Pharmacological Induction of Fetal Hemoglobin in β-Thalassemia and Sickle Cell Disease: An Updated Perspective

Rayan Bou-Fakhredin, Lucia De Franceschi, Irene Motta, Maria Domenica Cappellini, Ali T Taher, Rayan Bou-Fakhredin, Lucia De Franceschi, Irene Motta, Maria Domenica Cappellini, Ali T Taher

Abstract

A significant amount of attention has recently been devoted to the mechanisms involved in hemoglobin (Hb) switching, as it has previously been established that the induction of fetal hemoglobin (HbF) production in significant amounts can reduce the severity of the clinical course in diseases such as β-thalassemia and sickle cell disease (SCD). While the induction of HbF using lentiviral and genome-editing strategies has been made possible, they present limitations. Meanwhile, progress in the use of pharmacologic agents for HbF induction and the identification of novel HbF-inducing strategies has been made possible as a result of a better understanding of γ-globin regulation. In this review, we will provide an update on all current pharmacological inducer agents of HbF in β-thalassemia and SCD in addition to the ongoing research into other novel, and potentially therapeutic, HbF-inducing agents.

Keywords: fetal hemoglobin; globin gene; pharmacological induction; sickle cell disease; β-thalassemia; γ-globin.

Conflict of interest statement

R.B.-F. has nothing to disclose. L.D.F. serves on the advisory board of Novartis, Roche and Vifor. I.M. reports receiving honoraria from Sanofi-Genzyme and Amicus Therapeutics and serves on the advisory boards for Bristol Myers Squibb/Celgene. M.D.C. serves on the advisory boards for Bristol Myers Squibb/Celgene, Sanofi/Genzyme, Agios, Silence Therapeutics, Vertex and Vifor. A.T.T. reports receiving consultancy from Novartis, Bristol Myers Squibb/Celgene, Vifor Pharma, Ionis Pharmaceuticals, Imara and Agios Pharmaceuticals, and research funding from Novartis, Bristol Myers Squibb, Vifor Pharma, Imara and Ionis Pharmaceuticals.

Figures

Figure 1
Figure 1
Summary of all established pharmacological approaches and experimental therapeutic strategies for HbF induction in β-thalassemia and SCD.

References

    1. Taher A.T., Musallam K.M., Cappellini M.D. beta-Thalassemias. N. Engl. J. Med. 2021;384:727–743. doi: 10.1056/NEJMra2021838.
    1. Taher A.T., Weatherall D.J., Cappellini M.D. Thalassaemia. Lancet. 2018;391:155–167. doi: 10.1016/S0140-6736(17)31822-6.
    1. Ware R.E., de Montalembert M., Tshilolo L., Abboud M.R. Sickle cell disease. Lancet. 2017;390:311–323. doi: 10.1016/S0140-6736(17)30193-9.
    1. Sankaran V.G., Orkin S.H. The switch from fetal to adult hemoglobin. Cold Spring Harb. Perspect. Med. 2013;3:a011643. doi: 10.1101/cshperspect.a011643.
    1. Amato A., Cappabianca M.P., Perri M., Zaghis I., Grisanti P., Ponzini D., Di Biagio P. Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: New and known γ- gene mutations associated with hereditary persistence of fetal hemoglobin. Int. J. Lab. Hematol. 2014;36:13–19. doi: 10.1111/ijlh.12094.
    1. Hampl V., Bibova J., Stranak Z., Wu X., Michelakis E.D., Hashimoto K., Archer S.L. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am. J. Physiol. Heart Circ. Physiol. 2002;283:H2440–H2449. doi: 10.1152/ajpheart.01033.2001.
    1. Murji A., Sobel M.L., Hasan L., McLeod A., Waye J.S., Sermer M., Berger H. Pregnancy outcomes in women with elevated levels of fetal hemoglobin. J. Matern. Fetal. Neonatal. Med. 2012;25:125–129. doi: 10.3109/14767058.2011.564241.
    1. Sokolova A., Mararenko A., Rozin A., Podrumar A., Gotlieb V. Hereditary persistence of hemoglobin F is protective against red cell sickling. A case report and brief review. Hematol. Oncol. Stem. Cell Ther. 2019;12:215–219. doi: 10.1016/j.hemonc.2017.09.003.
    1. Alter B.P., Rappeport J.M., Huisman T.H.J., Schroeder W.A., Nathan D.G. Fetal Erythropoiesis Following Bone Marrow Transplantation. Blood. 1976;48:843–853. doi: 10.1182/blood.V48.6.843.843.
    1. Nachbaur D., Kropshofer G., Heitger A., Lätzer K., Glassl H., Ludescher C., Nussbaumer W., Niederwieser D. Phenotypic and functional lymphocyte recovery after CD34+-enriched versus non-T cell-depleted autologous peripheral blood stem cell transplantation. J. Hematother. Stem Cell Res. 2000;9:727–736. doi: 10.1089/15258160050196777.
    1. Liu J.W., Hong T., Qin X., Liang Y.M., Zhang P. Recent advance on genome editing for therapy of beta-hemoglobinopathies. Yi Chuan. 2018;40:95–103. doi: 10.16288/j.yczz.17-215.
    1. Liu N., Hargreaves V.V., Zhu Q., Kurland J.V., Hong J., Kim W., Sher F., Macias-Trevino C., Rogers J.M., Kurita R., et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. 2018;173:430–442.e417. doi: 10.1016/j.cell.2018.03.016.
    1. Thein S.L., Craig J.E. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. Hemoglobin. 1998;22:401–414. doi: 10.3109/03630269809071538.
    1. Steinberg M.H., Forget B.G., Higgs D.R., Weatherall D.J. Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management. Cambridge University Press; New York, NY, USA: 2009.
    1. Steinberg M.H. Fetal hemoglobin in sickle cell anemia. Blood. 2020;136:2392–2400. doi: 10.1182/blood.2020007645.
    1. Steinberg M.H. Fetal Hemoglobin in Sickle Hemoglobinopathies: High HbF Genotypes and Phenotypes. J. Clin. Med. 2020;9:3782. doi: 10.3390/jcm9113782.
    1. Mukherjee M., Rahaman M., Ray S.K., Shukla P.C., Dolai T.K., Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: A review of natural products, conventional and combinatorial therapies. Mol. Biol. Rep. 2022;49:2359–2373. doi: 10.1007/s11033-021-06977-8.
    1. Métais J.-Y., Doerfler P.A., Mayuranathan T., Bauer D.E., Fowler S.C., Hsieh M.M., Katta V., Keriwala S., Lazzarotto C.R., Luk K. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 2019;3:3379–3392. doi: 10.1182/bloodadvances.2019000820.
    1. Magrin E., Miccio A., Cavazzana M. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood J. Am. Soc. Hematol. 2019;134:1203–1213. doi: 10.1182/blood.2019000949.
    1. Walters M.C. Induction of Fetal Hemoglobin by Gene Therapy. Mass Med. Soc. 2021;384:284–285. doi: 10.1056/NEJMe2034338.
    1. Frangoul H., Altshuler D., Cappellini M.D., Chen Y.-S., Domm J., Eustace B.K., Foell J., de la Fuente J., Grupp S., Handgretinger R. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021;384:252–260. doi: 10.1056/NEJMoa2031054.
    1. Samuelson C., Radtke S., Zhu H., Llewellyn M., Fields E., Cook S., Huang M.-L.W., Jerome K.R., Kiem H.-P., Humbert O. Multiplex CRISPR/Cas9 genome editing in hematopoietic stem cells for fetal hemoglobin reinduction generates chromosomal translocations. Mol. Ther. Methods Clin. Dev. 2021;23:507–523. doi: 10.1016/j.omtm.2021.10.008.
    1. Breda L., Motta I., Lourenco S., Gemmo C., Deng W., Rupon J.W., Abdulmalik O.Y., Manwani D., Blobel G.A., Rivella S. Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood J. Am. Soc. Hematol. 2016;128:1139–1143. doi: 10.1182/blood-2016-01-691089.
    1. Deng W., Rupon J.W., Krivega I., Breda L., Motta I., Jahn K.S., Reik A., Gregory P.D., Rivella S., Dean A., et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158:849–860. doi: 10.1016/j.cell.2014.05.050.
    1. Sherkow J.S. Focus: Genome Editing: CRISPR, Patents, and the Public Health. Yale J. Biol. Med. 2017;90:667.
    1. Rigter T., Klein D., Weinreich S.S., Cornel M.C. Moving somatic gene editing to the clinic: Routes to market access and reimbursement in Europe. Eur. J. Hum. Genet. 2021;29:1477–1484. doi: 10.1038/s41431-021-00877-y.
    1. Cornel M.C., Howard H.C., Lim D., Bonham V.L., Wartiovaara K. Moving towards a cure in genetics: What is needed to bring somatic gene therapy to the clinic? Eur. J. Hum. Genet. 2019;27:484–487. doi: 10.1038/s41431-018-0309-x.
    1. Yasara N., Premawardhena A., Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: The role revisited during COVID-19 pandemic. Orphanet J. Rare Dis. 2021;16:114. doi: 10.1186/s13023-021-01757-w.
    1. Lemonne N., Möckesch B., Charlot K., Garnier Y., Waltz X., Lamarre Y., Antoine-Jonville S., Etienne-Julan M., Hardy-Dessources M.-D., Romana M. Effects of hydroxyurea on blood rheology in sickle cell anemia: A two-years follow-up study. Clin. Hemorheol. Microcirc. 2017;67:141–148. doi: 10.3233/CH-170280.
    1. Keikhaei B., Yousefi H., Bahadoram M. Hydroxyurea: Clinical and hematological effects in patients with sickle cell anemia. Glob. J. Health Sci. 2016;8:252. doi: 10.5539/gjhs.v8n3p252.
    1. Ballas S.K., McCarthy W.F., Guo N., Brugnara C., Kling G., Bauserman R.L., Waclawiw M.A. Early detection of response to hydroxyurea therapy in patients with sickle cell anemia. Hemoglobin. 2010;34:424–429. doi: 10.3109/03630269.2010.513638.
    1. Keikhaei B., Yousefi H., Bahadoram M. Clinical and haematological effects of hydroxyurea in β-Thalassemia intermedia patients. J. Clin. Diagn. Res. JCDR. 2015;9:OM01. doi: 10.7860/JCDR/2015/14807.6660.
    1. Chowdhury P.K., Jena R., Chowdhury D. Red Cell Indices as Predictors of Response to Hydroxyurea Therapy in HbE/Beta Thalassaemia Patients. American Society of Hematology; Washington, DC, USA: 2016.
    1. Cisneros G.S., Thein S.L. Research in sickle cell disease: From bedside to bench to bedside. Hemasphere. 2021;5:e584. doi: 10.1097/HS9.0000000000000584.
    1. Italia K.Y., Jijina F.J., Merchant R., Panjwani S., Nadkarni A.H., Sawant P.M., Nair S.B., Ghosh K., Colah R.B. Response to hydroxyurea in β thalassemia major and intermedia: Experience in western India. Clin. Chim. Acta. 2009;407:10–15. doi: 10.1016/j.cca.2009.06.019.
    1. Watanapokasin R., Sanmund D., Winichagoon P., Muta K., Fucharoen S. Hydroxyurea responses and fetal hemoglobin induction in β-thalassemia/HbE patients’ peripheral blood erythroid cell culture. Ann. Hematol. 2006;85:164–169. doi: 10.1007/s00277-005-0049-1.
    1. Watanapokasin Y., Chuncharunee S., Sanmund D., Kongnium W., Winichagoon P., Rodgers G.P., Fucharoen S. In vivo and in vitro studies of fetal hemoglobin induction by hydroxyurea in β-thalassemia/hemoglobin E patients. Exp. Hematol. 2005;33:1486–1492. doi: 10.1016/j.exphem.2005.09.006.
    1. Rigano P., Pecoraro A., Calzolari R., Troia A., Acuto S., Renda D., Pantalone G.R., Maggio A., Marzo R.D. Desensitization to hydroxycarbamide following long-term treatment of thalassaemia intermedia as observed in vivo and in primary erythroid cultures from treated patients. Br. J. Haematol. 2010;151:509–515. doi: 10.1111/j.1365-2141.2010.08397.x.
    1. Singer S.T., Vichinsky E.P., Larkin S., Olivieri N., Sweeters N., Kuypers F.A. Hydroxycarbamide-induced changes in E/beta thalassemia red blood cells. Am. J. Hematol. 2008;83:842–845. doi: 10.1002/ajh.21266.
    1. Musallam K.M., Taher A.T., Cappellini M.D., Sankaran V.G. Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood J. Am. Soc. Hematol. 2013;121:2199–2212. doi: 10.1182/blood-2012-10-408021.
    1. Luchtman-Jones L., Pressel S., Hilliard L., Brown R.C., Smith M.G., Thompson A.A., Lee M.T., Rothman J., Rogers Z.R., Owen W. Effects of hydroxyurea treatment for patients with hemoglobin SC disease. Am. J. Hematol. 2016;91:238–242. doi: 10.1002/ajh.24255.
    1. Di Maggio R., Hsieh M.M., Zhao X., Calvaruso G., Rigano P., Renda D., Tisdale J.F., Maggio A. Chronic administration of hydroxyurea (HU) benefits caucasian patients with sickle-beta thalassemia. Int. J. Mol. Sci. 2018;19:681. doi: 10.3390/ijms19030681.
    1. Voskaridou E., Christoulas D., Bilalis A., Plata E., Varvagiannis K., Stamatopoulos G., Sinopoulou K., Balassopoulou A., Loukopoulos D., Terpos E. The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: Results of a 17-year, single-center trial (LaSHS) Blood J. Am. Soc. Hematol. 2010;115:2354–2363. doi: 10.1182/blood-2009-05-221333.
    1. Platt O.S. Hydroxyurea for the treatment of sickle cell anemia. N. Engl. J. Med. 2008;358:1362–1369. doi: 10.1056/NEJMct0708272.
    1. Tang D.C., Zhu J., Liu W., Chin K., Sun J., Chen L., Hanover J.A., Rodgers G.P. The hydroxyurea-induced small GTP-binding protein SAR modulates gamma-globin gene expression in human erythroid cells. Blood. 2005;106:3256–3263. doi: 10.1182/blood-2003-10-3458.
    1. Zhu J., Chin K., Aerbajinai W., Kumkhaek C., Li H., Rodgers G.P. Hydroxyurea-inducible SAR1 gene acts through the Giα/JNK/Jun pathway to regulate γ-globin expression. Blood J. Am. Soc. Hematol. 2014;124:1146–1156. doi: 10.1182/blood-2013-10-534842.
    1. Hebert N., Rakotoson M.G., Bodivit G., Audureau E., Bencheikh L., Kiger L., Oubaya N., Pakdaman S., Sakka M., Di Liberto G. Individual red blood cell fetal hemoglobin quantification allows to determine protective thresholds in sickle cell disease. Am. J. Hematol. 2020;95:1235–1245. doi: 10.1002/ajh.25937.
    1. Buchanan G.R. “Packaging” of fetal hemoglobin in sickle cell anemia. Blood J. Am. Soc. Hematol. 2014;123:464–465. doi: 10.1182/blood-2013-11-539981.
    1. Steinberg M.H., Chui D.H., Dover G.J., Sebastiani P., Alsultan A. Fetal hemoglobin in sickle cell anemia: A glass half full? Blood J. Am. Soc. Hematol. 2014;123:481–485. doi: 10.1182/blood-2013-09-528067.
    1. Dong M., McGann P.T. Changing the clinical paradigm of hydroxyurea treatment for sickle cell anemia through precision medicine. Clin. Pharmacol. Ther. 2021;109:73–81. doi: 10.1002/cpt.2028.
    1. McGann P.T., Niss O., Dong M., Marahatta A., Howard T.A., Mizuno T., Lane A., Kalfa T.A., Malik P., Quinn C.T. Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia. Am. J. Hematol. 2019;94:871–879. doi: 10.1002/ajh.25510.
    1. Steinberg M.H., McCarthy W.F., Castro O., Ballas S.K., Armstrong F.D., Smith W., Ataga K., Swerdlow P., Kutlar A., DeCastro L. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: A 17.5 year follow-up. Am. J. Hematol. 2010;85:403–408. doi: 10.1002/ajh.21699.
    1. Thomas R., Dulman R., Lewis A., Notarangelo B., Yang E. Prospective longitudinal follow-up of children with sickle cell disease treated with hydroxyurea since infancy. Pediatric Blood Cancer. 2019;66:e27816. doi: 10.1002/pbc.27816.
    1. Green N.S., Manwani D., Qureshi M., Ireland K., Sinha A., Smaldone A.M. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatric Blood Cancer. 2016;63:2146–2153. doi: 10.1002/pbc.26161.
    1. Matte A., Zorzi F., Mazzi F., Federti E., Olivieri O., De Franceschi L. New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr. J. Hematol. Infect. Dis. 2019;11:e2019002. doi: 10.4084/mjhid.2019.002.
    1. Matte A., Cappellini M.D., Iolascon A., Enrica F., De Franceschi L. Emerging drugs in randomized controlled trials for sickle cell disease: Are we on the brink of a new era in research and treatment? Expert. Opin. Investig. Drugs. 2020;29:23–31. doi: 10.1080/13543784.2020.1703947.
    1. De Franceschi L., Cappellini M.D., Olivieri O. Thrombosis and sickle cell disease. Semin. Thromb Hemost. 2011;37:226–236. doi: 10.1055/s-0031-1273087.
    1. De Franceschi L., Corrocher R. Established and experimental treatments for sickle cell disease. Haematologica. 2004;89:348–356.
    1. Lavelle D., Engel J.D., Saunthararajah Y. Fetal hemoglobin induction by epigenetic drugs. Semin Hematol. 2018;55:60–67. doi: 10.1053/j.seminhematol.2018.04.008.
    1. Charache S., Dover G., Smith K., Talbot C.C., Moyer M., Boyer S. Treatment of sickle cell anemia with 5-azacytidine results in increased fetal hemoglobin production and is associated with nonrandom hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc. Natl. Acad. Sci. USA. 1983;80:4842–4846. doi: 10.1073/pnas.80.15.4842.
    1. Olivieri N.F., Saunthararajah Y., Thayalasuthan V., Kwiatkowski J., Ware R.E., Kuypers F.A., Kim H.-Y., Trachtenberg F.L., Vichinsky E.P., Network T.C.R. A pilot study of subcutaneous decitabine in β-thalassemia intermedia. Blood J. Am. Soc. Hematol. 2011;118:2708–2711. doi: 10.1182/blood-2011-03-341909.
    1. Saunthararajah Y., Hillery C.A., Lavelle D., Molokie R., Dorn L., Bressler L., Gavazova S., Chen Y.-H., Hoffman R., DeSimone J. Effects of 5-aza-2′-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102:3865–3870. doi: 10.1182/blood-2003-05-1738.
    1. Koshy M., Dorn L., Bressler L., Molokie R., Lavelle D., Talischy N., Hoffman R., van Overveld W., DeSimone J. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood J. Am. Soc. Hematol. 2000;96:2379–2384.
    1. DeSimone J., Koshy M., Dorn L., Lavelle D., Bressler L., Molokie R., Talischy N. Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood J. Am. Soc. Hematol. 2002;99:3905–3908. doi: 10.1182/blood.V99.11.3905.
    1. Saunthararajah Y., Molokie R., Saraf S., Sidhwani S., Gowhari M., Vara S., Lavelle D., DeSimone J. Clinical effectiveness of decitabine in severe sickle cell disease. Br. J. Haematol. 2008;141:126–129. doi: 10.1111/j.1365-2141.2008.07027.x.
    1. Molokie R., Lavelle D., Gowhari M., Pacini M., Krauz L., Hassan J., Ibanez V., Ruiz M.A., Ng K.P., Woost P. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study. PLoS Med. 2017;14:e1002382. doi: 10.1371/journal.pmed.1002382.
    1. Gilmartin A.G., Groy A., Gore E.R., Atkins C., Long E.R., Montoute M.N., Wu Z., Halsey W., McNulty D.E., Ennulat D. In vitro and in vivo induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor. Haematologica. 2021;106:1979. doi: 10.3324/haematol.2020.248658.
    1. Ronzoni L., Sonzogni L., Fossati G., Modena D., Trombetta E., Porretti L., Cappellini M.D. Modulation of gamma globin genes expression by histone deacetylase inhibitors: An in vitro study. Br. J. Haematol. 2014;165:714–721. doi: 10.1111/bjh.12814.
    1. Weinberg R.S., Ji X., Sutton M., Perrine S., Galperin Y., Li Q., Liebhaber S.A., Stamatoyannopoulos G., Atweh G.F. Butyrate increases the efficiency of translation of gamma-globin mRNA. Blood. 2005;105:1807–1809. doi: 10.1182/blood-2004-02-0454.
    1. de Melo T.R.F., Dulmovits B.M., dos Santos Fernandes G.F., de Souza C.M., Lanaro C., He M., Al Abed Y., Chung M.C., Blanc L., Costa F.F. Synthesis and pharmacological evaluation of pomalidomide derivatives useful for sickle cell disease treatment. Bioorg. Chem. 2021;114:105077. doi: 10.1016/j.bioorg.2021.105077.
    1. Bradner J.E., Mak R., Tanguturi S.K., Mazitschek R., Haggarty S.J., Ross K., Chang C.Y., Bosco J., West N., Morse E. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl. Acad. Sci. USA. 2010;107:12617–12622. doi: 10.1073/pnas.1006774107.
    1. Eckschlager T., Plch J., Stiborova M., Hrabeta J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. 2017;18:1414. doi: 10.3390/ijms18071414.
    1. Mettananda S., Yasara N., Fisher C.A., Taylor S., Gibbons R., Higgs D. Synergistic silencing of α-globin and induction of γ-globin by histone deacetylase inhibitor, vorinostat as a potential therapy for β-thalassaemia. Sci. Rep. 2019;9:11649. doi: 10.1038/s41598-019-48204-2.
    1. Sankaran V.G., Weiss M.J. Anemia: Progress in molecular mechanisms and therapies. Nat. Med. 2015;21:221–230. doi: 10.1038/nm.3814.
    1. Hebbel R.P., Vercellotti G.M., Pace B.S., Solovey A.N., Kollander R., Abanonu C.F., Nguyen J., Vineyard J.V., Belcher J.D., Abdulla F. The HDAC inhibitors trichostatin A and suberoylanilide hydroxamic acid exhibit multiple modalities of benefit for the vascular pathobiology of sickle transgenic mice. Blood J. Am. Soc. Hematol. 2010;115:2483–2490. doi: 10.1182/blood-2009-02-204990.
    1. Junker L.H., Li B., Zhu X., Koti S., Cerbone R.E., Hendrick C.L., Sangerman J., Perrine S., Pace B.S. Novel histone deacetylase inhibitor CT-101 induces γ-globin gene expression in sickle erythroid progenitors with targeted epigenetic effects. Blood Cells Mol. Dis. 2022;93:102626. doi: 10.1016/j.bcmd.2021.102626.
    1. Krivega I., Byrnes C., de Vasconcellos J.F., Lee Y.T., Kaushal M., Dean A., Miller J.L. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping. Blood J. Am. Soc. Hematol. 2015;126:665–672. doi: 10.1182/blood-2015-02-629972.
    1. Renneville A., Van Galen P., Canver M.C., McConkey M., Krill-Burger J.M., Dorfman D.M., Holson E.B., Bernstein B.E., Orkin S.H., Bauer D.E. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood J. Am. Soc. Hematol. 2015;126:1930–1939. doi: 10.1182/blood-2015-06-649087.
    1. Chen X., Skutt-Kakaria K., Davison J., Ou Y.-L., Choi E., Malik P., Loeb K., Wood B., Georges G., Torok-Storb B. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev. 2012;26:2499–2511. doi: 10.1101/gad.200329.112.
    1. Nualkaew T., Khamphikham P., Pongpaksupasin P., Kaewsakulthong W., Songdej D., Paiboonsukwong K., Sripichai O., Engel J.D., Hongeng S., Fucharoen S. UNC0638 induces high levels of fetal hemoglobin expression in β-thalassemia/HbE erythroid progenitor cells. Ann. Hematol. 2020;99:2027–2036. doi: 10.1007/s00277-020-04136-w.
    1. Liu F., Barsyte-Lovejoy D., Li F., Xiong Y., Korboukh V., Huang X.-P., Allali-Hassani A., Janzen W.P., Roth B.L., Frye S.V. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J. Med. Chem. 2013;56:8931–8942. doi: 10.1021/jm401480r.
    1. Dulmovits B.M., Appiah-Kubi A.O., Papoin J., Hale J., He M., Al-Abed Y., Didier S., Gould M., Husain-Krautter S., Singh S.A. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood J. Am. Soc. Hematol. 2016;127:1481–1492. doi: 10.1182/blood-2015-09-667923.
    1. Khamphikham P., Nualkaew T., Pongpaksupasin P., Kaewsakulthong W., Songdej D., Paiboonsukwong K., Engel J.D., Hongeng S., Fucharoen S., Sripichai O. High-level induction of fetal haemoglobin by pomalidomide in β-thalassaemia/HbE erythroid progenitor cells. Br. J. Haematol. 2020;189:e240–e245. doi: 10.1111/bjh.16670.
    1. Aerbajinai W., Zhu J., Gao Z., Chin K., Rodgers G.P. Thalidomide induces γ-globin gene expression through increased reactive oxygen species–mediated p38 MAPK signaling and histone H4 acetylation in adult erythropoiesis. Blood J. Am. Soc. Hematol. 2007;110:2864–2871. doi: 10.1182/blood-2007-01-065201.
    1. Jain M., Chakrabarti P., Dolai T.K., Ghosh P., Mandal P.K., Baul S.N., De R. Comparison of efficacy and safety of thalidomide vs hydroxyurea in patients with Hb E-β thalassemia-a pilot study from a tertiary care Centre of India. Blood Cells Mol. Dis. 2021;88:102544. doi: 10.1016/j.bcmd.2021.102544.
    1. Li X., Hu S., Liu Y., Huang J., Hong W., Xu L., Xu H., Fang J. Efficacy of thalidomide treatment in children with transfusion dependent β-thalassemia: A retrospective clinical study. Front. Pharmacol. Front Pharmacol. 2021;12:722502. doi: 10.3389/fphar.2021.722502.
    1. Chen J.-M., Zhu W.-J., Liu J., Wang G.-Z., Chen X.-Q., Tan Y., Xu W.-W., Qu L.-W., Li J.-Y., Yang H.-J. Safety and efficacy of thalidomide in patients with transfusion-dependent β-thalassemia: A randomized clinical trial. Signal Transduct. Target. Ther. 2021;6:405. doi: 10.1038/s41392-021-00811-0.
    1. Chandra J., Parakh N., Singh N., Sharma S., Goel M., Pemde H. Efficacy and safety of thalidomide in patients with transfusion-dependent thalassemia. Indian Pediatrics. 2021;58:611–616. doi: 10.1007/s13312-021-2254-y.
    1. Yassin A.K. Promising Response to Thalidomide in Symptomatic beta-Thalassemia. Indian J. Hematol. Blood Transfus. 2020;36:337–341. doi: 10.1007/s12288-019-01231-5.
    1. Yang K., Wu Y., Zhou Y., Long B., Lu Q., Zhou T., Wang L., Geng Z., Yin X. Thalidomide for patients with β-thalassemia: A multicenter experience. Mediterr. J. Hematol. Infect. Dis. 2020;12:e2020021. doi: 10.4084/mjhid.2020.021.
    1. Javed R., Radhakrishnan V., Basu S., Chandy M. Challenges in transfusion and the role of Thalidomide in E-β-Thalassemia—A case report. Clin. Case Rep. 2020;8:2208–2210. doi: 10.1002/ccr3.3141.
    1. Nag A., Radhakrishnan V.S., Kumar J., Bhave S., Mishra D.K., Nair R., Chandy M. Thalidomide in patients with transfusion-dependent E-beta thalassemia refractory to hydroxyurea: A single-center experience. Indian J. Hematol. Blood Transfus. 2020;36:399–402. doi: 10.1007/s12288-020-01263-2.
    1. Lu Y., Wei Z., Yang G., Lai Y., Liu R. Investigating the Efficacy and Safety of Thalidomide for Treating Patients With ss-Thalassemia: A Meta-Analysis. Front. Pharmacol. 2021;12:814302. doi: 10.3389/fphar.2021.814302.
    1. Chen J., Zhu W., Cai N., Bu S., Li J., Huang L. Thalidomide induces haematologic responses in patients with beta-thalassaemia. Eur. J. Haematol. 2017;99:437–441. doi: 10.1111/ejh.12955.
    1. Chen Y., Cai N., Lai Y., Xu W., Li J., Huang L., Huang Y., Hu M., Yang H., Chen J. Thalidomide for the Treatment of Thrombocytopenia and Hypersplenism in Patients with Cirrhosis or Thalassemia. Front. Pharmacol. 2020;11:1137. doi: 10.3389/fphar.2020.01137.
    1. Aguilar-Lopez L.B., Delgado-Lamas J.L., Rubio-Jurado B., Perea F.J., Ibarra B. Thalidomide therapy in a patient with thalassemia major. Blood Cells Mol. Dis. 2008;41:136–137. doi: 10.1016/j.bcmd.2008.03.001.
    1. Masera N., Tavecchia L., Capra M., Cazzaniga G., Vimercati C., Pozzi L., Biondi A., Masera G. Optimal response to thalidomide in a patient with thalassaemia major resistant to conventional therapy. Blood Transfus. 2010;8:63–65. doi: 10.2450/2009.0102-09.
    1. Li Y., Ren Q., Zhou Y., Li P., Lin W., Yin X. Thalidomide has a significant effect in patients with thalassemia intermedia. Hematology. 2018;23:50–54. doi: 10.1080/10245332.2017.1354427.
    1. Ren Q., Zhou Y.L., Wang L., Chen Y.S., Ma Y.N., Li P.P., Yin X.L. Clinical trial on the effects of thalidomide on hemoglobin synthesis in patients with moderate thalassemia intermedia. Ann. Hematol. 2018;97:1933–1939. doi: 10.1007/s00277-018-3395-5.
    1. Meiler S.E., Wade M., Kutlar F., Yerigenahally S.D., Xue Y., Moutouh-de Parseval L.A., Corral L.G., Swerdlow P.S., Kutlar A. Pomalidomide augments fetal hemoglobin production without the myelosuppressive effects of hydroxyurea in transgenic sickle cell mice. Blood J. Am. Soc. Hematol. 2011;118:1109–1112. doi: 10.1182/blood-2010-11-319137.
    1. Moutouh-de Parseval L.A., Verhelle D., Glezer E., Jensen-Pergakes K., Ferguson G.D., Corral L.G., Morris C.L., Muller G., Brady H., Chan K. Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells. J. Clin. Investig. 2008;118:248–258. doi: 10.1172/JCI32322.
    1. McArthur J.G., Svenstrup N., Chen C., Fricot A., Carvalho C., Nguyen J., Nguyen P., Parachikova A., Abdulla F., Vercellotti G.M., et al. A novel, highly potent and selective phosphodiesterase-9 inhibitor for the treatment of sickle cell disease. Haematologica. 2020;105:623–631. doi: 10.3324/haematol.2018.213462.
    1. Andemariam B., Bronte L., Gordeuk V., Howard J., Kanter J., Eleftheriou P., Pancham S., Hagar R., Clarke L., Blyden G., et al. The safety, pharmacokinetics & pharmacodynamic effects of IMR-687, a highly selective PDE9 inhibitor, in adults with sickle cell disease: Phase-2a placebo-controlled & open-label extension studies [abstract] Hemasphere. 2021;5:90.
    1. Andemariam B., Mant T., Eleftheriou P., Lugthart S., Bronté-Hall L., Barroso F., Blyden G., Mason J., Barysauskas C.M., Yen J. Treatment with IMR-687, a Highly Selective PDE9 Inhibitor, Increases HbF and Reduces VOCs in Adults with Sickle Cell Disease in a Long-Term, Phase 2a, Open-Label Extension Study. Blood. 2021;138:2046. doi: 10.1182/blood-2021-149536.
    1. Matson D., Xie K., Roth M., Stuart B., Bruno P., Efremov I., Thompson L., Silver S., Moxham C. Ftx-6058 Induces Fetal Hemoglobin Production and Ameliorates Disease Pathology in Sickle Cell Mice. Blood. 2021;138:2018. doi: 10.1182/blood-2021-151426.
    1. Higher FTX-6058 Doses Raise Hemoglobin in Healthy Adults in Trial. Sickle Cell Disease News. 16 December 2021. [(accessed on 15 April 2022)]. Available online:
    1. Shi L., Cui S., Engel J.D., Tanabe O. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat. Med. 2013;19:291–294. doi: 10.1038/nm.3101.
    1. Lee M.G., Wynder C., Schmidt D.M., McCafferty D.G., Shiekhattar R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem. Biol. 2006;13:563–567. doi: 10.1016/j.chembiol.2006.05.004.
    1. Xu J., Bauer D.E., Kerenyi M.A., Vo T.D., Hou S., Hsu Y.J., Yao H., Trowbridge J.J., Mandel G., Orkin S.H. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc. Natl. Acad. Sci. USA. 2013;110:6518–6523. doi: 10.1073/pnas.1303976110.
    1. Neelamegam R., Ricq E.L., Malvaez M., Patnaik D., Norton S., Carlin S.M., Hill I.T., Wood M.A., Haggarty S.J., Hooker J.M. Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem. Neurosci. 2012;3:120–128. doi: 10.1021/cn200104y.
    1. Cui S., Lim K.C., Shi L., Lee M., Jearawiriyapaisarn N., Myers G., Campbell A., Harro D., Iwase S., Trievel R.C., et al. The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood. 2015;126:386–396. doi: 10.1182/blood-2015-02-626259.
    1. Rivers A., Vaitkus K., Ruiz M.A., Ibanez V., Jagadeeswaran R., Kouznetsova T., DeSimone J., Lavelle D. RN-1, a potent and selective lysine-specific demethylase 1 inhibitor, increases γ-globin expression, F reticulocytes, and F cells in a sickle cell disease mouse model. Exp. Hematol. 2015;43:546–553.e543. doi: 10.1016/j.exphem.2015.04.005.
    1. Kaewsakulthong W., Pongpaksupasin P., Nualkaew T., Hongeng S., Fucharoen S., Jearawiriyapaisarn N., Sripichai O. Lysine-specific histone demethylase 1 inhibition enhances robust fetal hemoglobin induction in human beta(0)-thalassemia/hemoglobin E erythroid cells. Hematol. Rep. 2021;13:9215. doi: 10.4081/hr.2021.9215.
    1. Viglietta V., Miller D., Bar-Or A., Phillips J.T., Arnold D.L., Selmaj K., Kita M., Hutchinson M., Yang M., Zhang R., et al. Efficacy of delayed-release dimethyl fumarate in relapsing-remitting multiple sclerosis: Integrated analysis of the phase 3 trials. Ann. Clin. Transl. Neurol. 2015;2:103–118. doi: 10.1002/acn3.148.
    1. Gold R., Arnold D.L., Bar-Or A., Fox R.J., Kappos L., Chen C., Parks B., Miller C. Safety and efficacy of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: 9 years’ follow-up of DEFINE, CONFIRM, and ENDORSE. Ther. Adv. Neurol. Disord. 2020;13:1756286420915005. doi: 10.1177/1756286420915005.
    1. Alroughani R., Huppke P., Mazurkiewicz-Beldzinska M., Blaschek A., Valis M., Aaen G., Pultz J., Peng X., Beynon V. Delayed-Release Dimethyl Fumarate Safety and Efficacy in Pediatric Patients with Relapsing-Remitting Multiple Sclerosis. Front. Neurol. 2020;11:606418. doi: 10.3389/fneur.2020.606418.
    1. Fox R.J., Gold R., Phillips J.T., Okwuokenye M., Zhang A., Marantz J.L. Efficacy and Tolerability of Delayed-release Dimethyl Fumarate in Black, Hispanic, and Asian Patients with Relapsing-Remitting Multiple Sclerosis: Post Hoc Integrated Analysis of DEFINE and CONFIRM. Neurol. Ther. 2017;6:175–187. doi: 10.1007/s40120-017-0077-5.
    1. de Franceschi L., Turrini F., Honczarenko M., Ayi K., Rivera A., Fleming M.D., Law T., Mannu F., Kuypers F.A., Bast A., et al. In vivo reduction of erythrocyte oxidant stress in a murine model of beta-thalassemia. Haematologica. 2004;89:1287–1298.
    1. De Franceschi L., Bertoldi M., Matte A., Santos Franco S., Pantaleo A., Ferru E., Turrini F. Oxidative stress and beta-thalassemic erythroid cells behind the molecular defect. Oxid. Med. Cell Longev. 2013;2013:985210. doi: 10.1155/2013/985210.
    1. Matte A., De Falco L., Iolascon A., Mohandas N., An X., Siciliano A., Leboeuf C., Janin A., Bruno M., Choi S.Y. The interplay between peroxiredoxin-2 and nuclear factor-erythroid 2 is important in limiting oxidative mediated dysfunction in β-thalassemic erythropoiesis. Antioxid. Redox Signal. 2015;23:1284–1297. doi: 10.1089/ars.2014.6237.
    1. Brugnara C., de Franceschi L. Effect of cell age and phenylhydrazine on the cation transport properties of rabbit erythrocytes. J. Cell Physiol. 1993;154:271–280. doi: 10.1002/jcp.1041540209.
    1. Krishnamoorthy S., Pace B., Gupta D., Sturtevant S., Li B., Makala L., Brittain J., Moore N., Vieira B.F., Thullen T., et al. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease. JCI Insight. 2017;2:e96409. doi: 10.1172/jci.insight.96409.
    1. Krishnamoorthy S., Gupta D., Sturtevant S., Li B., Makala L.C., Hobbs W.E., Light D.R., Pace B. Dimethyl fumarate induces fetal hemoglobin in sickle cell disease. Blood. 2015;126:410. doi: 10.1182/blood.V126.23.410.410.
    1. Keleku-Lukwete N., Suzuki M., Otsuki A., Tsuchida K., Katayama S., Hayashi M., Naganuma E., Moriguchi T., Tanabe O., Engel J.D., et al. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation. Proc. Natl. Acad. Sci. USA. 2015;112:12169–12174. doi: 10.1073/pnas.1509158112.
    1. Belcher J.D., Chen C., Nguyen J., Zhang P., Abdulla F., Nguyen P., Killeen T., Xu P., O’Sullivan G., Nath K.A., et al. Control of Oxidative Stress and Inflammation in Sickle Cell Disease with the Nrf2 Activator Dimethyl Fumarate. Antioxid. Redox. Signal. 2017;26:748–762. doi: 10.1089/ars.2015.6571.
    1. Hu T., Chung Y.M., Guan M., Ma M., Ma J., Berek J.S., Hu M.C. Reprogramming ovarian and breast cancer cells into non-cancerous cells by low-dose metformin or SN-38 through FOXO3 activation. Sci. Rep. 2014;4:5810. doi: 10.1038/srep05810.
    1. Takayama H., Misu H., Iwama H., Chikamoto K., Saito Y., Murao K., Teraguchi A., Lan F., Kikuchi A., Saito R., et al. Metformin suppresses expression of the selenoprotein P gene via an AMP-activated kinase (AMPK)/FoxO3a pathway in H4IIEC3 hepatocytes. J. Biol. Chem. 2014;289:335–345. doi: 10.1074/jbc.M113.479386.
    1. Yung M.M., Chan D.W., Liu V.W., Yao K.M., Ngan H.Y. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13:327. doi: 10.1186/1471-2407-13-327.
    1. Zhang Y., Paikari A., Sumazin P., Ginter Summarell C.C., Crosby J.R., Boerwinkle E., Weiss M.J., Sheehan V.A. Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells. Blood. 2018;132:321–333. doi: 10.1182/blood-2017-11-814335.
    1. Han J., Saraf S.L., Molokie R.E., Gordeuk V.R. Use of metformin in patients with sickle cell disease. Am. J. Hematol. 2019;94:E13–E15. doi: 10.1002/ajh.25313.
    1. Badawy S.M., Payne A.B. Association between clinical outcomes and metformin use in adults with sickle cell disease and diabetes mellitus. Blood Adv. 2019;3:3297–3306. doi: 10.1182/bloodadvances.2019000838.
    1. Pace B.S., Perrine S., Li B., Makala L., Xu H., Takezaki M., Wolf R.F., Wang A., Xu X., Huang J., et al. Benserazide racemate and enantiomers induce fetal globin gene expression in vivo: Studies to guide clinical development for beta thalassemia and sickle cell disease. Blood Cells Mol. Dis. 2021;89:102561. doi: 10.1016/j.bcmd.2021.102561.
    1. Dai Y., Sangerman J., Nouraie M., Faller A.D., Oneal P., Rock A., Owoyemi O., Niu X., Nekhai S., Maharaj D., et al. Effects of hydroxyurea on F-cells in sickle cell disease and potential impact of a second fetal globin inducer. Am. J. Hematol. 2017;92:E10–E11. doi: 10.1002/ajh.24590.
    1. Boosalis M.S., Sangerman J.I., White G.L., Wolf R.F., Shen L., Dai Y., White E., Makala L.H., Li B., Pace B.S. Novel inducers of fetal globin identified through high throughput screening (HTS) are active in vivo in anemic baboons and transgenic mice. PLoS ONE. 2015;10:e0144660. doi: 10.1371/journal.pone.0144660.
    1. Dai Y., Sangerman J., Luo H.Y., Fucharoen S., Chui D.H., Faller D.V., Perrine S.P. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms. Blood Cells Mol. Dis. 2016;56:62–69. doi: 10.1016/j.bcmd.2015.10.004.
    1. Santos M.E.H.P., Olops L., Vendrame F., Tavares A.H.J., Leonardo D.P., de Azevedo P.C., Piovesana L.G., Costa F.F., Fertrin K.Y. Benserazide as a potential novel fetal hemoglobin inducer: An observational study in non-carriers of hemoglobin disorders. Blood Cells Mol. Dis. 2021;87:102511. doi: 10.1016/j.bcmd.2020.102511.
    1. Nam T.G., Lee J., Walker J.R., Brinker A., Cho C.Y., Schultz P.G. Identification and characterization of small-molecule inducers of fetal hemoglobin. ChemMedChem. 2011;6:777–780. doi: 10.1002/cmdc.201000505.
    1. Lai Z.S., Yeh T.K., Chou Y.C., Hsu T., Lu C.T., Kung F.C., Hsieh M.Y., Lin C.H., Chen C.T., James Shen C.K., et al. Potent and orally active purine-based fetal hemoglobin inducers for treating beta-thalassemia and sickle cell disease. Eur. J. Med. Chem. 2021;209:112938. doi: 10.1016/j.ejmech.2020.112938.
    1. Elion G. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol. 1993;41((Suppl. 1)):2–6. doi: 10.1002/jmv.1890410503.
    1. Ali H., Khan F., Musharraf S.G. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors. Biochem. Pharmacol. 2021;190:114612. doi: 10.1016/j.bcp.2021.114612.
    1. Khan F., Ali H., Musharraf S.G. Tenofovir disoproxil fumarate induces fetal hemoglobin production in K562 cells and beta-YAC transgenic mice: A therapeutic approach for gamma-globin induction. Exp. Cell Res. 2020;394:112168. doi: 10.1016/j.yexcr.2020.112168.
    1. Liu Y., Shakur Y., Yoshitake M., Kambayashi J.i. Cilostazol (Pletal®): A dual inhibitor of cyclic nucleotide phosphodiesterase type 3 and adenosine uptake. Cardiovasc. Drug Rev. 2001;19:369–386. doi: 10.1111/j.1527-3466.2001.tb00076.x.
    1. Ali H., Khan F., Musharraf S.G. Cilostazol-mediated reversion of γ-globin silencing is associated with a high level of HbF production: A potential therapeutic candidate for β-globin disorders. Biomed. Pharmacother. 2021;142:112058. doi: 10.1016/j.biopha.2021.112058.
    1. Hahn C.K., Lowrey C.H. Eukaryotic initiation factor 2alpha phosphorylation mediates fetal hemoglobin induction through a post-transcriptional mechanism. Blood. 2013;122:477–485. doi: 10.1182/blood-2013-03-491043.
    1. Chen J.J., Perrine S. Stressing HbF synthesis: Role of translation? Blood. 2013;122:467–468. doi: 10.1182/blood-2013-06-506139.
    1. Boyce M., Bryant K.F., Jousse C., Long K., Harding H.P., Scheuner D., Kaufman R.J., Ma D., Coen D.M., Ron D., et al. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005;307:935–939. doi: 10.1126/science.1101902.
    1. Chen F., Xing C., Zhang W., Li J., Hu T., Li L., Li H., Cai Y. Salubrinal, a novel inhibitor of eIF-2alpha dephosphorylation, promotes erythropoiesis at early stage targeted by ufmylation pathway. J. Cell Physiol. 2019;234:18560–18570. doi: 10.1002/jcp.28493.
    1. Lopez N.H., Li B., Palani C., Siddaramappa U., Takezaki M., Xu H., Zhi W., Pace B.S. Salubrinal induces fetal hemoglobin expression via the stress-signaling pathway in human sickle erythroid progenitors and sickle cell disease mice. PLoS ONE. 2022;17:e0261799. doi: 10.1371/journal.pone.0261799.
    1. Sun Y., Habara A., Le C.Q., Nguyen N., Chen R., Murphy G.J., Chui D.H.K., Steinberg M.H., Cui S. Pharmacologic induction of PGC-1alpha stimulates fetal haemoglobin gene expression. Br. J. Haematol. 2022;197:97–109. doi: 10.1111/bjh.18042.

Source: PubMed

3
Abonnieren