New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds

Bendong Yang, Meiling Xin, Shufei Liang, Xiaoxue Xu, Tianqi Cai, Ling Dong, Chao Wang, Meng Wang, Yuting Cui, Xinhua Song, Jinyue Sun, Wenlong Sun, Bendong Yang, Meiling Xin, Shufei Liang, Xiaoxue Xu, Tianqi Cai, Ling Dong, Chao Wang, Meng Wang, Yuting Cui, Xinhua Song, Jinyue Sun, Wenlong Sun

Abstract

Hyperuricemia is the result of increased production and/or underexcretion of uric acid. Hyperuricemia has been epidemiologically associated with multiple comorbidities, including metabolic syndrome, gout with long-term systemic inflammation, chronic kidney disease, urolithiasis, cardiovascular disease, hypertension, rheumatoid arthritis, dyslipidemia, diabetes/insulin resistance and increased oxidative stress. Dysregulation of xanthine oxidoreductase (XOD), the enzyme that catalyzes uric acid biosynthesis primarily in the liver, and urate transporters that reabsorb urate in the renal proximal tubules (URAT1, GLUT9, OAT4 and OAT10) and secrete urate (ABCG2, OAT1, OAT3, NPT1, and NPT4) in the renal tubules and intestine, is a major cause of hyperuricemia, along with variations in the genes encoding these proteins. The first-line therapeutic drugs used to lower serum uric acid levels include XOD inhibitors that limit uric acid biosynthesis and uricosurics that decrease urate reabsorption in the renal proximal tubules and increase urate excretion into the urine and intestine via urate transporters. However, long-term use of high doses of these drugs induces acute kidney disease, chronic kidney disease and liver toxicity. Therefore, there is an urgent need for new nephroprotective drugs with improved safety profiles and tolerance. The current systematic review summarizes the characteristics of major urate transporters, the mechanisms underlying the pathogenesis of hyperuricemia, and the regulation of uric acid biosynthesis and transport. Most importantly, this review highlights the potential mechanisms of action of some naturally occurring bioactive compounds with antihyperuricemic and nephroprotective potential isolated from various medicinal plants.

Keywords: chronic kidney disease; hyperuricemia; natural products; renal urate extraction; urate transporters.

Conflict of interest statement

SX and SW were employed by the Shandong Qingyujiangxing Biotechnology Co., Ltd. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Yang, Xin, Liang, Xu, Cai, Dong, Wang, Wang, Cui, Song, Sun and Sun.

Figures

FIGURE 1
FIGURE 1
Urate transporters and potential natural products for hyperuricemia treatment. URAT1, urate transporter 1; GLUT9, glucose transporter member 9; ABCG2, ATP-binding cassette transporter, subfamily G, member 2; OATs, organic anion transporters; NPTs, sodium-dependent phosphate cotransporter types. The activities of urate transporters were inhibited by benzbromarone (Mandal et al., 2017), probenecid (Mandal et al., 2017), tranilast (Mandal et al., 2017), losartan (Hamada et al., 2008; Miner et al., 2016b), lesinurad (Miner et al., 2016b), fenofibrate (Uetake et al., 2010), furosemide (Sato et al., 2010), respectively.

References

    1. Alberts B. M., Barber J. S., Sacre S. M., Davies K. A., Ghezzi P., Mullen L. M. (2019). Precipitation of soluble uric acid is necessary for in vitro activation of the NLRP3 inflammasome in primary human monocytes. J. Rheumatol. 46, 1141–1150. 10.3899/jrheum.180855
    1. Alexandru B. I., Moe O. W. (2012). Renal transport of uric acid: Evolving concepts and uncertainties. Adv. Chronic Kidney Dis. 19, 358–371. 10.1053/j.ackd.2012.07.009
    1. Ali T., Kim T., Rehman S., Sohail K. M., AminUl F., Khan M., et al. (2018). Natural dietary supplementation of anthocyanins via PI3K/Akt/Nrf2/HO-1 pathways mitigate oxidative stress, neurodegeneration, and memory impairment in a mouse model of alzheimer's disease. Mol. Neurobiol. 55, 6076–6093. 10.1007/s12035-017-0798-6
    1. Ames B. N., Cathcart R., Schwiers E., Hochstein P. (1981). Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: A hypothesis. Proc. Natl. Acad. Sci. U. S. A. 78, 6858–6862. 10.1073/pnas.78.11.6858
    1. Anzai N., Ichida K., Jutabha P., Kimura T., Babu E., JinJi C., et al. (2008). Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J. Biol. Chem. 283, 26834–26838. 10.1074/jbc.C800156200
    1. Arellano F., Sacristán J. A. (1993). Allopurinol hypersensitivity syndrome: A review. Ann. Pharmacother. 27, 337–343. 10.1177/106002809302700317
    1. Ascherio A., LeWitt P. A., Xu K., Eberly S., Watts A., Matson W. R., et al. (2009). Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 66, 1460–1468. 10.1001/archneurol.2009.247
    1. Aslamkhan A., Han Y.-H., Walden R., Sweet D. H., Pritchard J. B. (2003). Stoichiometry of organic anion/dicarboxylate exchange in membrane vesicles from rat renal cortex and hOAT1-expressing cells. Am. J. Physiol. Ren. Physiol. 285, F775–F783. Renal physiology . 10.1152/ajprenal.00140.2003
    1. Augustin R., Carayannopoulos M. O., Dowd L. O., Phay J. E., Moley J. F., Moley K. H. (2004). Identification and characterization of human glucose transporter-like protein-9 (GLUT9): Alternative splicing alters trafficking. J. Biol. Chem. 279, 16229–16236. 10.1074/jbc.M312226200
    1. Bae J., Park P. S., Chun B.-Y., Choi B. Y., Kim M. K., Shin M.-H., et al. (2015). The effect of coffee, tea, and caffeine consumption on serum uric acid and the risk of hyperuricemia in Korean Multi-Rural Communities Cohort. Rheumatol. Int. 35, 327–336. 10.1007/s00296-014-3061-8
    1. Bahn A., Hagos Y., Reuter S., Balen D., Brzica H., Krick W., et al. (2008). Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J. Biol. Chem. 283, 16332–16341. 10.1074/jbc.M800737200
    1. Bakhiya A., Bahn A., Burckhardt G., Wolff N. (2003). Human organic anion transporter 3 (hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell. Physiol. biochem. 13, 249–256. 10.1159/000074539
    1. Bao R., Liu M., Wang D., Wen S., Yu H., Zhong Y., et al. (2019). Effect of eurycoma longifolia stem extract on uric acid excretion in hyperuricemia mice. Front. Pharmacol. 10, 1464. 10.3389/fphar.2019.01464
    1. Bibert S., Hess S., Kharoubi F. D., Thorens B., Geering K., Horisberger J.-D., et al. (2009). Mouse GLUT9: Evidences for a urate uniporter. Am. J. Physiol. Ren. Physiol. 297, F612–F619. Renal physiology . 10.1152/ajprenal.00139.2009
    1. Cai S., Li Q., Zhou H., Xu Y., Song J., Gan C., et al. (2021). Mechanism of PI3K/AKT/mTOR signaling pathway for mediating anti-inflammatory and anti-oxidant effects of chrysin: A protein microarray-based study. Nan Fang. Yi Ke Da Xue Xue Bao 41, 1554–1561. 10.12122/j.issn.1673-4254.2021.10.15
    1. Cao L., Zhao T., Xue Y., Xue L., Chen Y., Quan F., et al. (2021). The anti-inflammatory and uric acid lowering effects of Si-Miao-San on gout. Front. Immunol. 12, 777522. 10.3389/fimmu.2021.777522
    1. Caulfield M. J., Munroe P. B., O'Neill D., Witkowska K., Charchar F. J., Doblado M., et al. (2008). SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 5, e197. 10.1371/journal.pmed.0050197
    1. Chang Y.-H., Chiang Y.-F., Chen H.-Y., Huang Y.-J., Wang K.-L., Hong Y.-H., et al. (2021). Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. Antioxidants (Basel, Switz. 10, 564. 10.3390/antiox10040564
    1. Chen M., Li J., Liu X., Song Z., Han S., Shi R., et al. (2021a). Chrysin prevents lipopolysaccharide-induced acute lung injury in mice by suppressing the IRE1α/TXNIP/NLRP3 pathway. Pulm. Pharmacol. Ther. 68, 102018. 10.1016/j.pupt.2021.102018
    1. Chen M., Ye C., Zhu J., Zhang P., Jiang Y., Lu X., et al. (2020). Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia. Front. Cell Dev. Biol. 8, 703. 10.3389/fcell.2020.00703
    1. Chen Y., Zhao Z., Li Y., Yang Y., Li L., Jiang Y., et al. (2021b). Baicalein alleviates hyperuricemia by promoting uric acid excretion and inhibiting xanthine oxidase. Phytomedicine 80, 153374. 10.1016/j.phymed.2020.153374
    1. Chen-Xu M., Yokose C., Rai S. K., Pillinger M. H., Choi H. K. (2019). Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The national health and nutrition examination survey, 2007-2016. Arthritis Rheumatol. 71, 991–999. 10.1002/art.40807
    1. Cheng H., Liu J., Tan Y., Feng W., Peng C. (2022a). Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J. Pharm. Anal. 12, 541–555. 10.1016/j.jpha.2021.10.003
    1. Cheng J.-J., Ma X.-D., Ai G.-X., Yu Q.-X., Chen X.-Y., Yan F., et al. (2022b). Palmatine protects against MSU-induced gouty arthritis via regulating the NF-κB/NLRP3 and Nrf2 pathways. Drug Des. devel. Ther. 16, 2119–2132. 10.2147/DDDT.S356307
    1. Chiba T., Matsuo H., Kawamura Y., Nagamori S., Nishiyama T., Wei L., et al. (2015). NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 67, 281–287. 10.1002/art.38884
    1. Cho S., Kim S., Chung J.-Y., Jee S. H. (2015). Discovery of URAT1 SNPs and association between serum uric acid levels and URAT1. BMJ open 5, e009360. 10.1136/bmjopen-2015-009360
    1. Choi H. K., Curhan G. (2007). Coffee, tea, and caffeine consumption and serum uric acid level: The third national health and nutrition examination survey. Arthritis Rheum. 57, 816–821. 10.1002/art.22762
    1. Choi H. K., Ford E. S., Li C., Curhan G. (2007). Prevalence of the metabolic syndrome in patients with gout: The third national health and nutrition examination survey. Arthritis Rheum. 57, 109–115. 10.1002/art.22466
    1. Choi H. K., Ford E. S. (2007). Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am. J. Med. 120, 442–447. 10.1016/j.amjmed.2006.06.040
    1. Choi H. K., Mount D. B., Reginato A. M. (2005). Pathogenesis of gout. Ann. Intern. Med. 143, 499–516. 10.7326/0003-4819-143-7-200510040-00009
    1. Coady M. J., Chang M.-H., Charron F. M., Plata C., Wallendorff B., Sah J., et al. (2004). The human tumour suppressor gene SLC5A8 expresses a Na+-monocarboxylate cotransporter. J. Physiol. 557, 719–731. 10.1113/jphysiol.2004.063859
    1. Copur S., Demiray A., Kanbay M. (2022). Uric acid in metabolic syndrome: Does uric acid have a definitive role? Eur. J. Intern. Med. 103, 4–12. 10.1016/j.ejim.2022.04.022
    1. Cristóbal-García M., García-Arroyo F. E., Tapia E., Osorio H., Arellano-Buendía A. S., Madero M., et al. (2015). Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid. Med. Cell. Longev. 2015, 535686. 10.1155/2015/535686
    1. Cui D., Liu S., Tang M., Lu Y., Zhao M., Mao R., et al. (2020). Phloretin ameliorates hyperuricemia-induced chronic renal dysfunction through inhibiting NLRP3 inflammasome and uric acid reabsorption. Phytomedicine 66, 153111. 10.1016/j.phymed.2019.153111
    1. Dai H., Lv S., Qiao Z., Wang K., Zhou X., Bao C., et al. (2021). The active components of sunflower (helianthus annuus L.) calathide and the effects on urate nephropathy based on COX-2/PGE2 signaling pathway and the urate transporter URAT1, ABCG2, and GLUT9. Front. Nutr. 8, 769555. 10.3389/fnut.2021.769555
    1. Davies K. J., Sevanian A., Muakkassah-Kelly S. F., Hochstein P. (1986). Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid. Biochem. J. 235, 747–754. 10.1042/bj2350747
    1. DeBosch B. J., Kluth O., Fujiwara H., Schürmann A., Moley K. (2014). Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9. Nat. Commun. 5, 4642. 10.1038/ncomms5642
    1. Dehghan A., Köttgen A., Yang Q., Hwang S.-J., Linda Kao W., Rivadeneira F., et al. (2008). Association of three genetic loci with uric acid concentration and risk of gout: A genome-wide association study. Lancet (London, Engl. 372, 1953–1961. 10.1016/S0140-6736(08)61343-4
    1. Dinour D., Bahn A., Ganon L., Ron R., Geifman-Holtzman O., Knecht A., et al. (2011). URAT1 mutations cause renal hypouricemia type 1 in Iraqi Jews. Nephrol. Dial. Transpl. 26, 2175–2181. 10.1093/ndt/gfq722
    1. Doblado M., Moley K. H. (2009). Facilitative glucose transporter 9, a unique hexose and urate transporter. Am. J. Physiol. Endocrinol. Metab. 297, E831–E835. 10.1152/ajpendo.00296.2009
    1. Döring A., Gieger C., Mehta D., Gohlke H., Prokisch H., Coassin S., et al. (2008). SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436. 10.1038/ng.107
    1. Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., et al. (1998). A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 95, 15665–15670. 10.1073/pnas.95.26.15665
    1. Enomoto A., Kimura H., Chairoungdua A., Shigeta Y., Jutabha P., Ho Cha S., et al. (2002). Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417, 447–452. 10.1038/nature742
    1. Eraly S. A., Vallon V., Rieg T., Gangoiti J. A., Wikoff W. R., Siuzdak G., et al. (2008). Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol. Genomics 33, 180–192. 10.1152/physiolgenomics.00207.2007
    1. Facchini F., Chen Y. D., Hollenbeck C. B., Reaven G. M. (1991). Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA 266, 3008–3011. 10.1001/jama.1991.03470210076036
    1. Feig D. I., Johnson R. J. (2003). Hyperuricemia in childhood primary hypertension. Hypertension 42, 247–252. 10.1161/01.HYP.0000085858.66548.59
    1. Feig D. I., Kang D.-H., Johnson R. J. (2008). Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821. 10.1056/NEJMra0800885
    1. Feng Y., Bhandari R., Li C., Shu P., ShaikhIbrahim. I. (2022). Pectolinarigenin suppresses LPS-induced inflammatory response in macrophages and attenuates DSS-induced colitis by modulating the NF-κB/Nrf2 signaling pathway. Inflammation. 10.1007/s10753-022-01710-4
    1. Franchi L., Eigenbrod T., Muñoz-Planillo R., Nuñez G. (2009). The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 10, 241–247. 10.1038/ni.1703
    1. Fujita K., Yamada H., Iijima M., Ichida K. (2019). Electrochemical analysis of uric acid excretion to the intestinal lumen: Effect of serum uric acid-lowering drugs and 5/6 nephrectomy on intestinal uric acid levels. PloS one 14, e0226918. 10.1371/journal.pone.0226918
    1. Gaffo A. L., Lawrence E. N., Saag K. G. (2009). Gout. Hyperuricemia and cardiovascular disease: How strong is the evidence for a causal link? Arthritis Res. Ther. 11, 240. 10.1186/ar2761
    1. Gao T., Xu J., Xiao Y., Li J., Hu W., Su X., et al. (2022). Therapeutic effects and mechanisms of N-(9, 10-anthraquinone-2-ylcarbonyl) xanthine oxidase inhibitors on hyperuricemia. Front. Pharmacol. 13, 950699. 10.3389/fphar.2022.950699
    1. Grases F., Rodriguez A., Costa-Bauza A. (2014). Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis. PloS one 9, e111184. 10.1371/journal.pone.0111184
    1. Hagos Y., Stein D., Ugele B., Burckhardt G., Bahn A. (2007). Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J. Am. Soc. Nephrol. 18, 430–439. 10.1681/ASN.2006040415
    1. Hamada T., Ichida K., Hosoyamada M., Mizuta E., Yanagihara K., Sonoyama K., et al. (2008). Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am. J. Hypertens. 21, 1157–1162. 10.1038/ajh.2008.245
    1. Heel R. C., Brogden R. N., Speight T. M., Avery G. S. (1977). Benzbromarone: A review of its pharmacological properties and therapeutic use in gout and hyperuricaemia. Drugs 14, 349–366. 10.2165/00003495-197714050-00002
    1. Hlophe N. B., Opoku A. R., Osunsanmi F. O., Djarova-Daniels T. G., Lawal O. A., Mosa R. A. (2020). A lanosteryl triterpene (RA-3) exhibits antihyperuricemic and nephroprotective effects in rats. Mol. Basel, Switz. 25, E4010. 10.3390/molecules25174010
    1. Hong S. H., Jeong H.-K., HanHo M., Park C., Choi Y. H. (2014). Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages. Mol. Med. Rep. 10, 3241–3246. 10.3892/mmr.2014.2613
    1. Hosoyamada M., Takiue Y., Morisaki H., Cheng J., Ikawa M., Okabe M., et al. (2010). Establishment and analysis of SLC22A12 (URAT1) knockout mouse. Nucleosides Nucleotides Nucleic Acids 29, 314–320. 10.1080/15257771003738634
    1. Huang X., Shen H., Liu Y., Qiu S., Guo Y. (2021). Fisetin attenuates periodontitis through FGFR1/TLR4/NLRP3 inflammasome pathway. Int. Immunopharmacol. 95, 107505. 10.1016/j.intimp.2021.107505
    1. Huls M., Brown C. D. A., Windass A. S., Sayer R., van den Heuvel J. J. M. W., Heemskerk S., et al. (2008). The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 73, 220–225. 10.1038/sj.ki.5002645
    1. Ichida K., Hosoyamada M., Hisatome I., Enomoto A., Hikita M., Endou H., et al. (2004). Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J. Am. Soc. Nephrol. 15, 164–173. 10.1097/01.asn.0000105320.04395.d0
    1. Iharada M., Miyaji T., Fujimoto T., Hiasa M., Anzai N., Omote H., et al. (2010). Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl(-)-dependent urate exporter. J. Biol. Chem. 285, 26107–26113. 10.1074/jbc.M110.122721
    1. Jalal D. I., Chonchol M., Chen W., Targher G. (2013). Uric acid as a target of therapy in CKD. Am. J. Kidney Dis. 61, 134–146. 10.1053/j.ajkd.2012.07.021
    1. Jansen T. L. Th A., Reinders M. K., van Roon E. N., Brouwers J. R. B. J. (2004). Benzbromarone withdrawn from the European market: Another case of "absence of evidence is evidence of absence. Clin. Exp. Rheumatol. 22, 651.
    1. Johnson R. J., Bakris G. L., Borghi C., Chonchol M. B., Feldman D., Lanaspa M. A., et al. (2018). Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am. J. Kidney Dis. 71, 851–865. 10.1053/j.ajkd.2017.12.009
    1. Jutabha P., Anzai N., Kitamura K., Taniguchi A., Kaneko S., Yan K., et al. (2010). Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J. Biol. Chem. 285, 35123–35132. 10.1074/jbc.M110.121301
    1. Jutabha P., Anzai N., Wempe M. F., Wakui S., Endou H., Sakurai H. (2011). Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule. Nucleosides Nucleotides Nucleic Acids 30, 1302–1311. 10.1080/15257770.2011.616564
    1. Kang D.-H., Nakagawa T., Feng L., Watanabe S., Han L., Mazzali M., et al. (2002). A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol. 13, 2888–2897. 10.1097/01.asn.0000034910.58454.fd
    1. Keembiyehetty C., Augustin R., Carayannopoulos M. O., Steer S., Manolescu A., Cheeseman C. I., et al. (2006). Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol. Endocrinol. 20, 686–697. 10.1210/me.2005-0010
    1. Kim S.-M., Choi Y.-W., Seok H.-Y., Jeong K.-H., Lee S.-H., Lee T.-W., et al. (2012). Reducing serum uric acid attenuates TGF-β1-induced profibrogenic progression in type 2 diabetic nephropathy. Nephron. Exp. Nephrol. 121, e109–e121. 10.1159/000343567
    1. Kimura K., Hosoya T., Uchida S., Inaba M., Makino H., Maruyama S., et al. (2018). Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: A randomized trial. Am. J. Kidney Dis. 72, 798–810. 10.1053/j.ajkd.2018.06.028
    1. Kimura T., Takahashi M., Yan K., Sakurai H. (2014). Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PloS one 9, e84996. 10.1371/journal.pone.0084996
    1. Koka R. M., Huang E., Lieske J. C. (2000). Adhesion of uric acid crystals to the surface of renal epithelial cells. Am. J. Physiol. Ren. Physiol. 278, F989–F998. Renal physiology . 10.1152/ajprenal.2000.278.6.F989
    1. Kolz M., Johnson T., Sanna S., Teumer A., Vitart V., Perola M., et al. (2009). Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 5, e1000504. 10.1371/journal.pgen.1000504
    1. Köttgen A., Albrecht E., Teumer A., Vitart V., Krumsiek J., Hundertmark C., et al. (2013). Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154. 10.1038/ng.2500
    1. Kumar A. U. A., Browne L. D., Li X., Adeeb F., Perez-Ruiz F., Fraser A. D., et al. (2018). Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: A cohort study. PloS one 13, e0198197. 10.1371/journal.pone.0198197
    1. Lai S., Zhou X. (2013). Inflammatory cells in tissues of gout patients and their correlations with comorbidities. Open Rheumatol. J. 7, 26–31. 10.2174/1874312901307010026
    1. Levey A. S., Atkins R., Coresh J., Cohen E. P., Collins A. J., Eckardt K.-U., et al. (2007). Chronic kidney disease as a global public health problem: Approaches and initiatives - a position statement from kidney disease improving global outcomes. Kidney Int. 72, 247–259. 10.1038/sj.ki.5002343
    1. Li C., Yu Q., Han L., Wang C., Chu N., Liu S. (2014). The hURAT1 rs559946 polymorphism and the incidence of gout in Han Chinese men. Scand. J. Rheumatol. 43, 35–42. 10.3109/03009742.2013.808375
    1. Li J.-M., Zhang X., Wang X., Xie Y.-C., Kong L.-D. (2011). Protective effects of cortex fraxini coumarines against oxonate-induced hyperuricemia and renal dysfunction in mice. Eur. J. Pharmacol. 666, 196–204. 10.1016/j.ejphar.2011.05.021
    1. Li J., Wang T., Liu P., Yang F., Wang X., Zheng W., et al. (2021a). Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 12, 3898–3918. 10.1039/d0fo02736g
    1. Li M.-H., Guan J., Chen Z., Mo J.-X., Wu K.-R., Hu X.-G., et al. (2022). Fufang Zhenzhu Tiaozhi capsule ameliorates hyperuricemic nephropathy by inhibition of PI3K/AKT/NF-κB pathway. J. Ethnopharmacol. 298, 115644. 10.1016/j.jep.2022.115644
    1. Li X., Gao X., Zhang H., Liu Y., SarkerRahman M. M., Wu Y., et al. (2021b). The anti-hyperuricemic effects of green alga Enteromorpha prolifera polysaccharide via regulation of the uric acid transporters in vivo . Food Chem. Toxicol. 158, 112630. 10.1016/j.fct.2021.112630
    1. Lin G., Yu Q., Xu L., Huang Z., Mai L., Jiang L., et al. (2021). Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway. Eur. J. Pharmacol. 912, 174592. 10.1016/j.ejphar.2021.174592
    1. Liu B., Shen Y., Xiao K., Tang Y., Cen L., Wei J. (2012). Serum uric acid levels in patients with multiple sclerosis: A meta-analysis. Neurol. Res. 34, 163–171. 10.1179/1743132811Y.0000000074
    1. Liu R., Han C., Wu D., Xia X., Gu J., Guan H., et al. (2015). Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: A systematic review and meta-analysis. Biomed. Res. Int. 2015, 762820. 10.1155/2015/762820
    1. Liu S., Yuan Y., Zhou Y., Zhao M., Chen Y., Cheng J., et al. (2017). Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake. J. Cell. Mol. Med. 21, 2553–2562. 10.1111/jcmm.13176
    1. Mandal A. K., Leask M. P., Estiverne C., Choi H. K., Merriman T. R., Mount D. B. (2021). Genetic and physiological effects of insulin on human urate homeostasis. Front. Physiol. 12, 713710. 10.3389/fphys.2021.713710
    1. Mandal A. K., Mercado A., Foster A., Zandi-Nejad K., Mount D. B. (2017). Uricosuric targets of tranilast. Pharmacol. Res. Perspect. 5, e00291. 10.1002/prp2.291
    1. Mandal A. K., Mount D. B. (2019). Interaction between ITM2B and GLUT9 links urate transport to neurodegenerative disorders. Front. Physiol. 10, 1323. 10.3389/fphys.2019.01323
    1. Mandal A. K., Mount D. B. (2015). The molecular physiology of uric acid homeostasis. Annu. Rev. Physiol. 77, 323–345. 10.1146/annurev-physiol-021113-170343
    1. Martinon F., Pétrilli V., Mayor A., Tardivel A., Tschopp J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241. 10.1038/nature04516
    1. Matsuo H., Takada T., Ichida K., Nakamura T., Nakayama A., Ikebuchi Y., et al. (2009). Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci. Transl. Med. 1, 5ra11. 10.1126/scitranslmed.3000237
    1. Matsuo H., Takada T., Nakayama A., Shimizu T., Sakiyama M., Shimizu S., et al. (2014). ABCG2 dysfunction increases the risk of renal overload hyperuricemia. Nucleosides Nucleotides Nucleic Acids 33, 266–274. 10.1080/15257770.2013.866679
    1. Mazzali M., Hughes J., Kim Y. G., Jefferson J. A., Kang D. H., Gordon K. L., et al. (2001). Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 1101–1106. 10.1161/hy1101.092839
    1. Miao Y., Ottenbros S. A., Laverman G. D., Brenner B. M., Cooper M. E., Parving H.-H., et al. (2011). Effect of a reduction in uric acid on renal outcomes during losartan treatment: A post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the angiotensin II antagonist losartan trial. Hypertension 58, 2–7. 10.1161/HYPERTENSIONAHA.111.171488
    1. Miner J. N., Tan P. K., Hyndman D., Liu S., Iverson C., Nanavati P., et al. (2016a). Erratum to: Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res. Ther. 18, 236. 10.1186/s13075-016-1150-7
    1. Miner J. N., Tan P. K., Hyndman D., Liu S., Iverson C., Nanavati P., et al. (2016b). Lesinurad, a novel, oral compound for gout, acts to decrease serum uric acid through inhibition of urate transporters in the kidney. Arthritis Res. Ther. 18, 214. 10.1186/s13075-016-1107-x
    1. Moe O. W., Abate N., Sakhaee K. (2002). Pathophysiology of uric acid nephrolithiasis. Endocrinol. Metab. Clin. North Am. 31, 895–914. 10.1016/s0889-8529(02)00032-4
    1. Mulla M. J., Myrtolli K., Potter J., Boeras C., Kavathas P. B., Sfakianaki A. K., et al. (2011). Uric acid induces trophoblast IL-1β production via the inflammasome: Implications for the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 65, 542–548. (New York, N.Y, 1989). 10.1111/j.1600-0897.2010.00960.x
    1. Mulla M. J., Salmon J. E., Chamley L. W., Brosens J. J., Boeras C. M., Kavathas P. B., et al. (2013). A role for uric acid and the Nalp3 inflammasome in antiphospholipid antibody-induced IL-1β production by human first trimester trophoblast. PloS one 8, e65237. 10.1371/journal.pone.0065237
    1. Nakagawa T., Mazzali M., Kang D.-H., Kanellis J., Watanabe S., Sanchez-Lozada L. G., et al. (2003). Hyperuricemia causes glomerular hypertrophy in the rat. Am. J. Nephrol. 23, 2–7. 10.1159/000066303
    1. Nakashima M., Uematsu T., Kosuge K., Kanamaru M. (1992). Pilot study of the uricosuric effect of DuP-753, a new angiotensin II receptor antagonist, in healthy subjects. Eur. J. Clin. Pharmacol. 42, 333–335. 10.1007/BF00266358
    1. Nakayama A., Matsuo H., Takada T., Ichida K., Nakamura T., Ikebuchi Y., et al. (2011). ABCG2 is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleosides Nucleotides Nucleic Acids 30, 1091–1097. 10.1080/15257770.2011.633953
    1. Pan J., Shi M., Guo F., Ma L., Fu P. (2021b). Pharmacologic inhibiting STAT3 delays the progression of kidney fibrosis in hyperuricemia-induced chronic kidney disease. Life Sci. 285, 119946. 10.1016/j.lfs.2021.119946
    1. Pan J., Zhang C., Shi M., Guo F., Liu J., Li L., et al. (2021a). Ethanol extract of Liriodendron chinense (Hemsl.) Sarg barks attenuates hyperuricemic nephropathy by inhibiting renal fibrosis and inflammation in mice. J. Ethnopharmacol. 264, 113278. 10.1016/j.jep.2020.113278
    1. Park K. Y., Kim H. J., Ahn H. S., Hee K. S., Ji P. E., Yim S.-Y., et al. (2016). Effects of coffee consumption on serum uric acid: Systematic review and meta-analysis. Semin. Arthritis Rheum. 45, 580–586. 10.1016/j.semarthrit.2016.01.003
    1. Pathmanathan K., Robinson P. C., Hill C. L., Keen H. I. (2021). The prevalence of gout and hyperuricaemia in Australia: An updated systematic review. Semin. Arthritis Rheum. 51, 121–128. 10.1016/j.semarthrit.2020.12.001
    1. Pavelcova K., Bohata J., Pavlikova M., Bubenikova E., Pavelka K., Stiburkova B. (2020). Evaluation of the influence of genetic variants of SLC2A9 (GLUT9) and SLC22A12 (URAT1) on the development of hyperuricemia and gout. J. Clin. Med. 9, E2510. 10.3390/jcm9082510
    1. Perlstein T. S., Gumieniak O., Hopkins P. N., Murphey L. J., Brown N. J., Williams G. H., et al. (2004). Uric acid and the state of the intrarenal renin-angiotensin system in humans. Kidney Int. 66, 1465–1470. 10.1111/j.1523-1755.2004.00909.x
    1. Phipps-Green A. J., Merriman M. E., Topless R., Altaf S., Montgomery G. W., Franklin C., et al. (2016). Twenty-eight loci that influence serum urate levels: Analysis of association with gout. Ann. Rheum. Dis. 75, 124–130. 10.1136/annrheumdis-2014-205877
    1. Qian X., Wang X., Luo J., Liu Y., Pang J., Zhang H., et al. (2019). Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food Funct. 10, 867–878. 10.1039/c8fo02124d
    1. Qiao Y., Wang P., Qi J., Zhang L., Gao C. (2012). TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages. FEBS Lett. 586, 1022–1026. 10.1016/j.febslet.2012.02.045
    1. Qu Y.-L., Dong Z.-Y., Cheng H.-M., Liu Q., Wang Q., Yang H.-T., et al. (2022). Evaluation of renal impairment in patients with diabetic kidney disease by integrated Chinese and western medicine. Chin. J. Integr. Med. 10.1007/s11655-022-3520-0
    1. Quiñones Galvan A., Natali A., Baldi S., Frascerra S., Sanna G., Ciociaro D., et al. (1995). Effect of insulin on uric acid excretion in humans. Am. J. Physiol. 268, E1–E5. 10.1152/ajpendo.1995.268.1.E1
    1. Reimer R. J., Edwards R. H. (2004). Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. 447, 629–635. 10.1007/s00424-003-1087-y
    1. Ren Q., Tao S., Guo F., Wang B., Yang L., Ma L., et al. (2021b). Natural flavonol fisetin attenuated hyperuricemic nephropathy via inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 signaling. Phytomedicine. 87, 153552. 10.1016/j.phymed.2021.153552
    1. Ren Q., Wang B., Guo F., Huang R., Tan Z., Ma L., et al. (2021a). Natural flavonoid pectolinarigenin alleviated hyperuricemic nephropathy via suppressing tgfβ/SMAD3 and JAK2/STAT3 signaling pathways. Front. Pharmacol. 12, 792139. 10.3389/fphar.2021.792139
    1. Riches P. L., Wright A. F., Ralston S. H. (2009). Recent insights into the pathogenesis of hyperuricaemia and gout. Hum. Mol. Genet. 18, R177–R184. 10.1093/hmg/ddp369
    1. Rizwan A. N., Burckhardt G. (2007). Organic anion transporters of the SLC22 family: Biopharmaceutical, physiological, and pathological roles. Pharm. Res. 24, 450–470. 10.1007/s11095-006-9181-4
    1. Saito I., Saruta T., Kondo K., Nakamura R., Oguro T., Yamagami K., et al. (1978). Serum uric acid and the renin-angiotensin system in hypertension. J. Am. Geriatr. Soc. 26, 241–247. 10.1111/j.1532-5415.1978.tb02396.x
    1. Sakiyama M., Matsuo H., Shimizu S., Nakashima H., Nakamura T., Nakayama A., et al. (2016). The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression. Sci. Rep. 6, 20148. 10.1038/srep20148
    1. Sánchez-Lozada L. G., Soto V., Tapia E., Avila-Casado C., Sautin Y. Y., Nakagawa T., et al. (2008). Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am. J. Physiol. Ren. Physiol. 295, F1134–F1141. Renal physiology . 10.1152/ajprenal.00104.2008
    1. Sánchez-Lozada L. G., Tapia E., Santamaría J., Avila-Casado C., Soto V., Nepomuceno T., et al. (2005). Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int. 67, 237–247. 10.1111/j.1523-1755.2005.00074.x
    1. Sánchez-LozadaGabriela L., Lanaspa M. A., Cristóbal-García M., García-Arroyo F., Soto V., Cruz-Robles D., et al. (2012). Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron. Exp. Nephrol. 121, e71–e78. 10.1159/000345509
    1. Sato M., Mamada H., Anzai N., Shirasaka Y., Nakanishi T., Tamai I. (2010). Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human. Biol. Pharm. Bull. 33, 498–503. 10.1248/bpb.33.498
    1. Schlesinger N. (2005). Dietary factors and hyperuricaemia. Curr. Pharm. Des. 11, 4133–4138. 10.2174/138161205774913273
    1. Schwarzschild M. A., Schwid S. R., Marek K., Watts A., Lang A. E., Oakes D., et al. (2008). Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol. 65, 716–723. 10.1001/archneur.2008.65.6.nct70003
    1. Sellmayr M., Hernandez PetzscheRoman M. Ma Q., Krüger N., Liapis H., Brink A., Lenz B., et al. (2020). Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease. J. Am. Soc. Nephrol. 31, 2773–2792. 10.1681/ASN.2020040523
    1. Shang X., Lin K., Yu R., Zhu P., Zhang Y., Wang L., et al. (2019). Resveratrol protects the myocardium in sepsis by activating the phosphatidylinositol 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway and inhibiting the nuclear factor-κb (NF-κB) signaling pathway. Med. Sci. Monit. 25, 9290–9298. 10.12659/MSM.918369
    1. Shi Y., Evans J. E., Rock K. L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425, 516–521. 10.1038/nature01991
    1. Shoji A., Yamanaka H., Kamatani N. (2004). A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: Evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 51, 321–325. 10.1002/art.20405
    1. Smink P. A., Bakker S. J. L., Laverman G. D., Berl T., Cooper M. E., Zeeuw D. D., et al. (2012). An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: A post-hoc analysis of the RENAAL and IDNT trials. J. Hypertens. 30, 1022–1028. 10.1097/HJH.0b013e32835200f9
    1. So A., Thorens B. (2010). Uric acid transport and disease. J. Clin. Invest. 120, 1791–1799. 10.1172/JCI42344
    1. Spatola L., Angelini C., Badalamenti S., Maringhini S., Gambaro G. (2017). Kidney stones diseases and glycaemic statuses: Focus on the latest clinical evidences. Urolithiasis 45, 457–460. 10.1007/s00240-016-0956-8
    1. Spencer H. W., Yarger W. E., Robinson R. R. (1976). Alterations of renal function during dietary-induced hyperuricemia in the rat. Kidney Int. 9, 489–500. 10.1038/ki.1976.63
    1. Srinivas S. R., Gopal E., Zhuang L., Itagaki S., Martin P. M., Fei Y.-J., et al. (2005). Cloning and functional identification of slc5a12 as a sodium-coupled low-affinity transporter for monocarboxylates (SMCT2). Biochem. J. 392, 655–664. 10.1042/BJ20050927
    1. Stamp L. K., Chapman P. T. (2014). Urate-lowering therapy: Current options and future prospects for elderly patients with gout. Drugs Aging 31, 777–786. 10.1007/s40266-014-0214-0
    1. Stamp L., Searle M., O'Donnell J., Chapman P. (2005). Gout in solid organ transplantation: A challenging clinical problem. Drugs 65, 2593–2611. 10.2165/00003495-200565180-00004
    1. Su H.-Y., Yang C., Liang D., Liu H.-F. (2020). Research advances in the mechanisms of hyperuricemia-induced renal injury. Biomed. Res. Int. 2020, 5817348. 10.1155/2020/5817348
    1. Sun P., Zhu J.-J., Wang T., Huang Q., Zhou Y.-R., Yu B.-W., et al. (2018). Benzbromarone aggravates hepatic steatosis in obese individuals. Biochim. Biophys. Acta. Mol. Basis Dis. 1864, 2067–2077. –2077. 10.1016/j.bbadis.2018.03.009
    1. Sweet D. H., Chan L. M. S., Walden R., Yang X.-P., Miller D. S., Pritchard J. B. (2003). Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am. J. Physiol. Ren. Physiol. 284, F763–F769. 10.1152/ajprenal.00405.2002
    1. Taniguchi A., Kamatani N. (2008). Control of renal uric acid excretion and gout. Curr. Opin. Rheumatol. 20, 192–197. 10.1097/BOR.0b013e3282f33f87
    1. Tao X., Yin L., Xu L., Peng J. (2018). Dioscin: A diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharmacol. Res. 137, 259–269. 10.1016/j.phrs.2018.09.022
    1. Terkeltaub R. A. (2003). Clinical practice. Gout. N. Engl. J. Med. 349, 1647–1655. 10.1056/NEJMcp030733
    1. Tin A., Marten J., Halperin Kuhns V. L., Li Y., Wuttke M., Kirsten H., et al. (2019). Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 51, 1459–1474. 10.1038/s41588-019-0504-x
    1. Tin A., Woodward O. M., Hong Linda K. W., Liu C.-T., Lu X., Nalls M. A., et al. (2011). Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Hum. Mol. Genet. 20, 4056–4068. 10.1093/hmg/ddr307
    1. Toma C., Higa N., Koizumi Y., Nakasone N., Ogura Y., McCoy A. J., et al. (2010). Pathogenic Vibrio activate NLRP3 inflammasome via cytotoxins and TLR/nucleotide-binding oligomerization domain-mediated NF-kappa B signaling J. Immunol. 184 Baltimore, Md, 5287–5297. 10.4049/jimmunol.0903536
    1. Toyoda Y., Takada T., Saito H., Hirata H., Ota-Kontani A., Tsuchiya Y., et al. (2022). Soy isoflavone genistein inhibits an axillary osmidrosis risk factor ABCC11: In vitro screening and fractional approach for ABCC11-inhibitory activities in plant extracts and dietary flavonoids. Nutrients 14, E2452. 10.3390/nu12082452
    1. Uetake D., Ohno I., Ichida K., Yamaguchi Y., Saikawa H., Endou H., et al. (2010). Effect of fenofibrate on uric acid metabolism and urate transporter 1. Intern. Med. 49, 89–94. 10.2169/internalmedicine.49.2597
    1. Vitart V., Rudan I., Hayward C., Gray N. K., Floyd J., Palmer C. N. A., et al. (2008). SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat. Genet. 40, 437–442. 10.1038/ng.106
    1. Wallace C., Newhouse S. J., Braund P., Zhang F., Tobin M., Falchi M., et al. (2008). Genome-wide association study identifies genes for biomarkers of cardiovascular disease: Serum urate and dyslipidemia. Am. J. Hum. Genet. 82, 139–149. 10.1016/j.ajhg.2007.11.001
    1. Wang Y.-Z., Zhou C., Zhu L.-J., He X.-L.-S., Li L.-Z., Zheng X., et al. (2022). Effects of macroporous resin extract of Dendrobium officinale leaves in rats with hyperuricemia induced by fructose and potassium oxonate. Comb. Chem. High. Throughput Screen. 25, 1294–1303. 10.2174/1386207324666210528114345
    1. Wang Y., Kong W., Wang L., Zhang T., Huang B., Meng J., et al. (2020). Multiple-purpose connectivity map analysis reveals the benefits of esculetin to hyperuricemia and renal fibrosis. Int. J. Mol. Sci. 21, E7695. 10.3390/ijms21207695
    1. Woodward O. M., Köttgen A., Coresh J., Boerwinkle E., Guggino W. B., Köttgen M. (2009). Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc. Natl. Acad. Sci. U. S. A. 106, 10338–10342. 10.1073/pnas.0901249106
    1. Wu X. W., Muzny D. M., Lee C. C., Caskey C. T. (1992). Two independent mutational events in the loss of urate oxidase during hominoid evolution. J. Mol. Evol. 34, 78–84. 10.1007/BF00163854
    1. Xu X., Wang H., Guo D., Man X., Liu J., Li J., et al. (2021). Curcumin modulates gut microbiota and improves renal function in rats with uric acid nephropathy. Ren. Fail. 43, 1063–1075. 10.1080/0886022X.2021.1944875
    1. Yang C.-Y., Chen C.-H., Deng S.-T., Huang C.-S., Lin Y.-J., Chen Y.-J., et al. (2015). Allopurinol use and risk of fatal hypersensitivity reactions: A nationwide population-based study in taiwan. JAMA Intern. Med. 175, 1550–1557. 10.1001/jamainternmed.2015.3536
    1. Yang H., Wang Y., Jin S., Pang Q., Shan A., Feng X. (2021). Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J. Anim. Physiol. Anim. Nutr. 106 (6), 1306–1320. 10.1111/jpn.13657
    1. Ye B. S., Lee W. W., Ham J. H., Lee J. J., Lee P. H., Sohn Y. H., et al. (2016). Does serum uric acid act as a modulator of cerebrospinal fluid Alzheimer's disease biomarker related cognitive decline? Eur. J. Neurol. 23, 948–957. 10.1111/ene.12969
    1. Ye H.-Y., Jin J., Jin L.-W., Chen Y., Zhou Z.-H., Li Z.-Y. (2017). Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-κB signal pathway. Inflammation 40, 523–529. 10.1007/s10753-016-0498-9
    1. Yoo T. W., Sung K. C., Shin H. S., Kim B. J., Kim B. S., Kang J. H., et al. (2005). Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circ. J. 69, 928–933. 10.1253/circj.69.928
    1. Yu M., Qi B., Xiaoxiang W., Xu J., Liu X. (2017). Baicalein increases cisplatin sensitivity of A549 lung adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed. Pharmacother. = Biomedecine Pharmacother. 90, 677–685. 10.1016/j.biopha.2017.04.001
    1. Zhang D.-M., Li Y.-C., De X., Ding X.-Q., Kong L.-D. (2012). Protection of curcumin against fructose-induced hyperuricaemia and renal endothelial dysfunction involves NO-mediated JAK-STAT signalling in rats. Food Chem. 134, 2184–2193. 10.1016/j.foodchem.2012.04.026
    1. Zhang L., Xie Q., Li X. (2022). Esculetin: A review of its pharmacology and pharmacokinetics. Phytother. Res. 36, 279–298. 10.1002/ptr.7311
    1. Zhang X., Nie Q., Zhang Z., Zhao J., Zhang F., Wang C., et al. (2021). Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol. Med. Rep. 24, 564. 10.3892/mmr.2021.12203
    1. Zhang Y., Jin L., Liu J., Wang W., Yu H., Li J., et al. (2018). Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia. J. Ethnopharmacol. 214, 29–36. 10.1016/j.jep.2017.12.004
    1. Zhao T., Meng Q., Sun Z., Chen Y., Ai W., Zhao Z., et al. (2020). Novel human urate transporter 1 inhibitors as hypouricemic drug candidates with favorable druggability. J. Med. Chem. 63, 10829–10854. 10.1021/acs.jmedchem.0c00223
    1. Zhou X., Zhang B., Zhao X., Lin Y., Wang J., Wang X., et al. (2021). Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food Funct. 12, 5637–5649. 10.1039/d0fo03199b
    1. Zhou Y., Zhang X., Li C., Yuan X., Han L., Li Z., et al. (2018). Research on the pharmacodynamics and mechanism of Fraxini Cortex on hyperuricemia based on the regulation of URAT1 and GLUT9. Biomed. Pharmacother. = Biomedecine Pharmacother. 106, 434–442. 10.1016/j.biopha.2018.06.163
    1. Zhu L., Nang C., Luo F., Pan H., Zhang K., Liu J., et al. (2016). Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol. Behav. 163, 184–192. 10.1016/j.physbeh.2016.04.051

Source: PubMed

3
Abonnieren