Pharmacokinetics of N,N-dimethyltryptamine in Humans

Meghan Good, Zelah Joel, Tiffanie Benway, Carol Routledge, Chris Timmermann, David Erritzoe, Richard Weaver, Graham Allen, Charlotte Hughes, Helen Topping, Amy Bowman, Ellen James, Meghan Good, Zelah Joel, Tiffanie Benway, Carol Routledge, Chris Timmermann, David Erritzoe, Richard Weaver, Graham Allen, Charlotte Hughes, Helen Topping, Amy Bowman, Ellen James

Abstract

Background and objective: N,N-dimethyltryptamine (DMT) is a psychedelic compound under development for the treatment of major depressive disorder (MDD). This study evaluated the preclinical and clinical pharmacokinetics and metabolism of DMT in healthy subjects.

Methods: The physiochemical properties of DMT were determined using a series of in vitro experiments and its metabolic profile was assessed using monoamine oxidase (MAO) and cytochrome P450 (CYP) inhibitors in hepatocyte and mitochondrial fractions. Clinical pharmacokinetics results are from the phase I component of a phase I/IIa randomised, double-blind, placebo-controlled, parallel-group, dose-escalation trial (NCT04673383). Healthy adults received single escalating doses of DMT fumarate (SPL026) via a two-phase intravenous (IV) infusion. Dosing regimens were calculated based on pharmacokinetic modelling and predictions with progression to each subsequent dose level contingent upon safety and tolerability.

Results: In vitro clearance of DMT was reduced through the inhibition of MAO-A, CYP2D6 and to a lesser extent CYP2C19. Determination of lipophilicity and plasma protein binding was low, indicating that a high proportion of DMT is available for distribution and metabolism, consistent with the very rapid clinical pharmacokinetics. Twenty-four healthy subjects received escalating doses of DMT administered as a 10-min infusion over the dose range of 9-21.5 mg (DMT freebase). DMT was rapidly cleared for all doses: mean elimination half-life was 9-12 min. All doses were safe and well tolerated and there was no relationship between peak DMT plasma concentrations and body mass index (BMI) or weight.

Conclusion: This is the first study to determine, in detail, the full pharmacokinetics profile of DMT following a slow IV infusion in humans, confirming rapid attainment of peak plasma concentrations followed by rapid clearance. These findings provide evidence which supports the development of novel DMT infusion regimens for the treatment of MDD.

Clinical trial registration: Registered on ClinicalTrials.gov (NCT04673383).

Conflict of interest statement

M.G., T.B., Z.J., C.R. and E.J. are all currently paid employees of Small Pharma and have owned stock in the company, C.T., D.E., G.A., R.W., C.H., H.T. and A.B., are all paid employees of contracted research and academic organisations or independent consultants engaged by Small Pharma.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
Mean plasma concentration-time profiles for DMT on a (A) linear and (B) logarithmic scale for all dose cohorts of DMT.  DMT N,N-dimethyltryptamine
Fig. 2
Fig. 2
Cmax (A) and AUClast (B) for all doses of DMT. Linear regression equations: (A) Cmax = − 11.0 + 3.83·dose; (B) AUClast = − 24.2 + 42.9·dose. DMT N,N-dimethyltryptamine

References

    1. Carhart-Harris RL, Bolstridge M, Day CMJ, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology. 2018;235(2):399–408. doi: 10.1007/s00213-017-4771-x.
    1. Carhart-Harris RGB, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, Martell J, Blemings A, Erritzoe D, Nutt DJ. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–1411. doi: 10.1056/NEJMoa2032994.
    1. Sanches RF, de Lima OF, Dos Santos RG, Macedo LR, Maia-de-Oliveira JP, Wichert-Ana L, et al. antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: a SPECT study. J Clin Psychopharmacol. 2016;36(1):77–81. doi: 10.1097/JCP.0000000000000436.
    1. Palhano-Fontes F, Barreto D, Onias H, Andrade KC, Novaes MM, Pessoa JA, et al. Rapid antidepressant effects of the psychedelic ayahuasca in treatment-resistant depression: a randomized placebo-controlled trial. Psychol Med. 2019;49(4):655–663. doi: 10.1017/S0033291718001356.
    1. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci U S A. 2016;113(17):4853–4858. doi: 10.1073/pnas.1518377113.
    1. Luoma JB, Chwyl C, Bathje GJ, Davis AK, Lancelotta R. A Meta-analysis of placebo-controlled trials of psychedelic-assisted therapy. J Psychoactive Drugs. 2020;52(4):289–299. doi: 10.1080/02791072.2020.1769878.
    1. Ballentine G, Friedman SF, Bzdok D. Trips and neurotransmitters: discovering principled patterns across 6850 hallucinogenic experiences. Sci Adv. 2022;8(11):l6989. doi: 10.1126/sciadv.abl6989.
    1. Carbonaro TM, Gatch MB. Neuropharmacology of N, N-dimethyltryptamine. Brain Res Bull. 2016;126(Pt 1):74–88. doi: 10.1016/j.brainresbull.2016.04.016.
    1. Schenberg EE, Alexandre JFM, Filev R, Cravo AM, Sato JR, Muthukumaraswamy SD, et al. Acute biphasic effects of ayahuasca. PLoS ONE. 2015;10(9):e0137202. doi: 10.1371/journal.pone.0137202.
    1. Callaway JC, McKenna DJ, Grob CS, Brito GS, Raymon LP, Poland RE, et al. Pharmacokinetics of Hoasca alkaloids in healthy humans. J Ethnopharmacol. 1999;65(3):243–256. doi: 10.1016/S0378-8741(98)00168-8.
    1. Yritia M, Riba J, Ortuño J, Ramirez A, Castillo A, Alfaro Y, et al. Determination of N,N-dimethyltryptamine and beta-carboline alkaloids in human plasma following oral administration of Ayahuasca. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;779(2):271–281. doi: 10.1016/S1570-0232(02)00397-5.
    1. Riba J, Valle M, Urbano G, Yritia M, Morte A, Barbanoj MJ. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics. J Pharmacol Exp Ther. 2003;306(1):73–83. doi: 10.1124/jpet.103.049882.
    1. Lanaro R, Mello SM, da Cunha KF, Silveira G, Corrêa-Neto NF, Hyslop S, et al. Kinetic profile of N,N-dimethyltryptamine and β-carbolines in saliva and serum after oral administration of ayahuasca in a religious context. Drug Test Anal. 2021;13(3):664–678. doi: 10.1002/dta.2955.
    1. Barker SA. N,N-dimethyltryptamine (DMT), an endogenous hallucinogen: past, present, and future research to determine its role and function. Front Neurosci. 2018;12:536. doi: 10.3389/fnins.2018.00536.
    1. Kaplan J, Mandel LR, Stillman R, Walker RW, VandenHeuvel WJ, Gillin JC, et al. Blood and urine levels of N,N-dimethyltryptamine following administration of psychoactive dosages to human subjects. Psychopharmacologia. 1974;38(3):239–245. doi: 10.1007/BF00421376.
    1. Strassman RJ, Qualls CR. Dose-response study of N, N-dimethyltryptamine in humans. I. Neuroendocrine, autonomic, and cardiovascular effects. Arch Gen Psychiatry. 1994;51(2):85–97. doi: 10.1001/archpsyc.1994.03950020009001.
    1. Timmermann C, Roseman L, Schartner M, Milliere R, Williams LTJ, Erritzoe D, et al. Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep. 2019;9(1):16324. doi: 10.1038/s41598-019-51974-4.
    1. Eckernäs E, Timmermann C, Carhart-Harris R, Röshammar D, Ashton M. Population pharmacokinetic/pharmacodynamic modeling of the psychedelic experience induced by N,N-dimethyltryptamine—implications for dose considerations. Clin Transl Sci. 2022;2:2.
    1. Strassman RJ. Human psychopharmacology of N,N-dimethyltryptamine. Behav Brain Res. 1996;73(1–2):121–124.
    1. Agency EEM. Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. EMEA/CHMP/SWP/28367/07 Revision 1. 2017.
    1. Johnson M, Richards W, Griffiths R. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008;22(6):603–620. doi: 10.1177/0269881108093587.
    1. ABPI. Guidelines for Phase I clinical trials 2018 edition. 2018.
    1. Timmermann C, Roseman L, Williams L, Erritzoe D, Martial C, Cassol H, et al. DMT models the near-death experience. Front Psychol. 2018;9:1424. doi: 10.3389/fpsyg.2018.01424.
    1. Allen GD. MODFIT: a pharmacokinetics computer program. Biopharm Drug Dispos. 1990;11(6):477–498. doi: 10.1002/bdd.2510110603.
    1. EMEA. Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009. 21 July 2011;Rev. 1 Corr. 2.
    1. FDA. Bioanalytical Method Validation Guidance for Industry. MAY 2018.
    1. Gough K, Hutchison M, Keene O, Byrom B, Ellis S, Lacey L, et al. Assessment of dose proportionality: report from the statisticians in the pharmaceutical industry/pharmacokinetics UK joint working party. Drug Inf J. 1995;29(3):1039–1048. doi: 10.1177/009286159502900324.
    1. Barker SA, Beaton JM, Christian ST, Monti JA, Morris PE. Comparison of the brain levels of N,N-dimethyltryptamine and alpha, alpha, beta, beta-tetradeutero-N-N-dimethyltryptamine following intraperitoneal injection. The in vivo kinetic isotope effect. Biochem Pharmacol. 1982;31(15):2513–2516. doi: 10.1016/0006-2952(82)90062-4.
    1. Barker SA, Littlefield-Chabaud MA, David C. Distribution of the hallucinogens N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine in rat brain following intraperitoneal injection: application of a new solid-phase extraction LC-APcI-MS-MS-isotope dilution method. J Chromatogr B Biomed Sci Appl. 2001;751(1):37–47. doi: 10.1016/S0378-4347(00)00442-4.
    1. Suzuki O, Katsumata Y, Oya M, Chari VM, Vermes B, Wagner H, et al. Inhibition of type A and type B monoamine oxidases by naturally occurring xanthones. Planta Med. 1981;42(1):17–21. doi: 10.1055/s-2007-971540.
    1. Riba J, McIlhenny EH, Bouso JC, Barker SA. Metabolism and urinary disposition of N,N-dimethyltryptamine after oral and smoked administration: a comparative study. Drug Test Anal. 2015;7(5):401–406. doi: 10.1002/dta.1685.
    1. Caspar AT, Gaab JB, Michely JA, Brandt SD, Meyer MR, Maurer HH. Metabolism of the tryptamine-derived new psychoactive substances 5-MeO-2-Me-DALT, 5-MeO-2-Me-ALCHT, and 5-MeO-2-Me-DIPT and their detectability in urine studied by GC-MS, LC-MS(n), and LC-HR-MS/MS. Drug Test Anal. 2018;10(1):184–195. doi: 10.1002/dta.2197.
    1. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–1095. doi: 10.1023/A:1018943613122.
    1. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419.
    1. Derendorf H, Schmidt S, Rowland M. Rowland and Tozer's clinical pharmacokinetics and pharmacodynamics : concepts and applications. Fifth edition. ed. Philadelphia: Wolters Kluwer; 2020.
    1. Pan SD, Zhu LL, Chen M, Xia P, Zhou Q. Weight-based dosing in medication use: what should we know? Patient Prefer Adherence. 2016;10:549–560.
    1. Strassman RJ, Qualls CR, Berg LM. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans. Biol Psychiatry. 1996;39(9):784–795. doi: 10.1016/0006-3223(95)00200-6.
    1. D’Souza DC, Syed SA, Flynn LT, et al. Exploratory study of the dose-related safety, tolerability, and efficacy of dimethyltryptamine (DMT) in healthy volunteers and major depressive disorder. Neuropsychopharmacol. 2022;2:2.
    1. Gouzoulis-Mayfrank E, Heekeren K, Neukirch A, Stoll M, Stock C, Obradovic M, et al. Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry. 2005;38(6):301–311. doi: 10.1055/s-2005-916185.
    1. Garcia-Romeu A, Barrett FS, Carbonaro TM, Johnson MW, Griffiths RR. Optimal dosing for psilocybin pharmacotherapy: considering weight-adjusted and fixed dosing approaches. J Psychopharmacol. 2021;35(4):353–361. doi: 10.1177/0269881121991822.
    1. Studerus E, Kometer M, Hasler F, Vollenweider FX. Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol. 2011;25(11):1434–1452. doi: 10.1177/0269881110382466.
    1. Spriggs M, Giribaldi B, Lyons T, Rosas F, Kärtner L, Buchborn T, et al. Body mass index (BMI) does not predict responses to psilocybin. J Psychopharmacol. 2022;37:026988112211319.
    1. Eckernäs E, Bendrioua A, Cancellerini C, Timmermann C, Carhart-Harris R, Hoffmann K-J, et al. Development and application of a highly sensitive LC-MS/MS method for simultaneous quantification of N,N-dimethyltryptamine and two of its metabolites in human plasma. J Pharm Biomed Anal. 2022;212:114642. doi: 10.1016/j.jpba.2022.114642.
    1. McGinnity DFPA, Soars M, Riley RJ. Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos. 2000;28(11):1327–1334.
    1. Ohtsuki SSO, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos. 2012;40(1):83–92. doi: 10.1124/dmd.111.042259.
    1. Achour BRM, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5’-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–510. doi: 10.1124/dmd.113.055632.

Source: PubMed

3
Abonnieren