Why Has Metabolomics So Far Not Managed to Efficiently Contribute to the Improvement of Assisted Reproduction Outcomes? The Answer through a Review of the Best Available Current Evidence

Charalampos Siristatidis, Konstantinos Dafopoulos, Michail Papapanou, Sofoklis Stavros, Abraham Pouliakis, Anna Eleftheriades, Tatiana Sidiropoulou, Nikolaos Vlahos, Charalampos Siristatidis, Konstantinos Dafopoulos, Michail Papapanou, Sofoklis Stavros, Abraham Pouliakis, Anna Eleftheriades, Tatiana Sidiropoulou, Nikolaos Vlahos

Abstract

Metabolomics emerged to give clinicians the necessary information on the competence, in terms of physiology and function, of gametes, embryos, and the endometrium towards a targeted infertility treatment, namely, assisted reproduction techniques (ART). Our minireview aims to investigate the current status of the use of metabolomics in assisted reproduction, the potential flaws in its use, and to propose specific solutions towards the improvement of ART outcomes through the use of the intervention. We used published reports assessing the role of metabolomic investigation of the endometrium, oocytes, and embryos in improving clinical outcomes in women undergoing ART. We initially found that there is no evidence to support that fertility outcomes can be improved through metabolomics profiling. In contrast, it may be helpful for understanding and appraising the nutritional environment of oocytes and embryos. The causes include the different infertility populations, the difference between animals and humans, technical limitations, and the great heterogeneity in the variables employed. Suggested steps include the standardization of variables of the method itself, the universal creation of a panel where all biomarkers are stored concerning specific infertile populations with different phenotypes or etiologies, specific bioinformatics contribution, significant computing power for data processing, and importantly, properly conducted trials.

Keywords: assisted reproductive techniques; biomarkers; diagnosis; follicular fluid; in vitro fertilization; metabolomics.

Conflict of interest statement

M.P. reports a grant from the World Health Organization outside the submitted work. The rest of the authors have nothing to disclose.

Figures

Figure 1
Figure 1
A summary of how a large database of metabolomics biomarkers measured in different IVF populations could potentially elucidate role of metabolomics in IVF and improve IVF outcomes. Abbreviations: IVF, in vitro fertilization, RCTs, randomized controlled trials.

References

    1. Benckendorff J., Kuchar J., Leithäuser F., Zahn M., Möller P. Usefulness of BATF3 Immunohistochemistry in Diagnosing Classical Hodgkin Lymphoma. Diagnostics. 2021;11:1123. doi: 10.3390/diagnostics11061123.
    1. Alexovič M., Sabo J., Longuespée R. Microproteomic sample preparation. Proteomics. 2021;21:e2000318. doi: 10.1002/pmic.202000318.
    1. Schiroli D., Marraccini C., Zanetti E., Ragazzi M., Gianoncelli A., Quartieri E., Gasparini E., Iotti S., Baricchi R., Merolle L. Imbalance of Mg Homeostasis as a Potential Biomarker in Colon Cancer. Diagnostics. 2021;11:727. doi: 10.3390/diagnostics11040727.
    1. Perrucci G.L., Sommariva E., Ricci V., Songia P., D’alessandra Y., Poggio P., Pompilio G., Polvani G., Guarino A. Presence of SARS-CoV-2 Nucleoprotein in Cardiac Tissues of Donors with Negative COVID-19 Molecular Tests. Diagnostics. 2021;11:731. doi: 10.3390/diagnostics11040731.
    1. Sakkas D., Gardner D.K. Noninvasive methods to assess embryo quality. Curr. Opin. Obstet. Gynecol. 2005;17:283–288. doi: 10.1097/01.gco.0000169106.69881.3e.
    1. Wang S.X. The past, present, and future of embryo selection in in vitro fertilization: Frontiers in Reproduction Conference. Yale J. Biol. Med. 2011;84:487.
    1. Vergouw C.G., Kieslinger D.C., Kostelijk E.H., Botros L.L., Schats R., Hompes P.G., Sakkas D., Lambalk C.B. Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: A randomized controlled trial. Hum. Reprod. 2012;27:2304–2311. doi: 10.1093/humrep/des175.
    1. De Mouzon J., Goossens V., Bhattacharya S., Castilla J., Ferraretti A., Korsak V., Kupka M., Nygren K., Nyboe Andersen A. European Ivf-monitoring Consortium ftESoHR, Embryology Assisted reproductive technology in Europe, 2006: Results generated from European registers by ESHRE. Hum. Reprod. 2010;25:1851–1862. doi: 10.1093/humrep/deq124.
    1. Siristatidis C.S., Sertedaki E., Vaidakis D., Varounis C., Trivella M. Metabolomics for improving pregnancy outcomes in women undergoing assisted reproductive technologies. Cochrane Database Syst. Rev. 2017;23:CD011872. doi: 10.1002/14651858.CD011872.pub2.
    1. Yang J., Feng T., Li S., Zhang X., Qian Y. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages. Reprod. Biol. Endocrinol. 2020;18:1–11. doi: 10.1186/s12958-020-00631-x.
    1. Sun T., Lee B., Kinchen J., Wang E.T., Gonzalez T.L., Chan J.L., Rotter J.I., Chen Y.-D.I., Taylor K., Goodarzi M.O. Differences in first-trimester maternal metabolomic profiles in pregnancies conceived from fertility treatments. J. Clin. Endocrinol. Metab. 2019;104:1005–1019. doi: 10.1210/jc.2018-01118.
    1. Sun Z., Song J., Zhang X., Wang A., Guo Y., Yang Y., Wang X., Xu K., Deng J. SWATHHM-Based Metabolomics of Follicular Fluid in Patients Shows That Progesterone Adversely Affects Oocyte Quality. BioMed Res. Int. 2018;2018:1780391. doi: 10.1155/2018/1780391.
    1. Zhang X., Wang T., Song J., Deng J., Sun Z. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod. Biol. Endocrinol. 2020;18:1–8. doi: 10.1186/s12958-020-00599-8.
    1. Ruebel M.L., Piccolo B.D., Mercer K.E., Pack L., Moutos D., Shankar K., Andres A. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. Am. J. Physiol. Endocrinol. Metab. 2019;316:E383–E396. doi: 10.1152/ajpendo.00401.2018.
    1. Ravisankar S., Brooks K.E., Murphy M.J., Redmayne N., Ryu J., Kinchen J.M., Chavez S.L., Hennebold J.D. Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency. Sci. Rep. 2021;11:6506. doi: 10.1038/s41598-021-85704-6.
    1. Nasiri N., Karimian L., Hassani F., Gourabi H., Alipour H., Zolfaghari Z., Eftekhari-Yazdi P. Total Antioxidant Capacity; A Potential Biomarker for Non-Invasive Sex Prediction in Culture Medium of Preimplantation Human Embryos. Cell J. 2019;21:253. doi: 10.22074/cellj.2019.6115.
    1. Castiglione Morelli M.A., Iuliano A., Schettini S.C.A., Petruzzi D., Ferri A., Colucci P., Viggiani L., Ostuni A. Metabolic changes in follicular fluids of patients treated with recombinant versus urinary human chorionic gonadotropin for triggering ovulation in assisted reproductive technologies: A metabolomics pilot study. Arch. Gynecol. Obstet. 2020;302:741–751. doi: 10.1007/s00404-020-05609-z.
    1. Liang B., Gao Y., Xu J., Song Y., Xuan L., Shi T., Wang N., Hou Z., Zhao Y.-L., Huang W.E. Raman profiling of embryo culture medium to identify aneuploid and euploid embryos. Fertil. Steril. 2019;111:753–762. doi: 10.1016/j.fertnstert.2018.11.036.
    1. Huo P., Zhu Y., Liang C., Yao J., Le J., Qin L., Lei X., Zhang S. Non-invasive amino acid profiling of embryo culture medium using HPLC correlates with embryo implantation potential in women undergoing in vitro fertilization. Front. Physiol. 2020;11:405. doi: 10.3389/fphys.2020.00405.
    1. Chen F., Spiessens C., D’Hooghe T., Peeraer K., Carpentier S. Follicular fluid biomarkers for human in vitro fertilization outcome: Proof of principle. Proteome Sci. 2016;14:1–11. doi: 10.1186/s12953-016-0106-9.
    1. Bacchetti T., Morresi C., Vignini A., Tiano L., Orlando P., Montik N., Ciavattini A., Ferretti G. HDL functionality in follicular fluid in normal-weight and obese women undergoing assisted reproductive treatment. J. Assist. Reprod. Genet. 2019;36:1657–1664. doi: 10.1007/s10815-019-01523-9.
    1. Al Rashid K., Taylor A., Lumsden M.A., Goulding N., Lawlor D.A., Nelson S.M. Association of the functional ovarian reserve with serum metabolomic profiling by nuclear magnetic resonance spectroscopy: A cross-sectional study of ~400 women. BMC Med. 2020;18:247. doi: 10.1186/s12916-020-01700-z.
    1. Engel K.M., Baumann S., Rolle-Kampczyk U., Schiller J., von Bergen M., Grunewald S. Metabolomic profiling reveals correlations between spermiogram parameters and the metabolites present in human spermatozoa and seminal plasma. PLoS ONE. 2019;14:e0211679. doi: 10.1371/journal.pone.0211679.
    1. Rivera Egea R., Garrido Puchalt N., Meseguer Escrivá M., Varghese A.C. OMICS: Current and future perspectives in reproductive medicine and technology. J. Hum. Reprod. Sci. 2014;7:73. doi: 10.4103/0974-1208.138857.
    1. Gardner D.K., Wale P.L. Analysis of metabolism to select viable human embryos for transfer. Fertil. Steril. 2013;99:1062–1072. doi: 10.1016/j.fertnstert.2012.12.004.
    1. Allen J., Davey H.M., Broadhurst D., Heald J.K., Rowland J.J., Oliver S.G., Kell D.B. High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat. Biotechnol. 2003;21:692–696. doi: 10.1038/nbt823.
    1. Vergouw C., Heymans M., Hardarson T., Sfontouris I., Economou K., Ahlström A., Rogberg L., Lainas T., Sakkas D., Kieslinger D. No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: Results from an individual patient data meta-analysis. Hum. Reprod. 2014;29:455–461. doi: 10.1093/humrep/det456.
    1. Uyar A., Seli E. Proceedings of the Seminars in Reproductive Medicine. Thieme Medical Publishers; New York, NY, USA: 2014. Metabolomic assessment of embryo viability; pp. 141–152.
    1. Bellver J., Mundi M., Esteban F.J., Mosquera S., Horcajadas J.A. ‘-omics’ technology and human reproduction: Reproductomics. Expert Rev. Obstet. Gynecol. 2012;7:493–506. doi: 10.1586/eog.12.48.
    1. Campisciano G., Iebba V., Zito G., Luppi S., Martinelli M., Fischer L., De Seta F., Basile G., Ricci G., Comar M. Lactobacillus iners and gasseri, Prevotella bivia and HPV Belong to the Microbiological Signature Negatively Affecting Human Reproduction. Microorganisms. 2020;9:39. doi: 10.3390/microorganisms9010039.
    1. Levrero M., Merlino L., Mariani M., Capri O., Pietrangeli D., Schippa S., Guerrieri F. Structural Variations of Vaginal and Endometrial Microbiota: Hints on Female Infertility. Front. Cell. Infect. Microbiol. 2020;10:350. doi: 10.3389/fcimb.2020.00350.
    1. McRae C., Sharma V., Fisher J. Metabolite profiling in the pursuit of biomarkers for IVF outcome: The case for metabolomics studies. Int. J. Reprod. Med. 2013;2013 doi: 10.1155/2013/603167.
    1. Inoue N., Nishida Y., Harada E., Sakai K., Narahara H. GC-MS/MS analysis of metabolites derived from a single human blastocyst. Metabolomics. 2021;17:1–7. doi: 10.1007/s11306-021-01770-x.
    1. Song J., Wang X., Guo Y., Yang Y., Xu K., Wang T., Sa Y., Yuan L., Jiang H., Guo J. Novel high-coverage targeted metabolomics method (SWATHtoMRM) for exploring follicular fluid metabolome alterations in women with recurrent spontaneous abortion undergoing in vitro fertilization. Sci. Rep. 2019;9:10873. doi: 10.1038/s41598-019-47370-7.
    1. Cabello-Pinedo S., Abdulla H., Seth-Smith M.L., Escriba M., Crespo J., Munne S., Horcajadas Almansa J.A. A metabolomics approach to identify aneuploid embryos to increase the effectiveness of ART cycles. [(accessed on 2 June 2020)];Hum. Reprod. 2020 35:I205. Available online: .
    1. Karaer A., Tuncay G., Mumcu A., Dogan B. Metabolomics analysis of follicular fluid in women with ovarian endometriosis undergoing in vitro fertilization. Syst. Biol. Reprod. Med. 2019;65:39–47. doi: 10.1080/19396368.2018.1478469.
    1. Gérard N., Fahiminiya S., Grupen C.G., Nadal-Desbarats L. Reproductive physiology and ovarian folliculogenesis examined via 1H-NMR metabolomics signatures: A comparative study of large and small follicles in three mammalian species (Bos taurus, Sus scrofa domesticus and Equus ferus caballus) Omics J. Int. Biol. 2015;19:31–40. doi: 10.1089/omi.2014.0097.
    1. Asampille G., Cheredath A., Joseph D., Adiga S.K., Atreya H.S. The utility of nuclear magnetic resonance spectroscopy in assisted reproduction. Open Biol. 2020;10:200092. doi: 10.1098/rsob.200092.
    1. Sunde A., Brison D., Dumoulin J., Harper J., Lundin K., Magli M.C., Van den Abbeel E., Veiga A. Time to take human embryo culture seriously. Hum. Reprod. 2016;31:2174–2182. doi: 10.1093/humrep/dew157.
    1. Bodart J.-F., Wieruszeski J.-M., Amniai L., Leroy A., Landrieu I., Rousseau-Lescuyer A., Vilain J.-P., Lippens G. NMR observation of Tau in Xenopus oocytes. J. Mag. Reson. 2008;192:252–257. doi: 10.1016/j.jmr.2008.03.006.
    1. Griffiths W.J., Koal T., Wang Y., Kohl M., Enot D.P., Deigner H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. 2010;49:5426–5445. doi: 10.1002/anie.200905579.
    1. Wishart D.S., Tzur D., Knox C., Eisner R., Guo A.C., Young N., Cheng D., Jewell K., Arndt D., Sawhney S. HMDB: The human metabolome database. Nucl. Acids Res. 2007;35:D521–D526. doi: 10.1093/nar/gkl923.
    1. Smith C.A., O’Maille G., Want E.J., Qin C., Trauger S.A., Brandon T.R., Custodio D.E., Abagyan R., Siuzdak G. METLIN: A metabolite mass spectral database. Ther. Drug Monit. 2005;27:747–751. doi: 10.1097/01.ftd.0000179845.53213.39.
    1. Xue J., Guijas C., Benton H.P., Warth B., Siuzdak G. METLIN MS 2 molecular standards database: A broad chemical and biological resource. Nat. Methods. 2020;17:953–954. doi: 10.1038/s41592-020-0942-5.
    1. Nyamundanda G., Brennan L., Gormley I.C. Probabilistic principal component analysis for metabolomic data. BMC Bioinform. 2010;11:571. doi: 10.1186/1471-2105-11-571.
    1. de Carvalho Rocha W.F., Sheen D.A., Bearden D.W. Classification of samples from NMR-based metabolomics using principal components analysis and partial least squares with uncertainty estimation. Anal. Bioanal. Chem. 2018;410:6305–6319. doi: 10.1007/s00216-018-1240-2.
    1. Dray S., Legendre P., Peres-Neto P.R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM) Ecol. Modell. 2006;196:483–493. doi: 10.1016/j.ecolmodel.2006.02.015.
    1. Van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., Van der Werf M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006;7:142. doi: 10.1186/1471-2164-7-142.
    1. Mager D.E., Abernethy D.R. Use of wavelet and fast Fourier transforms in pharmacodynamics. J. Pharmacol. Exp. Ther. 2007;321:423–430. doi: 10.1124/jpet.106.113183.
    1. Mendez K.M., Broadhurst D.I., Reinke S.N. The application of artificial neural networks in metabolomics: A historical perspective. Metabolomics. 2019;15:1–14. doi: 10.1007/s11306-019-1608-0.
    1. Date Y., Kikuchi J. Application of a deep neural network to metabolomics studies and its performance in determining important variables. Anal. Chem. 2018;90:1805–1810. doi: 10.1021/acs.analchem.7b03795.
    1. Toubiana D., Puzis R., Wen L., Sikron N., Kurmanbayeva A., Soltabayeva A., Wilhelmi M.d.M.R., Sade N., Fait A., Sagi M. Combined network analysis and machine learning allows the prediction of metabolic pathways from tomato metabolomics data. Commun. Biol. 2019;2:1–13. doi: 10.1038/s42003-019-0440-4.
    1. Siristatidis C., Stavros S., Drakeley A., Bettocchi S., Pouliakis A., Drakakis P., Papapanou M., Vlahos N. Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol. Diagnostics. 2021;11:743. doi: 10.3390/diagnostics11050743.
    1. Alonso A., Marsal S., Julià A. Analytical methods in untargeted metabolomics: State of the art in 2015. Front. Bioeng. Biotechnol. 2015;3:23. doi: 10.3389/fbioe.2015.00023.
    1. Cambiaghi A., Ferrario M., Masseroli M. Analysis of metabolomic data: Tools, current strategies and future challenges for omics data integration. Brief. Bioinform. 2017;18:498–510. doi: 10.1093/bib/bbw031.
    1. Sumner L.W., Urbanczyk-Wochniak E., Broeckling C.D. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol. 2007;406:409–436. doi: 10.1007/978-1-59745-535-0_20.

Source: PubMed

3
Abonnieren