Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease

Eirini Dimidi, Selina Rose Cox, Megan Rossi, Kevin Whelan, Eirini Dimidi, Selina Rose Cox, Megan Rossi, Kevin Whelan

Abstract

Fermented foods are defined as foods or beverages produced through controlled microbial growth, and the conversion of food components through enzymatic action. In recent years, fermented foods have undergone a surge in popularity, mainly due to their proposed health benefits. The aim of this review is to define and characterise common fermented foods (kefir, kombucha, sauerkraut, tempeh, natto, miso, kimchi, sourdough bread), their mechanisms of action (including impact on the microbiota), and the evidence for effects on gastrointestinal health and disease in humans. Putative mechanisms for the impact of fermented foods on health include the potential probiotic effect of their constituent microorganisms, the fermentation-derived production of bioactive peptides, biogenic amines, and conversion of phenolic compounds to biologically active compounds, as well as the reduction of anti-nutrients. Fermented foods that have been tested in at least one randomised controlled trial (RCT) for their gastrointestinal effects were kefir, sauerkraut, natto, and sourdough bread. Despite extensive in vitro studies, there are no RCTs investigating the impact of kombucha, miso, kimchi or tempeh in gastrointestinal health. The most widely investigated fermented food is kefir, with evidence from at least one RCT suggesting beneficial effects in both lactose malabsorption and Helicobacter pylori eradication. In summary, there is very limited clinical evidence for the effectiveness of most fermented foods in gastrointestinal health and disease. Given the convincing in vitro findings, clinical high-quality trials investigating the health benefits of fermented foods are warranted.

Keywords: fermented food; kefir; kimchi; kombucha; miso; natto; sauerkraut; sourdough; soy; tempeh.

Conflict of interest statement

E.D. has received an education grant from Alpro, received speaker fees from Yakult and research funding from Nestec Ltd, the Almond Board of California and the International Nut and Dried Fruit Council. M.R. has received speaker fees from Ryvita, Biokult, Symprove and Alpro and research funding from the Almond Board of California and the International Nut and Dried Fruit Council. K.W. has served as a consultant for Danone, has received speaker fees from Alpro and Yakult and research funding from Clasado Biosciences, Nestec Ltd, Almond Board of California and the International Nut and Dried Fruit Council, and is the coinventor of a mobile app to support patients following the low FODMAP diet. SC reports no conflicts of interest.

References

    1. Marco M.L., Heeney D., Binda S., Cifelli C.J., Cotter P.D., Foligné B., Gänzle M., Kort R., Pasin G., Pihlanto A., et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017;44:94–102. doi: 10.1016/j.copbio.2016.11.010.
    1. Rezac S., Kok C.R., Heermann M., Hutkins R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018;9:1785. doi: 10.3389/fmicb.2018.01785.
    1. Yann D., Pauline G. Usefulness of Natural Starters in Food Industry: The Example of Cheeses and Bread. Food Nutr. Sci. 2014;5:1679–1691. doi: 10.4236/fns.2014.517181.
    1. Bove P., Russo P., Capozzi V., Gallone A., Spano G., Fiocco D. Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: Carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol. Res. 2013;168:351–359. doi: 10.1016/j.micres.2013.01.004.
    1. Zhang C., Derrien M., Levenez F., Brazeilles R., Ballal S.A., Kim J., Degivry M.-C., Quéré G., Garault P., Vlieg J.E.T.V.H., et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 2016;10:2235–2245. doi: 10.1038/ismej.2016.13.
    1. Derrien M., Vlieg J.E.V.H. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–366. doi: 10.1016/j.tim.2015.03.002.
    1. Pessione E., Cirrincione S. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines. Front. Microbiol. 2016;7:74. doi: 10.3389/fmicb.2016.00876.
    1. Filannino P., Bai Y., Di Cagno R., Gobbetti M., Gänzle M.G., Di Cagno R. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015;46:272–279. doi: 10.1016/j.fm.2014.08.018.
    1. Salazar N., Gueimonde M., de Los Reyes-Gavilan C.G., Ruas-Madiedo P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Crit. Rev. Food Sci. Nutr. 2016;56:1440–1453. doi: 10.1080/10408398.2013.770728.
    1. Abu-Salem F.M., Mohamed R., Gibriel A., Rasmy N.M.H. Levels of Some Antinutritional Factors in Tempeh Produced From Some Legumes and Jojobas Seeds. Int. Sch. Sci. Res. Innov. 2014;8:296–301.
    1. Laatikainen R., Koskenpato J., Hongisto S., Loponen J., Poussa T., Hillilä M., Korpela R. Randomised clinical trial: Low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Aliment. Pharmacol. Ther. 2016;44:460–470. doi: 10.1111/apt.13726.
    1. McKinley M.C. The nutrition and health benefits of yoghurt. Int. J. Dairy Technol. 2005;58:1–12. doi: 10.1111/j.1471-0307.2005.00180.x.
    1. Aryana K.J., Olson D.W. A 100-Year Review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017;100:9987–10013. doi: 10.3168/jds.2017-12981.
    1. Prado M.R., Blandón L.M., Vandenberghe L.P.S., Rodrigues C., Castro G.R., Thomaz-Soccol V., Soccol C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015;6:422. doi: 10.3389/fmicb.2015.01177.
    1. Coton M., Pawtowski A., Taminiau B., Burgaud G., Deniel F., Coulloumme-Labarthe L., Fall A., Daube G., Coton E. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiol. Ecol. 2017;93:1. doi: 10.1093/femsec/fix048.
    1. Marsh A.J., O’Sullivan O., Hill C., Ross R., Cotter P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 2014;38:171–178. doi: 10.1016/j.fm.2013.09.003.
    1. Ehrmann M., Ludwig W., Schleifer K. Reverse dot blot hybridization: A useful method for the direct identification of lactic acid bacteria in fermented food. FEMS Microbiol. Lett. 1994;117:143–149. doi: 10.1111/j.1574-6968.1994.tb06756.x.
    1. Nielsen E.S., Garnås E., Jensen K.J., Hansen L.H., Olsen P.S., Ritz C., Krych L., Nielsen D.S., Nielsen D.S.S. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation-a pilot study. Food Funct. 2018;9:5323–5335. doi: 10.1039/C8FO00968F.
    1. Eom H.-J., Seo D.M., Han N.S. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 2007;117:61–67. doi: 10.1016/j.ijfoodmicro.2007.02.027.
    1. Patra J.K., Das G., Paramithiotis S., Shin H.-S. Kimchi and Other Widely Consumed Traditional Fermented Foods of Korea: A Review. Front. Microbiol. 2016;7:1493. doi: 10.3389/fmicb.2016.01493.
    1. Jeong S.H., Jung J.Y., Lee S.H., Jin H.M., Jeon C.O. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int. J. Food Microbiol. 2013;164:46–53. doi: 10.1016/j.ijfoodmicro.2013.03.016.
    1. Chang H.-W., Kim K.-H., Nam Y.-D., Roh S.W., Kim M.-S., Jeon C.O., Oh H.-M., Bae J.-W. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2008;126:159–166. doi: 10.1016/j.ijfoodmicro.2008.05.013.
    1. Park K.Y., Jeong J.K., Lee Y.E., Daily J.W., 3rd Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food. 2014;17:6–20. doi: 10.1089/jmf.2013.3083.
    1. Gänzle M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014;37:2–10. doi: 10.1016/j.fm.2013.04.007.
    1. De Vuyst L., Vancanneyt M. Biodiversity and identification of sourdough lactic acid bacteria. Food Microbiol. 2007;24:120–127. doi: 10.1016/j.fm.2006.07.005.
    1. Belloso-Morales G., Hernandez-Sanchez H. Manufacture of a beverage from cheese whey using a "tea fungus" fermentation. Rev. Latinoam. Microbiol. 2003;45:5–11.
    1. Dutta D., Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int. J. Syst. Evol. Microbiol. 2007;57:353–357. doi: 10.1099/ijs.0.64638-0.
    1. Hui W., Hou Q., Cao C., Xu H., Zhen Y., Kwok L., Sun T., Zhang H. Identification of Microbial Profile of Koji Using Single Molecule, Real-Time Sequencing Technology. J. Food Sci. 2017;162:143–1199. doi: 10.1111/1750-3841.13699.
    1. Liu C.-H., Hsu W.-H., Lee F.-L., Liao C.-C. The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol. 1996;13:407–415. doi: 10.1006/fmic.1996.0047.
    1. Mayser P., Fromme S., Leitzmann G., Gründer K. The yeast spectrum of the ‘tea fungus Kombucha’. Mycoses. 1995;38:289–295. doi: 10.1111/j.1439-0507.1995.tb00410.x.
    1. Samson R.A., De Boer E., Van Kooij J.A. Microbiological Quality of Commercial Tempeh in The Netherlands. J. Food Prot. 1987;50:92–94. doi: 10.4315/0362-028X-50.2.92.
    1. Sievers M., Lanini C., Weber A., Schuler-Schmid U., Teuber M. Microbiology and Fermentation Balance in a Kombucha Beverage Obtained from a Tea Fungus Fermentation. Syst. Appl. Microbiol. 1995;18:590–594. doi: 10.1016/S0723-2020(11)80420-0.
    1. Zhou Q., Zang S., Zhao Z., Li X. Dynamic changes of bacterial communities and nitrite character during northeastern Chinese sauerkraut fermentation. Food Sci. Biotechnol. 2018;27:79–85. doi: 10.1007/s10068-017-0279-8.
    1. Lopitz-Otsoa F., Rementeria A., Elguezabal N., Garaizar J. Kefir: A symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam. Micol. 2006;23:67–74. doi: 10.1016/S1130-1406(06)70016-X.
    1. Rosa D.D., Dias M.M.S., Grześkowiak Łukasz M., Reis S.A., Conceição L.L., Peluzio M.D.C.G. Milk kefir: Nutritional, microbiological and health benefits. Nutr. Res. Rev. 2017;30:82–96. doi: 10.1017/S0954422416000275.
    1. Yüksekdağ Z., Beyatli Y., Aslim B. Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic. LWT. 2004;37:663–667. doi: 10.1016/j.lwt.2004.02.004.
    1. Zanirati D.F., Abatemarco M., Sandes S.H.D.C., Nicoli J.R., Nunes Álvaro C., Neumann E. Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anaerobe. 2015;32:70–76. doi: 10.1016/j.anaerobe.2014.12.007.
    1. World Health Organization (WHO) Food and Agriculture Organization of the United Nations (FAO) Milk and Milk Products (CODEX STAN 243-2003) FAO; Rome, Italy: 2011.
    1. De Oliveira Leite A.M., Miguel M.A., Peixoto R.S., Rosado A.S., Silva J.T., Paschoalin V.M. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Braz. J. Microbiol. 2013;44:341–349. doi: 10.1590/S1517-83822013000200001.
    1. Silva K.R., Rodrigues S.A., Filho L.X., Lima A.S. Antimicrobial activity of broth fermented with kefir grains. Appl. Biochem. Biotechnol. 2009;152:316–325. doi: 10.1007/s12010-008-8303-3.
    1. Chifiriuc M.C., Cioaca A.B., Lazăr V. In vitro assay of the antimicrobial activity of kephir against bacterial and fungal strains. Anaerobe. 2011;17:433–435. doi: 10.1016/j.anaerobe.2011.04.020.
    1. Matar C., Valdéz J., Perdigón G., Leblanc J., Leblanc J. Immunomodulating Effects of Peptidic Fractions Issued from Milk Fermented with Lactobacillus helveticus. J. Dairy Sci. 2002;85:2733–2742.
    1. Kwon O.-K., Ahn K.-S., Lee M.-Y., Kim S.-Y., Park B.-Y., Kim M.-K., Lee I.-Y., Oh S.-R., Lee H.-K. Inhibitory effect of kefiran on ovalbumin-induced lung inflammation in a murine model of asthma. Arch. Pharmacal Res. 2008;31:1590–1596. doi: 10.1007/s12272-001-2156-4.
    1. Liu J.R., Chen M.J., Lin C.W. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. J. Agric. Food Chem. 2005;53:2467–2474. doi: 10.1021/jf048934k.
    1. Khoury N., El-Hayek S., Tarras O., El-Sabban M., El-Sibai M., Rizk S. Kefir exhibits antiproliferative and proapoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion. Int. J. Oncol. 2014;45:2117–2127. doi: 10.3892/ijo.2014.2635.
    1. Ozcan A., Kaya N., Atakisi O., Karapehlivan M., Atakisi E., Cenesiz S. Effect of Kefir on the Oxidative Stress Due to Lead in Rats. J. Appl. Anim. Res. 2009;35:91–93. doi: 10.1080/09712119.2009.9706992.
    1. Liu J.R., Wang S.Y., Chen M.J., Chen H.L., Yueh P.Y., Lin C.W. Hypocholesterolaemic effects of milk-kefir and soyamilk-kefir in cholesterol-fed hamsters. Br. J. Nutr. 2006;95:939–946. doi: 10.1079/BJN20061752.
    1. Hadisaputro S., Djokomoeljanto R.R.J., Judiono, Soesatyo M.H.N.E. The effects of oral plain kefir supplementation on proinflammatory cytokine properties of the hyperglycemia Wistar rats induced by streptozotocin. Acta Med. Indones. 2012;44:100–104.
    1. Quirós A., Hernández-Ledesma B., Ramos M., Amigo L., Recio I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy Sci. 2005;88:3480–3487. doi: 10.3168/jds.S0022-0302(05)73032-0.
    1. Santos A., Mauro M.S., Sanchez A., Torres J., Marquina D. The Antimicrobial Properties of Different Strains of Lactobacillus spp. Isolated from Kefir. Syst. Appl. Microbiol. 2003;26:434–437. doi: 10.1078/072320203322497464.
    1. Kim D.H., Jeong D., Kim H., Seo K.H. Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Crit. Rev. Food Sci. Nutr. 2019;59:1782–1793. doi: 10.1080/10408398.2018.1428168.
    1. Jeong D., Kim D.-H., Kang I.-B., Kim H., Song K.-Y., Kim H.-S., Seo K.-H. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct. 2017;8:680–686. doi: 10.1039/C6FO01559J.
    1. Kim D.-H., Chon J.-W., Kim H.-S., Yim J.-H., Kim H., Seo K.-H. Rapid Detection of Lactobacillus kefiranofaciens in Kefir Grain and Kefir Milk Using Newly Developed Real-Time PCR. J. Food Prot. 2015;78:855–858. doi: 10.4315/0362-028X.JFP-14-329.
    1. Maeda H., Zhu X., Omura K., Suzuki S., Kitamura S. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. BioFactors. 2004;22:197–200. doi: 10.1002/biof.5520220141.
    1. Kim D.-H., Kim H., Jeong D., Kang I.-B., Chon J.-W., Kim H.-S., Song K.-Y., Seo K.-H. Kefir alleviates obesity and hepatic steatosis in high-fat diet-fed mice by modulation of gut microbiota and mycobiota: Targeted and untargeted community analysis with correlation of biomarkers. J. Nutr. Biochem. 2017;44:35–43. doi: 10.1016/j.jnutbio.2017.02.014.
    1. Yilmaz I., Dolar M.E., Ozpinar H. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol. 2019;30:242. doi: 10.5152/tjg.2018.18227.
    1. Hertzler S.R., Clancy S.M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 2003;103:582–587. doi: 10.1053/jada.2003.50111.
    1. Ino M., Matsukawa M., Yamaoka Y., Hanada K., Fujii C. Prophylactic Effects of Kefir-Fermented Milk on Constipation among Mentally and Physically Handicapped Persons. J. Probiotics Health. 2015;3:126. doi: 10.4172/2329-8901.1000126.
    1. Maki R., Matsukawa M., Matsuduka A., Hashinaga M., Anai H., Yamaoka Y., Hanada K., Fujii C. Therapeutic effect of lyophilized, Kefir-fermented milk on constipation among persons with mental and physical disabilities. Jpn. J. Nurs. Sci. 2018;15:218–225. doi: 10.1111/jjns.12189.
    1. Turan I., Dedeli O., Bor S., Ilter T. Effects of a kefir supplement on symptoms, colonic transit, and bowel satisfaction score in patients with chronic constipation: A pilot study. Turk. J. Gastroenterol. 2014;25:650–656. doi: 10.5152/tjg.2014.6990.
    1. Bekar O., Yilmaz Y., Gulten M. Kefir Improves the Efficacy and Tolerability of Triple Therapy in Eradicating Helicobacter pylori. J. Med. Food. 2011;14:344–347. doi: 10.1089/jmf.2010.0099.
    1. Merenstein D.J., Foster J., D’Amico F. A randomized clinical trial measuring the influence of kefir on antibiotic-associated diarrhea: The measuring the influence of Kefir (MILK) Study. Arch. Pediatr. Adolesc. Med. 2009;163:750–754. doi: 10.1001/archpediatrics.2009.119.
    1. Vina I., Semjonovs P., Linde R., Denina I. Current Evidence on Physiological Activity and Expected Health Effects of Kombucha Fermented Beverage. J. Med. Food. 2014;17:179–188. doi: 10.1089/jmf.2013.0031.
    1. Dufresne C., Farnworth E. Tea, Kombucha, and health: A review. Food Res. Int. 2000;33:409–421. doi: 10.1016/S0963-9969(00)00067-3.
    1. Fu C., Yan F., Cao Z., Xie F., Lin J. Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storage. Food Sci. Technol. 2014;34:123–126. doi: 10.1590/S0101-20612014005000012.
    1. Gaggìa F., Baffoni L., Galiano M., Nielsen D.S., Jakobsen R.R., Castro-Mejía J.L., Bosi S., Truzzi F., Musumeci F., Dinelli G., et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients. 2018;11:1. doi: 10.3390/nu11010001.
    1. Loncar E., Djuric M., Malbaša R., Kolarov L., Klašnja M. Influence of Working Conditions Upon Kombucha Conducted Fermentation of Black Tea. Food Bioprod. Process. 2006;84:186–192. doi: 10.1205/fbp.04306.
    1. Chen C., Liu B. Changes in major components of tea fungus metabolites during prolonged fermentation. J. Appl. Microbiol. 2000;89:834–839. doi: 10.1046/j.1365-2672.2000.01188.x.
    1. De Filippis F., Troise A.D., Vitaglione P., Ercolini D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol. 2018;73:11–16. doi: 10.1016/j.fm.2018.01.008.
    1. Sreeramulu G., Zhu Y., Knol W. Kombucha Fermentation and Its Antimicrobial Activity. J. Agric. Food Chem. 2000;48:2589–2594. doi: 10.1021/jf991333m.
    1. Greenwalt C.J., Steinkraus K.H., Ledford R.A. Kombucha, the Fermented Tea: Microbiology, Composition, and Claimed Health Effects. J. Food Prot. 2000;63:976–981. doi: 10.4315/0362-028X-63.7.976.
    1. Aloulou A., Hamden K., Elloumi D., Ali M.B., Hargafi K., Jaouadi B., Ayadi F., Elfeki A., Ammar E. Hypoglycemic and antilipidemic properties of kombucha tea in alloxan-induced diabetic rats. BMC Complement. Altern. Med. 2012;12:63. doi: 10.1186/1472-6882-12-63.
    1. Dipti P., Yogesh B., Kain A.K., Pauline T., Anju B., Sairam M., Singh B., Mongia S.S., Kumar G.I.D., Selvamurthy W. Lead induced oxidative stress: Beneficial effects of Kombucha tea. Biomed. Environ. Sci. 2003;16:276–282.
    1. Morshedi A., Dashti M.H., Mosaddegh M.H., Rafati A., Salami A.S. The chronic effect of Kombucha Tea consumption on weight loss in diabetic rats. J. Med. Plants. 2006;1:17–22.
    1. Gharib O.A. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats. Chin. Med. 2009;4:23. doi: 10.1186/1749-8546-4-23.
    1. Yang Z.-W., Ji B., Zhou F., Li B., Luo Y., Yang L., Li T. Hypocholesterolaemic and antioxidant effects of kombucha tea in high-cholesterol fed mice. J. Sci. Food Agric. 2009;89:150–156. doi: 10.1002/jsfa.3422.
    1. Banerjee D., Hassarajani S.A., Maity B., Narayan G., Bandyopadhyay S.K., Chattopadhyay S. Comparative healing property of kombucha tea and black tea against indomethacin-induced gastric ulceration in mice: Possible mechanism of action. Food Funct. 2010;1:284–293. doi: 10.1039/c0fo00025f.
    1. Chakravorty S., Bhattacharya S., Chatzinotas A., Chakraborty W., Bhattacharya D., Gachhui R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 2016;220:63–72. doi: 10.1016/j.ijfoodmicro.2015.12.015.
    1. Martínez Leal J., Valenzuela Suárez L., Jayabalan R., Huerta Oros J., Escalante-Aburto A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-J. Food. 2018;16:390–399. doi: 10.1080/19476337.2017.1410499.
    1. Bhattacharya S., Manna P., Gachhui R., Sil P.C. D-saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-kappaB and PKC signaling. Toxicol. Appl. Pharmacol. 2013;267:16–29. doi: 10.1016/j.taap.2012.12.005.
    1. Wang Y., Ji B., Wu W., Wang R., Yang Z., Zhang D., Tian W. Hepatoprotective effects of kombucha tea: Identification of functional strains and quantification of functional components. J. Sci. Food Agric. 2014;94:265–272. doi: 10.1002/jsfa.6245.
    1. Jayabalan R., Subathradevi P., Marimuthu S., Sathishkumar M., Swaminathan K. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008;109:227–234. doi: 10.1016/j.foodchem.2007.12.037.
    1. Bhattacharya D., Ghosh D., Sarkar S., Karmakar P., Koley H., Gachhui R. Antibacterial activity of polyphenolic fraction of Kombucha against Vibrio cholerae: Targeting cell membrane. Lett. Appl. Microbiol. 2018;66:145–152. doi: 10.1111/lam.12829.
    1. Cetojevic-Simin D.D., Bogdanovic G.M., Cvetkovic D.D., Velicanski A.S. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha. J. BUON. 2008;13:395–401.
    1. Kapp J.M., Sumner W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2019;30:66–70. doi: 10.1016/j.annepidem.2018.11.001.
    1. Raak C., Ostermann T., Boehm K., Molsberger F. Regular Consumption of Sauerkraut and Its Effect on Human Health: A Bibliometric Analysis. Glob. Adv. Heal. Med. 2014;3:12–18. doi: 10.7453/gahmj.2014.038.
    1. Swain M.R., Anandharaj M., Ray R.C., Rani R.P. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014;2014:250424. doi: 10.1155/2014/250424.
    1. Bati V.V., Boyko N.V. The Microbial Diversity and Its Dynamics in the Ethnic Fermented Foods of the Black Sea Region. Mikrobiol. J. 2016;78:53–64. doi: 10.15407/microbiolj78.05.053.
    1. Du R., Ge J., Zhao D., Sun J., Ping W., Song G. Bacterial diversity and community structure during fermentation of Chinese sauerkraut with Lactobacillus casei 11MZ-5-1 by Illumina Miseq sequencing. Lett. Appl. Microbiol. 2018;66:55–62. doi: 10.1111/lam.12824.
    1. Zabat M.A., Sano W.H., Wurster J.I., Cabral D.J., Belenky P. Microbial Community Analysis of Sauerkraut Fermentation Reveals a Stable and Rapidly Established Community. Foods. 2018;7:77. doi: 10.3390/foods7050077.
    1. Touret T., Oliveira M., Semedo-Lemsaddek T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS ONE. 2018;13:e0203501. doi: 10.1371/journal.pone.0203501.
    1. Yu Z., Zhang X., Li S., Li C., Li D., Yang Z. Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J. Microbiol. Biotechnol. 2013;29:489–498. doi: 10.1007/s11274-012-1202-3.
    1. Ge J., Ping W., Song G., Du C., Ling H., Sun X., Gao Y. Paracin 1.7, a bacteriocin produced by Lactobacillus paracasei HD1.7 isolated from Chinese cabbage sauerkraut, a traditional Chinese fermented vegetable food. Acta Microbiol. Sin. 2009;49:609–616.
    1. Krajka-Kuzniak V., Szaefer H., Bartoszek A., Baer-Dubowska W. Modulation of rat hepatic and kidney phase II enzymes by cabbage juices: Comparison with the effects of indole-3-carbinol and phenethyl isothiocyanate. Br. J. Nutr. 2011;105:816–826. doi: 10.1017/S0007114510004526.
    1. Zeng Z., Lin J., Gong D. Identification of Lactic Acid Bacterial Strains with High Conjugated Linoleic Acid-Producing Ability from Natural Sauerkraut Fermentations. J. Food Sci. 2009;74:M154–M158. doi: 10.1111/j.1750-3841.2009.01123.x.
    1. Pariza M.W., Park Y., Cook M.E. The biologically active isomers of conjugated linoleic acid. Prog. Lipid Res. 2001;40:283–298. doi: 10.1016/S0163-7827(01)00008-X.
    1. Den Hartigh L.J. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients. 2019;11:370. doi: 10.3390/nu11020370.
    1. Feng J., Liu P., Yang X., Zhao X. Screening of immunomodulatory and adhesive Lactobacillus with antagonistic activities against Salmonella from fermented vegetables. World J. Microbiol. Biotechnol. 2015;31:1947–1954. doi: 10.1007/s11274-015-1939-6.
    1. Tolonen M., Taipale M., Viander B., Pihlava J.-M., Korhonen H., Ryhänen E.-L. Plant-Derived Biomolecules in Fermented Cabbage. J. Agric. Food Chem. 2002;50:6798–6803. doi: 10.1021/jf0109017.
    1. Devi K.P., Malar D.S., Nabavi S.F., Sureda A., Xiao J., Nabavi S.M., Daglia M. Kaempferol and inflammation: from chemistry to medicine. Pharmacol. Res. 2015;99:1–10. doi: 10.1016/j.phrs.2015.05.002.
    1. Romeo L., Iori R., Rollin P., Bramanti P., Mazzon E. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections. Molecules. 2018;23:624. doi: 10.3390/molecules23030624.
    1. Wang C., Li Q., Wang Y., Feng J., Yao H., Xiao H. Case-control study on risk factors of laryngeal cancer in Heilongjiang province. J. Clin. Otorhinolaryngol. Head Neck Surg. 2011;25:1117–1119.
    1. Zheng W., Blot W.J., Shu X.-O., Gao Y.-T., Ji B.-T., Ziegler R.G., Fraumeni J.F. Diet and Other Risk Factors for Laryngeal Cancer in Shanghai, China. Am. J. Epidemiol. 1992;136:178–191. doi: 10.1093/oxfordjournals.aje.a116484.
    1. Fujisawa T., Shinohara K., Kishimoto Y., Terada A. Effect of miso soup containing Natto on the composition and metabolic activity of the human faecal flora. Microb. Ecol. Health Dis. 2006;18:79–84. doi: 10.1080/08910600600931942.
    1. Kil J.-H., Jung K.-O., Lee H.-S., Hwang I.-K., Kim Y.-J., Park K.-Y. Effects of Kimchi on Stomach and Colon Health of Helicobacter pylori-Infected Volunteers. Prev. Nutr. Food Sci. 2004;9:161–166. doi: 10.3746/jfn.2004.9.2.161.
    1. Mitsui N., Tsukahara M., Murasawa H., Tamura M., Kajimoto O., Nishimura A., Kajimoto Y., Benno Y. Effect of Natto including Bacillus subtilis K-2 (Spore) on defecation and fecal microbiota, and safety of excessive ingestion in healthy volunteers. Jpn. Pharmacol. Ther. 2006;34:135–148.
    1. Jayachandran M., Xu B. An insight into the health benefits of fermented soy products. Food Chem. 2019;271:362–371. doi: 10.1016/j.foodchem.2018.07.158.
    1. Cao Z.-H., Green-Johnson J.M., Buckley N.D., Lin Q.-Y. Bioactivity of soy-based fermented foods: A review. Biotechnol. Adv. 2019;37:223–238. doi: 10.1016/j.biotechadv.2018.12.001.
    1. Nout M., Kiers J. Tempe fermentation, innovation and functionality: Update into the third millenium. J. Appl. Microbiol. 2005;98:789–805. doi: 10.1111/j.1365-2672.2004.02471.x.
    1. Moreno M., Tee L., De Vuyst L., Leisner J., Ley C., Radu S., Rusul G., Vancanneyt M. Microbial analysis of Malaysian tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J. Appl. Microbiol. 2002;92:147–157. doi: 10.1046/j.1365-2672.2002.01509.x.
    1. Sutardi, Buckle K. Characterization of extra- and intracellular phytases from Rhizopus oligosporus used in tempeh production. Int. J. Food Microbiol. 1988;6:67–79. doi: 10.1016/0168-1605(88)90086-4.
    1. Soka S., Suwanto A., Sajuthi D., Rusmana I. Impact of Tempeh Supplementation on Gut Microbiota Composition in Sprague-Dawley Rats. Res. J. Microbiol. 2014;9:189–198.
    1. Kuligowski M., Jasińska-Kuligowska I., Nowak J. Evaluation of bean and soy tempeh influence on intestinal bacteria and estimation of antibacterial properties of bean tempeh. Pol. J. Microbiol. 2013;62:189–194.
    1. Stephanie S., Kirana Ratih N., Soka S., Suwanto A. Effect of Tempeh Supplementation on the Profiles of Human Intestinal Immune System and Gut Microbiota. Microbiol. Indones. 2017;11:2. doi: 10.5454/mi.11.1.2.
    1. Chang C.-T., Hsu C.-K., Chou S.-T., Chen Y.-C., Huang F.-S., Chung Y.-C. Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean usingRhizopus oligosporus. Int. J. Food Sci. Technol. 2009;44:799–806. doi: 10.1111/j.1365-2621.2009.01907.x.
    1. Kuligowski M., Pawłowska K., Jasińska-Kuligowska I., Nowak J. Isoflavone composition, polyphenols content and antioxidative activity of soybean seeds during tempeh fermentation. CyTA-J. Food. 2017;15:27–33. doi: 10.1080/19476337.2016.1197316.
    1. Ahmad A., Ramasamy K., Majeed A.B., Mani V. Enhancement of beta-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm. Biol. 2015;53:758–766. doi: 10.3109/13880209.2014.942791.
    1. Kada S., Yabusaki M., Kaga T., Ashida H., Yoshida K.-I. Identification of Two Major Ammonia-Releasing Reactions Involved in Secondary Natto Fermentation. Biosci. Biotechnol. Biochem. 2008;72:1869–1876. doi: 10.1271/bbb.80129.
    1. Mukund V., Mukund D., Sharma V., Mannarapu M., Alam A. Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. 2017;119:13–22. doi: 10.1016/j.critrevonc.2017.09.004.
    1. Fukutake M., Takahashi M., Ishida K., Kawamura H., Sugimura T., Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 1996;34:457–461. doi: 10.1016/0278-6915(96)87355-8.
    1. Kitagawa M., Shiraishi T., Yamamoto S., Kutomi R., Ohkoshi Y., Sato T., Wakui H., Itoh H., Miyamoto A., Yokota S.-I. Novel antimicrobial activities of a peptide derived from a Japanese soybean fermented food, Natto, against Streptococcus pneumoniae and Bacillus subtilis group strains. AMB Express. 2017;7:127. doi: 10.1186/s13568-017-0430-1.
    1. Wang C., Du M., Zheng D., Kong F., Zu G., Feng Y. Purification and Characterization of Nattokinase from Bacillus subtilis Natto B-12. J. Agric. Food Chem. 2009;57:9722–9729. doi: 10.1021/jf901861v.
    1. Fujita M., Nomura K., Hong K., Ito Y., Asada A., Nishimuro S. Purification and Characterization of a Strong Fibrinolytic Enzyme (Nattokinase) in the Vegetable Cheese Natto, a Popular Soybean Fermented Food in Japan. Biochem. Biophys. Res. Commun. 1993;197:1340–1347. doi: 10.1006/bbrc.1993.2624.
    1. Xu J., Du M., Yang X., Chen Q., Chen H., Lin D.-H. Thrombolytic Effects in vivo of Nattokinase in a Carrageenan-Induced Rat Model of Thrombosis. Acta Haematol. 2014;132:247–253. doi: 10.1159/000360360.
    1. Yatagai C., Maruyama M., Kawahara T., Sumi H. Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiol. Haemost. Thromb. 2008;36:227–232. doi: 10.1159/000252817.
    1. Jang J.-Y., Kim T.-S., Cai J., Kim J., Kim Y., Shin K., Kim K.S., Park S.K., Lee S.-P., Choi E.-K., et al. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation. Lab. Anim. Res. 2013;29:221–225. doi: 10.5625/lar.2013.29.4.221.
    1. Jensen G.S., Lenninger M., Ero M.P., Benson K.F. Consumption of nattokinase is associated with reduced blood pressure and von Willebrand factor, a cardiovascular risk marker: Results from a randomized, double-blind, placebo-controlled, multicenter North American clinical trial. Integr. Blood Pressure Control. 2016;9:95–104. doi: 10.2147/IBPC.S99553.
    1. Kurosawa Y., Nirengi S., Homma T., Esaki K., Ohta M., Clark J.F., Hamaoka T. A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 2015;5:11601. doi: 10.1038/srep11601.
    1. Onda T., Yanagida F., Tsuji M., Shinohara T., Yokotsuka K. Time series analysis of aerobic bacterial flora during Miso fermentation. Lett. Appl. Microbiol. 2003;37:162–168. doi: 10.1046/j.1472-765X.2003.01371.x.
    1. Onda T., Yanagida F., Tsuji M., Shinohara T., Yokotsuka K. Production and purification of a bacteriocin peptide produced by Lactococcus sp. strain GM005, isolated from Miso-paste. Int. J. Food Microbiol. 2003;87:153–159. doi: 10.1016/S0168-1605(03)00063-1.
    1. Onda T., Yanagida F., Uchimura T., Tsuji M., Ogino S., Shinohara T., Yokotsuka K. Widespread distribution of the bacteriocin-producing lactic acid cocci in Miso-paste products. J. Appl. Microbiol. 2002;92:695–705. doi: 10.1046/j.1365-2672.2002.01573.x.
    1. Mano F., Ikeda K., Sato T., Nakayama T., Tanaka D., Joo E., Takahashi Y., Kosugi S., Sekine A., Tabara Y., et al. Reduction in Gastroesophageal Reflux Disease Symptoms Is Associated with Miso Soup Intake in a Population-Based Cross-Sectional Study: The Nagahama Study. J. Nutr. Sci. Vitaminol. 2018;64:367–373. doi: 10.3177/jnsv.64.367.
    1. Adlercreutz C.H., Goldin B.R., Gorbach S.L., Höckerstedt K.A., Watanabe S., Hämäläinen E.K., Markkanen M.H., Mäkelä T.H., Wähälä K.T., Adlercreutz T. Soybean phytoestrogen intake and cancer risk. J. Nutr. 1995;125(Suppl. 3):757s–770s.
    1. Banerjee S., Li Y., Wang Z., Sarkar F.H. MULTI-TARGETED THERAPY OF CANCER BY GENISTEIN. Cancer Lett. 2008;269:226–242. doi: 10.1016/j.canlet.2008.03.052.
    1. Martin P.M., Horwitz K.B., Ryan D.S., McGuire W.L. Phytoestrogen Interaction with Estrogen Receptors in Human Breast Cancer Cells. Endocrinology. 1978;103:1860–1867. doi: 10.1210/endo-103-5-1860.
    1. Kuiper G.G., Lemmen J.G., Carlsson B., Corton J.C., Safe S.H., van der Saag P.T., van der Burg B., Gustafsson J.-A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139:4252–4263. doi: 10.1210/endo.139.10.6216.
    1. Choi Y.H., Lee W.H., Park K.-Y., Zhang L. p53-independent Induction of p21 (WAF1/CIP1), Reduction of Cyclin B1 and G2/M Arrest by the Isoflavone Genistein in Human Prostate Carcinoma Cells. Jpn. J. Cancer Res. 2000;91:164–173. doi: 10.1111/j.1349-7006.2000.tb00928.x.
    1. Li Y., Sarkar F.H. Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin. Cancer Res. 2002;8:2369–2377.
    1. Miękus K., Madeja Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Boil. Lett. 2007;12:348–361. doi: 10.2478/s11658-007-0007-0.
    1. Kaufman P.B., Duke J.A., Brielmann H., Boik J., Hoyt J.E. A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health. J. Altern. Complement. Med. 1997;3:7–12. doi: 10.1089/acm.1997.3.7.
    1. Lee S.Y., Lee S., Lee S., Oh J.Y., Jeon E.J., Ryu H.S., Lee C.H. Primary and secondary metabolite profiling of doenjang, a fermented soybean paste during industrial processing. Food Chem. 2014;165:157–166. doi: 10.1016/j.foodchem.2014.05.089.
    1. Khan M.M.H., Goto R., Kobayashi K., Suzumura S., Nagata Y., Sonoda T., Sakauchi F., Washio M., Mori M. Dietary habits and cancer mortality among middle aged and older Japanese living in hokkaido, Japan by cancer site and sex. Asian Pac. J. Cancer Prev. 2004;5:58–65.
    1. Hoshiyama Y., Sasaba T. A Case-Control Study of Single and Multiple Stomach Cancers in Saitama Prefecture, Japan. Jpn. J. Cancer Res. 1992;83:937–943. doi: 10.1111/j.1349-7006.1992.tb02004.x.
    1. Nomura A., Galanis D.J., Kolonel L.N., Lee J. Intakes of selected foods and beverages and the incidence of gastric cancer among the Japanese residents of Hawaii: A prospective study. Int. J. Epidemiol. 1998;27:173–180.
    1. Key T.J., Sharp G.B., Appleby P.N., Beral V., Goodman M.T., Soda M., Mabuchi K. Soya foods and breast cancer risk: A prospective study in Hiroshima and Nagasaki, Japan. Br. J. Cancer. 1999;81:1248–1256. doi: 10.1038/sj.bjc.6690837.
    1. Cho N., Jhon D., Shin M., Hong Y., Lim H. Effect of garlic concentrations on growth of microorganisms during kimchi fermentation. Korean J. Food Sci. Technol. 1988;20:231–235.
    1. Jeong S.H., Lee H.J., Jung J.Y., Lee S.H., Seo H.-Y., Park W.-S., Jeon C.O. Effects of red pepper powder on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 2013;160:252–259. doi: 10.1016/j.ijfoodmicro.2012.10.015.
    1. Cui M., Kim H.-Y., Lee K.H., Jeong J.-K., Hwang J.-H., Yeo K.-Y., Ryu B.-H., Choi J.-H., Park K.-Y. Antiobesity effects of kimchi in diet-induced obese mice. J. Ethn. Foods. 2015;2:137–144. doi: 10.1016/j.jef.2015.08.001.
    1. Jo S.Y., Choi E.A., Lee J.J., Chang H.C. Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high-cholesterol diet. J. Sci. Food Agric. 2015;95:2750–2756. doi: 10.1002/jsfa.7018.
    1. Han K., Bose S., Wang J.-H., Kim B.-S., Kim M.J., Kim E.-J., Kim H. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 2015;59:1004–1008. doi: 10.1002/mnfr.201400780.
    1. Park J.-S., Joe I., Rhee P.D., Jeong C.-S. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J. Microbiol. 2017;55:304–310. doi: 10.1007/s12275-017-6447-y.
    1. Park K.-B., Kim S.-G., Oh C.-H., Jeon J.-I., Oh S.-H. Gastric Cancer Cell Growth Inhibitory Effects of Cabbage Kimchi by Fermentation and Storage Conditions. Korean J. Food Nutr. 2014;27:692–698. doi: 10.9799/ksfan.2014.27.4.692.
    1. Sim K.H., Han Y.S. Effect of red pepper seed on Kimchi antioxidant activity during fermentation. Food Sci. Biotechnol. 2008;17:295–301.
    1. Kim J., Bang J., Beuchat L.R., Kim H., Ryu J.-H. Controlled fermentation of kimchi using naturally occurring antimicrobial agents. Food Microbiol. 2012;32:20–31. doi: 10.1016/j.fm.2012.05.007.
    1. Park S., Ji Y., Jung H.Y., Park H., Kang J., Choi S.H., Shin H., Hyun C.-K., Kim K.-T., Holzapfel W.H. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl. Microbiol. Biotechnol. 2017;101:1605–1614. doi: 10.1007/s00253-016-7953-2.
    1. Lee K., Choi U., Ji G. Effect of kimchi in intake on the composition of human large intestinal bacteria. Korean J. Food Sci. Technol. 1996;28:981–986.
    1. Kim J., Choi E., Hong Y., Song Y., Han J., Lee S., Han E.S., Kim T.W., Choi I.S., Cho K.K. Changes in Korean Adult Females Intestinal Microbiota Resulting from Kimchi Intake. J. Nutr. Food Sci. 2016;6:4172.
    1. Kim H.-Y., Park K.-Y. Clinical trials of kimchi intakes on the regulation of metabolic parameters and colon health in healthy Korean young adults. J. Funct. Foods. 2018;47:325–333. doi: 10.1016/j.jff.2018.05.052.
    1. Nan H.-M., Park J.-W., Song Y.-J., Yun H.-Y., Park J.-S., Hyun T., Youn S.-J., Kim Y.-D., Kang J.-W., Kim H. Kimchi and soybean pastes are risk factors of gastric cancer. World J. Gastroenterol. 2005;11:3175–3181. doi: 10.3748/wjg.v11.i21.3175.
    1. Woo H.D., Park S., Oh K., Kim H.J., Shin H.R., Moon H.K., Kim J. Diet and cancer risk in the Korean population: A meta- analysis. Asian Pac. J. Cancer Prev. 2014;15:8509–8519. doi: 10.7314/APJCP.2014.15.19.8509.
    1. Kim H.J., Chang W.K., Kim M.K., Lee S.S., Choi B.Y. Dietary factors and gastric cancer in Korea: A case-control study. Int. J. Cancer. 2002;97:531–535. doi: 10.1002/ijc.10111.
    1. Hansen Åse S., Schieberle P. Generation of aroma compounds during sourdough fermentation: Applied and fundamental aspects. Trends Food Sci. Technol. 2005;16:85–94. doi: 10.1016/j.tifs.2004.03.007.
    1. Pontonio E., Di Cagno R., Mahony J., Lanera A., De Angelis M., Van Sinderen D., Gobbetti M. Sourdough authentication: Quantitative PCR to detect the lactic acid bacterial microbiota in breads. Sci. Rep. 2017;7:624. doi: 10.1038/s41598-017-00549-2.
    1. Laatikainen R., Koskenpato J., Hongisto S.-M., Loponen J., Poussa T., Huang X., Sontag-Strohm T., Salmenkari H., Korpela R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients. 2017;9:1215. doi: 10.3390/nu9111215.
    1. Struyf N., Laurent J., Verspreet J., Verstrepen K.J., Courtin C.M. Saccharomyces cerevisiae and Kluyveromyces marxianus Cocultures Allow Reduction of Fermentable Oligo-, Di-, and Monosaccharides and Polyols Levels in Whole Wheat Bread. J. Agric. Food Chem. 2017;65:8704–8713. doi: 10.1021/acs.jafc.7b02793.
    1. Li Y., Liu T., Zhao M., Zhong H., Luo W., Feng F. In vitro and in vivo investigations of probiotic properties of lactic acid bacteria isolated from Chinese traditional sourdough. Appl. Microbiol. Biotechnol. 2019;103:1893–1903. doi: 10.1007/s00253-018-9554-8.
    1. Corsetti A., Settanni L., Van Sinderen D. Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J. Appl. Microbiol. 2004;96:521–534. doi: 10.1111/j.1365-2672.2004.02171.x.
    1. Rizzello C.G., Cassone A., Di Cagno R., Gobbetti M. Synthesis of Angiotensin I-Converting Enzyme (ACE)-Inhibitory Peptides and γ-Aminobutyric Acid (GABA) during Sourdough Fermentation by Selected Lactic Acid Bacteria. J. Agric. Food Chem. 2008;56:6936–6943. doi: 10.1021/jf800512u.
    1. Costabile A., Santarelli S., Claus S.P., Sanderson J., Hudspith B.N., Brostoff J., Ward J.L., Lovegrove A., Shewry P.R., Jones H.E., et al. Effect of Breadmaking Process on In Vitro Gut Microbiota Parameters in Irritable Bowel Syndrome. PLoS ONE. 2014;9:e111225. doi: 10.1371/journal.pone.0111225.
    1. Korem T., Zeevi D., Zmora N., Weissbrod O., Bar N., Lotan-Pompan M., Avnit-Sagi T., Kosower N., Malka G., Rein M., et al. Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses. Cell Metab. 2017;25:1243–1253. doi: 10.1016/j.cmet.2017.05.002.
    1. Genovese D., La Sala C.N., Inglese M., De Rosa T., Schiatti A., Mondelli F., Ercolini D., Polese B., Nicolai E., Verlezza V., et al. Postprandial Gastrointestinal Function Differs after Acute Administration of Sourdough Compared with Brewer’s Yeast Bakery Products in Healthy Adults. J. Nutr. 2018;148:202–208.
    1. Raninen K., Lappi J., Kolehmainen M., Kolehmainen M., Mykkänen H., Poutanen K., Raatikainen O. Diet-derived changes by sourdough-fermented rye bread in exhaled breath aspiration ion mobility spectrometry profiles in individuals with mild gastrointestinal symptoms. Int. J. Food Sci. Nutr. 2017;68:987–996. doi: 10.1080/09637486.2017.1312296.
    1. Di Cagno R., Barbato M., Di Camillo C., Rizzello C.G., De Angelis M., Giuliani G., De Vincenzi M., Gobbetti M., Cucchiara S. Gluten-free Sourdough Wheat Baked Goods Appear Safe for Young Celiac Patients: A Pilot Study. J. Pediatric Gastroenterol. Nutr. 2010;51:777–783. doi: 10.1097/MPG.0b013e3181f22ba4.
    1. Mandile R., Picascia S., Parrella C., Camarca A., Gobbetti M., Greco L., Troncone R., Gianfrani C., Auricchio R. Lack of immunogenicity of hydrolysed wheat flour in patients with coeliac disease after a short-term oral challenge. Aliment. Pharmacol. Ther. 2017;46:440–446. doi: 10.1111/apt.14175.
    1. Wehrle K., Crowe N., Van Boeijen I., Arendt E.K. Screening methods for the proteolytic breakdown of gluten by lactic acid bacteria and enzyme preparations. Eur. Food Res. Technol. 1999;209:428–433. doi: 10.1007/s002170050521.
    1. Engstrom N., Sandberg A.S., Scheers N. Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with alpha2-gliadin or gluten. Nutrients. 2015;7:2134–2144. doi: 10.3390/nu7042134.

Source: PubMed

3
Abonnieren