ejrad.2016.10.026
    1. Bivard A, Levi C, Spratt N, Parsons M. Perfusion CT in acute stroke: a comprehensive analysis of infarct and penumbra. Radiology. 2013;267:543–550. doi: 10.1148/radiol.12120971

Source: PubMed

3
Abonnieren