Detectable Duration of Viable SARS-CoV-2, Total and Subgenomic SARS-CoV-2 RNA in Noncritically Ill COVID-19 Patients: a Prospective Cohort Study

Angsana Phuphuakrat, Ekawat Pasomsub, Sirawat Srichatrapimuk, Suppachok Kirdlarp, Ampa Suksatu, Chanya Srisaowakarn, Suwimon Manopwisedjaroen, Natali Ludowyke, Priyo Budi Purwono, Thongkoon Priengprom, Artit Wongsa, Ammarin Thakkinstian, Suradej Hongeng, Kumthorn Malathum, Arunee Thitithanyanont, Boonrat Tassaneetrithep, Angsana Phuphuakrat, Ekawat Pasomsub, Sirawat Srichatrapimuk, Suppachok Kirdlarp, Ampa Suksatu, Chanya Srisaowakarn, Suwimon Manopwisedjaroen, Natali Ludowyke, Priyo Budi Purwono, Thongkoon Priengprom, Artit Wongsa, Ammarin Thakkinstian, Suradej Hongeng, Kumthorn Malathum, Arunee Thitithanyanont, Boonrat Tassaneetrithep

Abstract

Determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is important in guiding the infection control and differentiating between reinfection and persistent viral RNA. Although viral culture is the gold standard to determine viral infectivity, the method is not practical. We studied the kinetics of SARS-CoV-2 total RNAs and subgenomic RNAs (sgRNAs) and their potential role as surrogate markers of viral infectivity. The kinetics of SARS-CoV-2 sgRNAs compared to those of the culture and total RNA shedding in a prospective cohort of patients diagnosed with coronavirus disease 2019 (COVID-19) were investigated. A total of 260 nasopharyngeal swabs from 36 patients were collected every other day after entering the study until the day of viral total RNA clearance, as measured by reverse transcription PCR (RT-PCR). Time to cessation of viral shedding was in order from shortest to longest: by viral culture, sgRNA RT-PCR, and total RNA RT-PCR. The median time (interquartile range) to negativity of viral culture, subgenomic N transcript, and N gene were 7 (5 to 9), 11 (9 to 16), and 18 (13 to 21) days, respectively (P < 0.001). Further analysis identified the receipt of steroid as the factors associated with longer duration of viral infectivity (hazard ratio, 3.28; 95% confidence interval, 1.02 to 10.61; P = 0.047). We propose the potential role of the detection of SARS-CoV-2 subgenomic RNA as the surrogate marker of viral infectivity. Patients with negative subgenomic N RNA RT-PCR could be considered for ending isolation. IMPORTANCE Our study, combined with existing evidence, suggests the feasibility of the use of subgenomic RNA RT-PCR as a surrogate marker for SARS-CoV-2 infectivity. The kinetics of SARS-CoV-2 subgenomic RNA should be further investigated in immunocompromised patients.

Keywords: COVID-19; SARS-CoV-2; infectivity; subgenomic RNA; viral shedding.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Comparison of cycle threshold (Ct) values of ORF1ab (A), total N (B), subgenomic S (C), and subgenomic N (D) versus duration of illness (DOI) in a prospective cohort of COVID-19 patients. Blue and red circles represent samples with isolable and nonisolable viable viruses, respectively. Linear regression equation of each panel is shown in each panel. CN, culture negativity (nonisolable viable virus = 1; isolable viable virus = 0).
FIG 2
FIG 2
Time to cessation of SARS-CoV-2 viral shedding. Black, blue, and red represent isolable virus, total N RNA, and subgenomic N RNA, respectively.

References

    1. World Health Organization. 2020. WHO Director-General's opening remarks at the media briefing on COVID-19—11 March 2020. World Health Organization, Geneva, Switzerland. . Accessed November 10, 2021.
    1. Hanson KE, Caliendo AM, Arias CA, Hayden MK, Englund JA, Lee MJ, Loeb M, Patel R, El Alayli A, Altayar O, Patel P, Falck-Ytter Y, Lavergne V, Morgan RL, Murad MH, Sultan S, Bhimraj A, Mustafa RA. 2021. The Infectious Diseases Society of America guidelines on the diagnosis of COVID-19: molecular diagnostic testing. Clin Infect Dis ciab048. doi:10.1093/cid/ciab048.
    1. Tang YW, Schmitz JE, Persing DH, Stratton CW. 2020. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol 58:e00512-20. doi:10.1128/JCM.00512-20.
    1. Kim MC, Cui C, Shin KR, Bae JY, Kweon OJ, Lee MK, Choi SH, Jung SY, Park MS, Chung JW. 2021. Duration of culturable SARS-CoV-2 in hospitalized patients with Covid-19. N Engl J Med 384:671–673. doi:10.1056/NEJMc2027040.
    1. Tarhini H, Recoing A, Bridier-Nahmias A, Rahi M, Lambert C, Martres P, Lucet JC, Rioux C, Bouzid D, Lebourgeois S, Descamps D, Yazdanpanah Y, Le Hingrat Q, Lescure FX, Visseaux B. 2021. Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectiousness among three immunocompromised patients: from prolonged viral shedding to SARS-CoV-2 superinfection. J Infect Dis 223:1522–1527. doi:10.1093/infdis/jiab075.
    1. Wang J, Hang X, Wei B, Li D, Chen F, Liu W, Yang C, Miao X, Han L. 2020. Persistent SARS-COV-2 RNA positivity in a patient for 92 days after disease onset: a case report. Medicine (Baltimore, MD) 99:e21865. doi:10.1097/MD.0000000000021865.
    1. Lu J, Peng J, Xiong Q, Liu Z, Lin H, Tan X, Kang M, Yuan R, Zeng L, Zhou P, Liang C, Yi L, Du Plessis L, Song T, Ma W, Sun J, Pybus OG, Ke C. 2020. Clinical, immunological and virological characterization of COVID-19 patients that test re-positive for SARS-CoV-2 by RT-PCR. EBioMedicine 59:102960. doi:10.1016/j.ebiom.2020.102960.
    1. Srichatrapimuk S, Chookajorn T, Kochakarn T, Kirdlarp S, Pasomsu E, Chantratita W, Iamsirithaworn S, Kunakorn M, Thitithanyanont A, Sungkanuparph S, Phuphuakrat A. 2022. SARS-CoV-2 RT-PCR positivity of individuals subsequent to completing quarantine upon entry into a country during a transmission-free period. Travel Med Infect Dis 46:102271. doi:10.1016/j.tmaid.2022.102271.
    1. Yahav D, Yelin D, Eckerle I, Eberhardt CS, Wang J, Cao B, Kaiser L. 2021. Definitions for coronavirus disease 2019 reinfection, relapse and PCR re-positivity. Clin Microbiol Infect 27:315–318. doi:10.1016/j.cmi.2020.11.028.
    1. Binnicker MJ. 2021. Can testing predict SARS-CoV-2 infectivity? The potential for certain methods to be surrogates for replication-competent virus. J Clin Microbiol 59:e0046921. doi:10.1128/JCM.00469-21.
    1. Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. 2020. The architecture of SARS-CoV-2 transcriptome. Cell 181:914–921.e10. doi:10.1016/j.cell.2020.04.011.
    1. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, Zhong W, Hao P. 2020. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63:457–460. doi:10.1007/s11427-020-1637-5.
    1. Sawicki SG, Sawicki DL, Siddell SG. 2007. A contemporary view of coronavirus transcription. J Virol 81:20–29. doi:10.1128/JVI.01358-06.
    1. Perera R, Tso E, Tsang OTY, Tsang DNC, Fung K, Leung YWY, Chin AWH, Chu DKW, Cheng SMS, Poon LLM, Chuang VWM, Peiris M. 2020. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild coronavirus disease. Emerg Infect Dis 26:2701–2704. doi:10.3201/eid2611.203219.
    1. Kim JY, Bae JY, Bae S, Cha HH, Kwon JS, Suh MH, Lee HJ, Jung J, Kim MJ, Cui C, Park H, Lee J, Park MS, Kim SH. 2022. Diagnostic usefulness of subgenomic RNA detection of viable SARS-CoV-2 in patients with COVID-19. Clin Microbiol Infect 28:101–106. doi:10.1016/j.cmi.2021.08.009.
    1. Bravo MS, Berengua C, Marin P, Esteban M, Rodriguez C, Del Cuerpo M, Miro E, Cuesta G, Mosquera M, Sanchez-Palomino S, Vila J, Rabella N, Marcos MA. 2022. Viral culture confirmed SARS-CoV-2 subgenomic RNA value as a good surrogate marker of infectivity. J Clin Microbiol 60:e01609-21. doi:10.1128/JCM.01609-21.
    1. Alexandersen S, Chamings A, Bhatta TR. 2020. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 11:6059. doi:10.1038/s41467-020-19883-7.
    1. van Kampen JJA, van de Vijver D, Fraaij PLA, Haagmans BL, Lamers MM, Okba N, van den Akker JPC, Endeman H, Gommers D, Cornelissen JJ, Hoek RAS, van der Eerden MM, Hesselink DA, Metselaar HJ, Verbon A, de Steenwinkel JEM, Aron GI, van Gorp ECM, van Boheemen S, Voermans JC, Boucher CAB, Molenkamp R, Koopmans MPG, Geurtsvankessel C, van der Eijk AA. 2021. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun 12:267. doi:10.1038/s41467-020-20568-4.
    1. Dimcheff DE, Valesano AL, Rumfelt KE, Fitzsimmons WJ, Blair C, Mirabelli C, Petrie JG, Martin ET, Bhambhani C, Tewari M, Lauring AS. 2021. Severe acute respiratory syndrome coronavirus 2 total and subgenomic RNA viral load in hospitalized patients. J Infect Dis 224:1287–1293. doi:10.1093/infdis/jiab215.
    1. World Health Organization. 2020. Criteria for releasing COVID-19 patients from isolation. World Health Organization, Geneva, Switzerland. . Accessed December 31, 2021.
    1. Centers for Disease Control and Prevention. 2021. CDC updates and shortens recommended isolation and quarantine period for general population. World Health Organization, Geneva, Switzerland. . Accessed December 31, 2021.
    1. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA, Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S, Schneider J, Ehmann R, Zwirglmaier K, Drosten C, Wendtner C. 2020. Virological assessment of hospitalized patients with COVID-2019. Nature 581:465–469. doi:10.1038/s41586-020-2196-x.
    1. Verma R, Kim E, Martinez-Colon GJ, Jagannathan P, Rustagi A, Parsonnet J, Bonilla H, Khosla C, Holubar M, Subramanian A, Singh U, Maldonado Y, Blish CA, Andrews JR. 2021. SARS-CoV-2 subgenomic RNA kinetics in longitudinal clinical samples. Open Forum Infect Dis 8:ofab310. doi:10.1093/ofid/ofab310.
    1. Al Bayat S, Mundodan J, Hasnain S, Sallam M, Khogali H, Ali D, Alateeg S, Osama M, Elberdiny A, Al-Romaihi H, Al-Thani MHJ. 2021. Can the cycle threshold (Ct) value of RT-PCR test for SARS CoV2 predict infectivity among close contacts? J Infect Public Health 14:1201–1205. doi:10.1016/j.jiph.2021.08.013.
    1. Bullard J, Dust K, Funk D, Strong JE, Alexander D, Garnett L, Boodman C, Bello A, Hedley A, Schiffman Z, Doan K, Bastien N, Li Y, Van Caeseele PG, Poliquin G. 2020. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis 71:2663–2666. doi:10.1093/cid/ciaa638.
    1. Woloshin S, Patel N, Kesselheim AS. 2020. False negative tests for SARS-CoV-2 infection—challenges and implications. N Engl J Med 383:e38. doi:10.1056/NEJMp2015897.
    1. Cogliati Dezza F, Oliva A, Cancelli F, Savelloni G, Valeri S, Mauro V, Calabretto M, Russo G, Venditti M, Turriziani O, Mastroianni CM. 2021. Determinants of prolonged viral RNA shedding in hospitalized patients with SARS-CoV-2 infection. Diagn Microbiol Infect Dis 100:115347. doi:10.1016/j.diagmicrobio.2021.115347.
    1. Hoffman EN, Kawachi H, Hirayama A, Zhang J, Murayama A, Masui J, Fujita S, Mori Y, Hirayama T, Ohara T, Asada R, Iso H. 2021. Factors associated with prolonged duration of viral clearance in non-severe SARS-CoV-2 patients in Osaka, Japan. Environ Health Prev Med 26:115. doi:10.1186/s12199-021-01035-y.
    1. Tang X, Feng YM, Ni JX, Zhang JY, Liu LM, Hu K, Wu XZ, Zhang JX, Chen JW, Zhang JC, Su J, Li YL, Zhao Y, Xie J, Ding Z, He XL, Wang W, Jin RH, Shi HZ, Sun B. 2021. Early use of corticosteroid may prolong SARS-CoV-2 shedding in non-intensive care unit patients with COVID-19 pneumonia: a multicenter, single-blind, randomized control trial. Respiration 100:116–126. doi:10.1159/000512063.
    1. Xu K, Chen Y, Yuan J, Yi P, Ding C, Wu W, Li Y, Ni Q, Zou R, Li X, Xu M, Zhang Y, Zhao H, Zhang X, Yu L, Su J, Lang G, Liu J, Wu X, Guo Y, Tao J, Shi D, Yu L, Cao Q, Ruan B, Liu L, Wang Z, Xu Y, Liu Y, Sheng J, Li L. 2020. Factors associated with prolonged viral RNA shedding in patients with coronavirus disease 2019 (COVID-19). Clin Infect Dis 71:799–806. doi:10.1093/cid/ciaa351.
    1. Suwatanapongched T, Nitiwarangkul C, Sukkasem W, Phongkitkarun S. 2021. Rama Co-RADS: categorical assessment scheme of chest radiographic findings for diagnosing pneumonia in patients with confirmed COVID-19. Rama Med J 44:50–62. doi:10.33165/rmj.2021.44.2.251259.
    1. Department of Medical Services, Ministry of Public Health. 2021. Guidelines on COVID-19 diagnosis, treatment and prevention, updated version 17 April 2021. Ministry of Public Health (Thailand), Nonthaburi, Thailand. . Accessed April 12, 2022.
    1. Chen SL, Xu H, Feng HY, Sun JF, Li X, Zhou L, Song WL, Huang SS, He JL, Deng YY, Wang RJ, Fang M. 2020. Epidemiological and clinical findings of short-term recurrence of severe acute respiratory syndrome coronavirus 2 ribonucleic acid polymerase chainreaction positivity in 1282 discharged coronavirus disease 2019 cases: a multicenter, retrospective, observational study. Open Forum Infect Dis 7:ofaa432. doi:10.1093/ofid/ofaa432.
    1. Jørgensen TS. 2021. Sanger sequencing of a part of the SARS-CoV-2 spike protein. . Accessed December 31, 2021.

Source: PubMed

3
Abonnieren