Body odours as a chemosignal in the mother-child relationship: new insights based on an human leucocyte antigen-genotyped family cohort

Laura Schäfer, Agnieszka Sorokowska, Jürgen Sauter, Alexander H Schmidt, Ilona Croy, Laura Schäfer, Agnieszka Sorokowska, Jürgen Sauter, Alexander H Schmidt, Ilona Croy

Abstract

Mothers are able to identify the body odour (BO) of their own child and prefer this smell above other BOs. It has hence been assumed that the infantile BO functions as a chemosignal promoting targeted parental care. We tested this hypothesis and examined whether children's BOs signal genetic similarity and developmental status to mothers. In addition, we assessed whether BOs facilitate inbreeding avoidance (Westermarck effect). In a cross-sectional design, N = 164 mothers participated with their biological children (N = 226 children, aged 0-18 years) and evaluated BO probes of their own and four other, sex-matched children. Those varied in age and in genetic similarity, which was assessed by human leucocyte antigen profiling. The study showed not only that mothers identified and preferred their own child's BO, but also that genetic similarity and developmental status are transcribed in BOs. Accordingly, maternal preference of their own child's odour changes throughout development. Our data partly supported the Westermarck effect: mothers' preference of pubertal boys' BOs was negatively related to testosterone for the own son, but not for unfamiliar children. This article is part of the Theo Murphy meeting issue 'Olfactory communication in humans'.

Keywords: body odour; chemosensory communication; hormones; major histocompatibility complex; olfaction; parent–child relationship.

Conflict of interest statement

We declare we have no competing interests.

Figures

Figure 1.
Figure 1.
Study design and procedure. Session 1, sampling procedure; session 2, experiment with rating procedure.
Figure 2.
Figure 2.
(a) Identification of BO probes depicted in % (i) across all children and (ii) for each age group. (b) Maternal preference of each BO probe and comparison between own child's BO versus all other samples depicted (i) across all children and (ii) for each age group. *p < 0.05; **p < 0.01, ***p < 0.001; n.s. = not significant (p > 0.05). Pleasantness is measured visual analogue scale, ranging from 0 (not pleasant at all) to 100(very pleasant).
Figure 3.
Figure 3.
Maternal preference of BO probes depicted by identification behaviour: (a) left side: non-chosen BOs, right side: chosen BOs; (b) left side: non-chosen BOs depicted by age group; right side: chosen BOs depicted by each age group. *p < 0.05; **p < 0.01, ***p < 0.001. Pleasantness is measured visual analogue scale, ranging from 0 (not pleasant at all) to 100(very pleasant).
Figure 4.
Figure 4.
Scatterplots for maternal pleasantness ratings of BOs in relation to hormonal levels depicted by age group and sex of the child. Blue dots, own child; grey dots, unfamiliar child. Pleasantness is measured visual analogue scale, ranging from 0 (not pleasant at all) to 100(very pleasant).

References

    1. Bowlby J. 1958. The nature of the child's tie to his mother. Int. J. Psycho-anal. 39, 350–373.
    1. Lorenz K. 1970, 1971 Studies in animal and human behavior, vol. 1 & 2. (Transl. by R. Martin.) Cambridge, MA: Harvard University Press.
    1. Hahn AC, Perrett DI. 2014. Neural and behavioral responses to attractiveness in adult and infant faces. Neurosci. Biobehav. Rev. 46, 591–603. (10.1016/j.neubiorev.2014.08.015)
    1. Kringelbach ML, Stark EA, Alexander C, Bornstein MH, Stein A. 2016. On cuteness: unlocking the parental brain and beyond. Trends Cogn. Sci. 20, 545–558. (10.1016/j.tics.2016.05.003)
    1. Volk AA, Quinsey VL. 2007. Parental investment and resemblance: replications, refinements, and revisions. Evol. Psychol. 5, 147470490700500101 (10.1177/147470490700500101)
    1. Platek SM, et al. 2004. Reactions to children's faces: males are more affected by resemblance than females are, and so are their brains. Evol. Hum. Behav. 25, 394–405. (10.1016/S1090-5138(01)00094-0)
    1. Alvergne A, Faurie C, Raymond M. 2010. Are parents' perceptions of offspring facial resemblance consistent with actual resemblance? Effects on parental investment. Evol. Hum. Behav. 31, 7–15. (10.1016/j.evolhumbehav.2009.09.002)
    1. Fleming AS, Corter C, Franks P, Surbey M, Schneider B, Steiner M. 1993. Postpartum factors related to mother's attraction to newborn infant odors. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 26, 115–132. (10.1002/dev.420260204)
    1. Dubas JS, Heijkoop M, Van Aken MA. 2009. A preliminary investigation of parent–progeny olfactory recognition and parental investment. Hum. Nat. 20, 80–92. (10.1007/s12110-009-9058-4)
    1. Porter RH, Cernoch JM, McLaughlin FJ. 1983. Maternal recognition of neonates through olfactory cues. Physiol. Behav. 30, 151–154. (10.1016/0031-9384(83)90051-3)
    1. Croy I, Mohr T, Weidner K, Hummel T, Junge-Hoffmeister J. 2019. Mother–child bonding is associated with the maternal perception of the child's body odor. Physiol. Behav. 198, 151–157. (10.1016/j.physbeh.2018.09.014)
    1. Ferdenzi C, Schaal B, Roberts SC. 2010. Family scents: developmental changes in the perception of kin body odor? J. Chem. Ecol. 36, 847–854. (10.1007/s10886-010-9827-x)
    1. Weisfeld GE, Czilli T, Phillips KA, Gall JA, Lichtman CM. 2003. Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. J. Exp. Child Psychol. 85, 279–295. (10.1016/S0022-0965(03)00061-4)
    1. Volk AA, Lukjanczuk JL, Quinsey VL. 2007. Perceptions of child facial cues as a function of child age. Evol. Psychol. 5, 147470490700500409 (10.1177/147470490700500409)
    1. Croy I, Frackowiak T, Hummel T, Sorokowska A. 2017. Babies smell wonderful to their parents, teenagers do not: an exploratory questionnaire study on children's age and personal odor ratings in a Polish sample. Chemosens. Percept. 10, 81–87. (10.1007/s12078-017-9230-x)
    1. Okamoto M, Shirasu M, Fujita R, Hirasawa Y, Touhara K. 2016. Child odors and parenting: a survey examination of the role of odor in child-rearing. PLoS ONE 11, e0154392 (10.1371/journal.pone.0154392)
    1. Westermarck E. 1921. The history of humanmarriage, 3 vols, 5th edition. London, UK: Macmillan.
    1. Schneider MA, Hendrix L. 2000. Olfactory sexual inhibition and the Westermarck effect. Hum. Nat. 11, 65–91. (10.1007/s12110-000-1003-5)
    1. Havlíček J, Fialová J, Roberts SC. 2017. Individual variation in body odor. In Springer handbook of odor (ed. Buettner A.), pp. 125–126. Berlin, Germany: Springer.
    1. Dorn LD, Dahl RE, Woodward HR, Biro F. 2006. Defining the boundaries of early adolescence: a user's guide to assessing pubertal status and pubertal timing in research with adolescents. Appl. Dev. Sci. 10, 30–56. (10.1207/s1532480xads1001_3)
    1. Muehlenbein MP, Bribiescas RG. 2005. Testosterone-mediated immune functions and male life histories. Am. J. Hum. Biol. 17, 527–558. (10.1002/ajhb.20419)
    1. Kohl JV, Francoeur RT. 2002. The scent of Eros: mysteries of odor in human sexuality. Lincoln, NE: IUniverse.
    1. Lübke KT, Pause BM. 2014. Sex-hormone dependent perception of androstenone suggests its involvement in communicating competition and aggression. Physiol. Behav. 123, 136–141. (10.1016/j.physbeh.2013.10.016)
    1. Doty RL, Orndorff MM, Leyden J, Kligman A. 1978. Communication of gender from human axillary odors: relationship to perceived intensity and hedonicity. Behav. Biol. 23, 373–380. (10.1016/S0091-6773(78)91393-7)
    1. Sergeant MJ. 2010. Female perception of male body odor. In Vitamins & hormones, vol. 83 (ed. Litwack G.), pp. 25–45. Amsterdam, The Netherlands: Academic.
    1. Rantala MJ, Eriksson CP, Vainikka A, Kortet R. 2006. Male steroid hormones and female preference for male body odor. Evol. Hum. Behav. 27, 259–269. (10.1016/j.evolhumbehav.2005.11.002)
    1. Ferkin MH, Johnston RE. 1993. Roles of gonadal hormones in control of five sexually attractive odors of meadow voles (Microtus pennsylvanicus). Horm. Behav. 27, 523–538. (10.1006/hbeh.1993.1038)
    1. Puts DA, Bailey DH, Cárdenas RA, Burriss RP, Welling LL, Wheatley JR, Dawood K. 2013. Women's attractiveness changes with estradiol and progesterone across the ovulatory cycle. Horm. Behav. 63, 13–19. (10.1016/j.yhbeh.2012.11.007)
    1. Nelson R. 2000. An introduction to behavioral endocrinology. Gen. Comp. Endocrinol. 117, 323 (10.1006/gcen.1999.7428)
    1. Lobmaier JS, Fischbacher U, Wirthmüller U, Knoch D. 2018. The scent of attractiveness: levels of reproductive hormones explain individual differences in women's body odour. Proc. R. Soc. B 285, 20181520 (10.1098/rspb.2018.1520)
    1. Thornhill R, Gangestad SW, Miller R, Scheyd G, McCollough JK, Franklin M. 2003. Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav. Ecol. 14, 668–678. (10.1093/beheco/arg043)
    1. Lundström JN, Boyle JA, Zatorre RJ, Jones-Gotman M. 2009. The neuronal substrates of human olfactory based kin recognition. Hum. Brain Mapp. 30, 2571–2580. (10.1002/hbm.20686)
    1. Pause BM, Krauel K, Schrader C, Sojka B, Westphal E, Müller-Ruchholtz W, Ferstl R. 2006. The human brain is a detector of chemosensorily transmitted HLA-class I-similarity in same- and opposite-sex relations. Proc. R. Soc. B 273, 471–478. (10.1098/rspb.2005.3342)
    1. Park JH, Schaller M, Van Vugt M. 2008. Psychology of human kin recognition: heuristic cues, erroneous inferences, and their implications. Rev. Gen. Psychol. 12, 215–235. (10.1037/1089-2680.12.3.215)
    1. Austyn JM, Wood K. 1994. Principles of cellular and molecular immunology. Revista do Instituto de Medicina Tropical de São Paulo. 36, 224 (10.1590/S0036-46651994000300017)
    1. Leinders-Zufall T, et al. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 306, 1033–1037. (10.1126/science.1102818)
    1. Havlicek J, Roberts SC. 2009. MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology 34, 497–512. (10.1016/j.psyneuen.2008.10.007)
    1. Milinski M, Croy I, Hummel T, Boehm T. 2013. Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proc. R. Soc. B 280, 20122889 (10.1098/rspb.2012.2889)
    1. Watzlawik M. 2009. Die erfassung des pubertätsstatus anhand der Pubertal Development Scale. Diagnostica 55, 55–65. (10.1026/0012-1924.55.1.55)
    1. Lötsch J, Ultsch A, Hummel T. 2016. How many and which odor identification items are needed to establish normal olfactory function? Chem. Senses. 41, 339–344. (10.1093/chemse/bjw006)
    1. Lenochova P, Roberts SC, Havlicek J. 2008. Methods of human body odor sampling: the effect of freezing. Chem. Senses. 34, 127–138. (10.1093/chemse/bjn067)
    1. Schöfl G, Lang K, Quenzel P, Böhme I, Sauter J, Hofmann JA, Pingel J, Schmidt AH, Lange V. 2017. 2.7 million samples genotyped for HLA by next generation sequencing: lessons learned. BMC Genomics 18, 161 (10.1186/s12864-017-3575-z)
    1. Lange V, et al. 2014. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics. 15, 63 (10.1186/1471-2164-15-63)
    1. Kromer J, et al. 2016. Influence of HLA on human partnership and sexual satisfaction. Sci. Rep. 6, 32550 (10.1038/srep32550)
    1. Sorokowska A, Pietrowski D, Schäfer L, Kromer J, Schmidt AH, Sauter J, Hummel T, Croy I. 2018. Human Leukocyte Antigen similarity decreases partners' and strangers’ body odor attractiveness for women not using hormonal contraception. Horm. Behav. 106, 144–149. (10.1016/j.yhbeh.2018.10.007)
    1. Martinec NL, Plotěná D, Havlíček J. 2017. Age and pubertal status-related changes in reports of perception of personal odors. Perception 46, 484–497. (10.1177/0301006616686096)
    1. Team J. 2018. JASP (version 0.9) [computer software]. See .
    1. Dienes Z, Mclatchie N. 2018. Four reasons to prefer Bayesian analyses over significance testing. Psychon. Bull. Rev. 25, 207–218. (10.3758/s13423-017-1266-z)
    1. Kaitz M, Good A, Rokem A, Eidelman A. 1987. Mothers' recognition of their newborns by olfactory cues. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 20, 587–591. (10.1002/dev.420200604)
    1. Goldman WP, Seamon JG. 1992. Very long-term memory for odors: retention of odor-name associations. Am. J. Psychol. 105, 549–563. (10.2307/1422910)
    1. Delplanque S, Grandjean D, Chrea C, Aymard L, Cayeux I, Le Calve B, Velazco MI, Scherer KR, Sander D. 2008. Emotional processing of odors: evidence for a nonlinear relation between pleasantness and familiarity evaluations. Chem. Senses. 33, 469–479. (10.1093/chemse/bjn014)
    1. Mahmut MK, Stevenson RJ, Stephen I. 2019. Do women love their partner's smell? Exploring women's preferences for and identification of male partner and non-partner body odor. Physiol. Behav. 210, 112517 (10.1016/j.physbeh.2019.04.006)
    1. Chapais B, Savard L, Gauthier C. 2001. Kin selection and the distribution of altruism in relation to degree of kinship in Japanese macaques (Macaca fuscata). Behav. Ecol. Sociobiol. 49, 493–502. (10.1007/s002650100335)
    1. Marcinkowska UM, Moore FR, Rantala MJ. 2013. An experimental test of the Westermarck effect: sex differences in inbreeding avoidance. Behav. Ecol. 24, 842–845. (10.1093/beheco/art028)
    1. Bojanowski V, Hummel T, Croy I. 2013. Isolated congenital anosmia—clinical and daily life aspects of a life without a sense of smell. Laryngorhinootologie. 92, 30–33. (10.1055/s-0032-1329949)
    1. Lundström JN, Mathe A, Schaal B, Frasnelli J, Nitzsche K, Gerber J, Hummel T. 2013. Maternal status regulates cortical responses to the body odor of newborns. Front. Psychol. 4, 597 (10.3389/fpsyg.2013.00597)
    1. Swain JE. 2011. The human parental brain: in vivo neuroimaging. Progress Neuro-Psychopharmacol. Biol. Psychiatry 35, 1242–1254. (10.1016/j.pnpbp.2010.10.017)

Source: PubMed

3
Abonnieren