Intestinal Flora: A Potential New Regulator of Cardiovascular Disease

Yifei Zou, Xianjing Song, Ning Liu, Wei Sun, Bin Liu, Yifei Zou, Xianjing Song, Ning Liu, Wei Sun, Bin Liu

Abstract

Although substantial progress has been made in reducing the burden of the disease by preventing the risk factors of cardiovascular disease (CVD), potential risk factors still exist and lead to its progression. In recent years, numerous studies have revealed that intestinal flora can interfere with the physiological processes of the host through changes in composition and function or related metabolites. Intestinal flora thus affects the occurrence and development of a variety of CVDs, including atherosclerosis, ischemic heart disease, and heart failure. Moreover, studies have found that interventions for intestinal flora and its metabolites provide new opportunities for CVD treatment. This article mainly discusses the interaction between the human intestinal flora and its metabolites, the occurrence and development of CVD, and the potential of intestinal flora as a new target for the diagnosis and treatment of CVD.

Keywords: Intestinal flora; cardiovascular disease; diagnosis; therapy.

Conflict of interest statement

Conflicts of interest The authors declare no conflict of interest.

Copyright: © 2022 Zou et al.

Figures

Figure1.
Figure1.
The role of intestinal microbiota in cardiovascular diseases.

References

    1. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, et al.. (2017). Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res, 121:677-694.
    1. Mensah GA, Roth GA, Fuster V (2019). The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. J Am Coll Cardiol, 74:2529-2532.
    1. Sittipo P, Lobionda S, Lee YK, Maynard CL (2018). Intestinal microbiota and the immune system in metabolic diseases. J Microbiol, 56:154-162.
    1. Spielman LJ, Gibson DL, Klegeris A (2018). Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int, 120:149-163.
    1. Dong LN, Wang M, Guo J, Wang JP (2019). Role of intestinal microbiota and metabolites in inflammatory bowel disease. Chin Med J (Engl), 132:1610-1614.
    1. Tang WH, Kitai T, Hazen SL (2017). Gut Microbiota in Cardiovascular Health and Disease. Circ Res, 120:1183-1196.
    1. Zhou X, Li J, Guo J, Geng B, Ji W, Zhao Q, et al.. (2018). Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 6:66.
    1. Gencer B, Li XS, Gurmu Y, Bonaca MP, Morrow DA, Cohen M, et al.. (2020). Gut Microbiota-Dependent Trimethylamine N-oxide and Cardiovascular Outcomes in Patients With Prior Myocardial Infarction: A Nested Case Control Study From the PEGASUS-TIMI 54 Trial. J Am Heart Assoc, 9:e015331.
    1. Zhou Y, Xu H, Xu J, Guo X, Zhao H, Chen Y, et al.. (2021). F. prausnitzii and its supernatant increase SCFAs-producing bacteria to restore gut dysbiosis in TNBS-induced colitis. AMB Express, 11:33.
    1. Witkowski M, Weeks TL, Hazen SL (2020). Gut Microbiota and Cardiovascular Disease. Circ Res, 127:553-570.
    1. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, et al.. (2017). The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev, 81.
    1. Adak A, Khan MR (2019). An insight into gut microbiota and its functionalities. Cell Mol Life Sci, 76:473-493.
    1. Chen W, Zhang S, Wu J, Ye T, Wang S, Wang P, et al.. (2020). Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta, 507:236-241.
    1. Wang X, Quinn PJ (2010). Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res, 49:97-107.
    1. Moludi J, Maleki V, Jafari-Vayghyan H, Vaghef-Mehrabany E, Alizadeh M (2020). Metabolic endotoxemia and cardiovascular disease: A systematic review about potential roles of prebiotics and probiotics. Clin Exp Pharmacol Physiol, 47:927-939.
    1. Makrecka-Kuka M, Korzh S, Vilks K, Vilskersts R, Cirule H, Dambrova M, et al.. (2019). Mitochondrial Function in the Kidney and Heart, but Not the Brain, is Mainly Altered in an Experimental Model of Endotoxaemia. Shock, 52:e153-e162.
    1. Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, et al.. (2020). Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science, 370:364-368.
    1. Makrecka-Kuka M, Korzh S, Videja M, Vilskersts R, Sevostjanovs E, Zharkova-Malkova O, et al.. (2020). Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. J Cell Mol Med, 24:11903-11911.
    1. Lu Z, Li Y, Brinson CW, Lopes-Virella MF, Huang Y (2017). Cooperative stimulation of atherogenesis by lipopolysaccharide and palmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis, 265:231-241.
    1. Carnevale R, Sciarretta S, Valenti V, di Nonno F, Calvieri C, Nocella C, et al.. (2020). Low-grade endotoxaemia enhances artery thrombus growth via Toll-like receptor 4: implication for myocardial infarction. Eur Heart J, 41:3156-3165.
    1. Nicoletti A, Ponziani FR, Biolato M, Valenza V, Marrone G, Sganga G, et al.. (2019). Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol, 25:4814-4834.
    1. Wadowski PP, Weikert C, Pultar J, Lee S, Eichelberger B, Koppensteiner R, et al.. (2020). Ticagrelor Inhibits Toll-Like and Protease-Activated Receptor Mediated Platelet Activation in Acute Coronary Syndromes. Cardiovasc Drugs Ther, 34:53-63.
    1. Tunjungputri RN, van der Ven AJ, Riksen N, Rongen G, Tacke S, van den Berg TN, et al.. (2015). Differential effects of platelets and platelet inhibition by ticagrelor on TLR2- and TLR4-mediated inflammatory responses. Thromb Haemost, 113:1035-1045.
    1. Manor O, Zubair N, Conomos MP, Xu X, Rohwer JE, Krafft CE, et al.. (2018). A Multi-omic Association Study of Trimethylamine N-Oxide. Cell Rep, 24:935-946.
    1. Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu WK, Orekhov AN (2020). A Novel Insight at Atherogenesis: The Role of Microbiome. Front Cell Dev Biol, 8:586189.
    1. Kinugasa Y, Nakamura K, Kamitani H, Hirai M, Yanagihara K, Kato M, et al.. (2021). Trimethylamine N-oxide and outcomes in patients hospitalized with acute heart failure and preserved ejection fraction. ESC Heart Fail, 8:2103-2110.
    1. Zhang WQ, Wang YJ, Zhang A, Ding YJ, Zhang XN, Jia QJ, et al.. (2021). TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. [J] Cardiovasc Transl Res.
    1. Heyse M, Schneider C, Monostori P, Schwarz KV, Hauke J, Druschler K, et al.. (2021). Trimethylamine-N-Oxide Levels Are Similar in Asymptomatic vs. Symptomatic Cerebrovascular Atherosclerosis. Front Neurol, 12:617944.
    1. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, et al.. (2015). Dysbiosis of Gut Microbiota With Reduced Trimethylamine-N-Oxide Level in Patients With Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc, 4.
    1. Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, Gu X, et al.. (2019). l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest, 129:373-387.
    1. Haghikia A, Li XS, Liman TG, Bledau N, Schmidt D, Zimmermann F, et al.. (2018). Gut Microbiota-Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arterioscler Thromb Vasc Biol, 38:2225-2235.
    1. Croci S, D'Apolito LI, Gasperi V, Catani MV, Savini I (2021). Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 13.
    1. Cho J, Park YJ, Gonzales-Portillo B, Saft M, Cozene B, Sadanandan N, et al.. (2021). Gut dysbiosis in stroke and its implications on Alzheimer's disease-like cognitive dysfunction. CNS Neurosci Ther, 27:505-514.
    1. Zhu W, Wang Z, Tang WHW, Hazen SL (2017). Gut Microbe-Generated Trimethylamine N-Oxide From Dietary Choline Is Prothrombotic in Subjects. Circulation, 135:1671-1673.
    1. Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X, et al.. (2018). Microbial Transplantation With Human Gut Commensals Containing CutC Is Sufficient to Transmit Enhanced Platelet Reactivity and Thrombosis Potential. Circ Res, 123:1164-1176.
    1. Murga-Garrido SM, Hong Q, Cross TL, Hutchison ER, Han J, Thomas SP, et al.. (2021). Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome, 9:117.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al.. (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472:57-63.
    1. Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM, et al.. (2018). Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost, 16:1857-1872.
    1. Wang Z, Zhao Y (2018). Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell, 9:416-431.
    1. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al.. (2017). A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature, 551:648-652.
    1. Xu X, Lu WJ, Shi JY, Su YL, Liu YC, Wang L, et al.. (2021). The gut microbial metabolite phenylacetylglycine protects against cardiac injury caused by ischemia/reperfusion through activating beta2AR. Arch Biochem Biophys, 697:108720.
    1. Hu X, Li H, Zhao X, Zhou R, Liu H, Sun Y, et al.. (2021). Multi-omics study reveals that statin therapy is associated with restoration of gut microbiota homeostasis and improvement in outcomes in patients with acute coronary syndrome. Theranostics, 11:5778-5793.
    1. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM, et al.. (2020). A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell, 180:862-877 e822.
    1. Witte KK, Drozd M, Walker AMN, Patel PA, Kearney JC, Chapman S, et al.. (2018). Mortality Reduction Associated With beta-Adrenoceptor Inhibition in Chronic Heart Failure Is Greater in Patients With Diabetes. Diabetes Care, 41:136-142.
    1. Chen XF, Chen X, Tang X (2020). Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci (Lond), 134:657-676.
    1. Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M (2020). Free Fatty Acid Receptors in Health and Disease. Physiol Rev, 100:171-210.
    1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 16:461-478.
    1. Kaye DM, Shihata WA, Jama HA, Tsyganov K, Ziemann M, Kiriazis H, et al.. (2020). Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 141:1393-1403.
    1. Li YJ, Chen X, Kwan TK, Loh YW, Singer J, Liu Y, et al.. (2020). Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J Am Soc Nephrol, 31:1267-1281.
    1. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al.. (2015). Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun, 6:6734.
    1. Luo QJ, Sun MX, Guo YW, Tan SW, Wu XY, Abassa KK, et al.. (2021). Sodium butyrate protects against lipopolysaccharide-induced liver injury partially via the GPR43/ beta-arrestin-2/NF-kappaB network. Gastroenterol Rep (Oxf), 9:154-165.
    1. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016). From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 165:1332-1345.
    1. Chen L, He FJ, Dong Y, Huang Y, Wang C, Harshfield GA, et al.. (2020). Modest Sodium Reduction Increases Circulating Short-Chain Fatty Acids in Untreated Hypertensives: A Randomized, Double-Blind, Placebo-Controlled Trial. Hypertension, 76:73-79.
    1. Li L, Zhong SJ, Hu SY, Cheng B, Qiu H, Hu ZX (2021). Changes of gut microbiome composition and metabolites associated with hypertensive heart failure rats. BMC Microbiol, 21:141.
    1. Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T, et al.. (2018). Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation, 138:2486-2498.
    1. Moss JW, Ramji DP (2016). Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem, 8:1317-1330.
    1. Schoeler M, Caesar R (2019). Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord, 20:461-472.
    1. Forkosh E, Ilan Y (2019). The heart-gut axis: new target for atherosclerosis and congestive heart failure therapy. Open Heart, 6:e000993.
    1. Kasahara K, Tanoue T, Yamashita T, Yodoi K, Matsumoto T, Emoto T, et al.. (2017). Commensal bacteria at the crossroad between cholesterol homeostasis and chronic inflammation in atherosclerosis. J Lipid Res, 58:519-528.
    1. Brandsma E, Kloosterhuis NJ, Koster M, Dekker DC, Gijbels MJJ, van der Velden S, et al.. (2019). A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ Res, 124:94-100.
    1. Liu X, Xie Z, Sun M, Wang X, Li J, Cui J, et al.. (2018). Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography. Int J Cardiol, 265:18-23.
    1. Bogiatzi C, Gloor G, Allen-Vercoe E, Reid G, Wong RG, Urquhart BL, et al.. (2018). Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis, 273:91-97.
    1. Winther SA, Ollgaard JC, Hansen TW, von Scholten BJ, Reinhard H, Ahluwalia TS, et al.. (2021). Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria. PLoS One, 16:e0244402.
    1. Heianza Y, Ma W, DiDonato JA, Sun Q, Rimm EB, Hu FB, et al.. (2020). Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J Am Coll Cardiol, 75:763-772.
    1. Ke Y, Li D, Zhao M, Liu C, Liu J, Zeng A, et al.. (2018). Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med, 116:88-100.
    1. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, et al.. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun, 8:845.
    1. Gao J, Yan KT, Wang JX, Dou J, Wang J, Ren M, et al.. (2020). Gut microbial taxa as potential predictive biomarkers for acute coronary syndrome and post-STEMI cardiovascular events. Sci Rep, 10:2639.
    1. Wasserman AH, Venkatesan M, Aguirre A (2020). Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells, 9.
    1. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T (2021). The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes, 13:1-22.
    1. Garcia-Montero C, Fraile-Martinez O, Gomez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, et al.. (2021). Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients, 13.
    1. Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, et al.. (2019). Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair. Circulation, 139:647-659.
    1. Kong C, Li SM, Yang H, Xiao WD, Cen YY, Wu Y, et al.. (2019). Screening and combining serum biomarkers to improve their diagnostic performance in the detection of intestinal barrier dysfunction in patients after major abdominal surgery. Ann Transl Med, 7:388.
    1. Fatima T, Hashmi S, Iqbal A, Siddiqui AJ, Sami SA, Basir N, et al.. (2019). Untargeted metabolomic analysis of coronary artery disease patients with diastolic dysfunction show disturbed oxidative pathway. Metabolomics, 15:98.
    1. Heo GS, Kopecky B, Sultan D, Ou M, Feng G, Bajpai G, et al.. (2019). Molecular Imaging Visualizes Recruitment of Inflammatory Monocytes and Macrophages to the Injured Heart. Circ Res, 124:881-890.
    1. Tang WHW, Li DY, Hazen SL (2019). Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol, 16:137-154.
    1. Matsuzawa Y, Nakahashi H, Konishi M, Sato R, Kawashima C, Kikuchi S, et al.. (2019). Microbiota-derived Trimethylamine N-oxide Predicts Cardiovascular Risk After STEMI. Sci Rep, 9:11647.
    1. Yang W, Zhang S, Zhu J, Jiang H, Jia D, Ou T, et al.. (2019). Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis. J Mol Cell Cardiol, 134:119-130.
    1. Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, et al.. (2018). Pepducin-mediated cardioprotection via beta-arrestin-biased beta2-adrenergic receptor-specific signaling. Theranostics, 8:4664-4678.
    1. Mendez-Bailon M, Jimenez-Garcia R, Hernandez-Barrera V, Miguel-Diez J, Miguel-Yanes JM, Munoz-Rivas N, et al.. (2020). Heart Failure Is a Risk Factor for Suffering and Dying of Clostridium difficile Infection. Results of a 15-Year Nationwide Study in Spain. J Clin Med, 9.
    1. Videja M, Vilskersts R, Korzh S, Cirule H, Sevostjanovs E, Dambrova M, et al.. (2020). Microbiota-Derived Metabolite Trimethylamine N-Oxide Protects Mitochondrial Energy Metabolism and Cardiac Functionality in a Rat Model of Right Ventricle Heart Failure. Front Cell Dev Biol, 8:622741.
    1. Heianza Y, Ma W, Manson JE, Rexrode KM, Qi L (2017). Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J Am Heart Assoc, 6.
    1. Suzuki T, Yazaki Y, Voors AA, Jones DJL, Chan DCS, Anker SD, et al.. (2019). Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: results from BIOSTAT-CHF. Eur J Heart Fail, 21:877-886.
    1. Chioncel O, Ambrosy AP (2019). Trimethylamine N-oxide and risk of heart failure progression: marker or mediator of disease. Eur J Heart Fail, 21:887-890.
    1. Hayashi T, Yamashita T, Watanabe H, Kami K, Yoshida N, Tabata T, et al.. (2018). Gut Microbiome and Plasma Microbiome-Related Metabolites in Patients With Decompensated and Compensated Heart Failure. Circ J, 83:182-192.
    1. Uusitupa HM, Rasinkangas P, Lehtinen MJ, Makela SM, Airaksinen K, Anglenius H, et al.. (2020). Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients, 12.
    1. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, et al.. (2016). Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail, 4:220-227.
    1. Cui X, Ye L, Li J, Jin L, Wang W, Li S, et al.. (2018). Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep, 8:635.
    1. Lenoir M, Martin R, Torres-Maravilla E, Chadi S, Gonzalez-Davila P, Sokol H, et al.. (2020). Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes, 12:1-16.
    1. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H, et al.. (2017). Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One, 12:e0174099.
    1. Eun CS, Mishima Y, Wohlgemuth S, Liu B, Bower M, Carroll IM, et al.. (2014). Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10-/- mice. Infect Immun, 82:2239-2246.
    1. Vellone E, Chiala O, Boyne J, Klompstra L, Evangelista LS, Back M, et al.. (2020). Cognitive impairment in patients with heart failure: an international study. ESC Heart Fail, 7:46-53.
    1. Islam MR, Lbik D, Sakib MS, Maximilian Hofmann R, Berulava T, Jimenez Mausbach M, et al.. (2021). Epigenetic gene expression links heart failure to memory impairment. EMBO Mol Med, 13:e11900.
    1. Yu W, Gao D, Jin W, Wang Z, Li Y, Peng X, et al.. (2020). Intestinal Flora Dysbiosis Aggravates Cognitive Dysfunction Associated With Neuroinflammation in Heart Failure. J Card Fail, 26:885-894.
    1. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, et al.. (2019). Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-kappaB pathway. Aging (Albany NY), 11:11391-11415.
    1. Moghadamrad S, McCoy KD, Geuking MB, Sagesser H, Kirundi J, Macpherson AJ, et al.. (2015). Attenuated portal hypertension in germ-free mice: Function of bacterial flora on the development of mesenteric lymphatic and blood vessels. Hepatology, 61:1685-1695.
    1. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al.. (2017). Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome, 5:14.
    1. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, et al.. (2014). Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol, 10:766.
    1. Fan TJ, Goeser L, Naziripour A, Redinbo MR, Hansen JJ (2019). Enterococcus faecalis Gluconate Phosphotransferase System Accelerates Experimental Colitis and Bacterial Killing by Macrophages. Infect Immun, 87.
    1. Yan X, Jin J, Su X, Yin X, Gao J, Wang X, et al.. (2020). Intestinal Flora Modulates Blood Pressure by Regulating the Synthesis of Intestinal-Derived Corticosterone in High Salt-Induced Hypertension. Circ Res, 126:839-853.
    1. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M, et al.. (2016). Increased Systolic and Diastolic Blood Pressure Is Associated With Altered Gut Microbiota Composition and Butyrate Production in Early Pregnancy. Hypertension, 68:974-981.
    1. Gentile CL, Weir TL (2018). The gut microbiota at the intersection of diet and human health. Science, 362:776-780.
    1. Kolodziejczyk AA, Zheng D, Elinav E (2019). Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol, 17:742-753.
    1. Djekic D, Shi L, Brolin H, Carlsson F, Sarnqvist C, Savolainen O, et al.. (2020). Effects of a Vegetarian Diet on Cardiometabolic Risk Factors, Gut Microbiota, and Plasma Metabolome in Subjects With Ischemic Heart Disease: A Randomized, Crossover Study. J Am Heart Assoc, 9:e016518.
    1. Qin S (2020). LDL and HDL Oxidative Modification and Atherosclerosis. Adv Exp Med Biol, 1276:157-169.
    1. Li C, Chen JW, Liu ZH, Shen Y, Ding FH, Gu G, et al.. (2018). CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis, 278:197-209.
    1. Vanegas SM, Meydani M, Barnett JB, Goldin B, Kane A, Rasmussen H, et al.. (2017). Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr, 105:635-650.
    1. Guevara-Cruz M, Flores-Lopez AG, Aguilar-Lopez M, Sanchez-Tapia M, Medina-Vera I, Diaz D, et al.. (2019). Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J Am Heart Assoc, 8:e012401.
    1. Zhai Q, Feng S, Arjan N, Chen W (2019). A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr, 59:3227-3236.
    1. Zhang T, Li Q, Cheng L, Buch H, Zhang F (2019). Akkermansia muciniphila is a promising probiotic. Microb Biotechnol, 12:1109-1125.
    1. Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, et al.. (2019). Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut, 68:1417-1429.
    1. Yamamoto S, Fuller DS, Komaba H, Nomura T, Massy ZA, Bieber B, et al.. (2021). Serum total indoxyl sulfate and clinical outcomes in hemodialysis patients: results from the Japan Dialysis Outcomes and Practice Patterns Study. Clin Kidney J, 14:1236-1243.
    1. Gao X, Ke C, Liu H, Liu W, Li K, Yu B, et al.. (2017). Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis. Sci Rep, 7:11817.
    1. Liu M, Zuo LS, Sun TY, Wu YY, Liu YP, Zeng FF, et al.. (2020). Circulating Very-Long-Chain Saturated Fatty Acids Were Inversely Associated with Cardiovascular Health: A Prospective Cohort Study and Meta-Analysis. Nutrients, 12.
    1. Holscher HD, Guetterman HM, Swanson KS, An R, Matthan NR, Lichtenstein AH, et al.. (2018). Walnut Consumption Alters the Gastrointestinal Microbiota, Microbially Derived Secondary Bile Acids, and Health Markers in Healthy Adults: A Randomized Controlled Trial. J Nutr, 148:861-867.
    1. Louis P, Hold GL, Flint HJ (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol, 12:661-672.
    1. Sun R, Xu C, Feng B, Gao X, Liu Z (2021). Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol, 14:17562848211018098.
    1. Chambers ES, Byrne CS, Morrison DJ, Murphy KG, Preston T, Tedford C, et al.. (2019). Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: a randomised cross-over trial. Gut, 68:1430-1438.
    1. Shah RD, Tang ZZ, Chen G, Huang S, Ferguson JF (2020). Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutr Metab Cardiovasc Dis, 30:1500-1511.
    1. Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al.. (2016). Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science, 352:586-589.
    1. Khanna S, Vazquez-Baeza Y, Gonzalez A, Weiss S, Schmidt B, Muniz-Pedrogo DA, et al.. (2017). Changes in microbial ecology after fecal microbiota transplantation for recurrent C. difficile infection affected by underlying inflammatory bowel disease. Microbiome, 5:55.
    1. Cammarota G, Ianiro G, Tilg H, Rajilic-Stojanovic M, Kump P, Satokari R, et al.. (2017). European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 66:569-580.
    1. Bibbo S, Settanni CR, Porcari S, Bocchino E, Ianiro G, Cammarota G, et al.. (2020). Fecal Microbiota Transplantation: Screening and Selection to Choose the Optimal Donor. J Clin Med, 9.
    1. Engin A (2017). The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol, 960:1-17.
    1. Yang S, Hu T, Liu H, Lv YL, Zhang W, Li H, et al.. (2021). Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury. Biomed Pharmacother, 138:111441.
    1. Smits LP, Kootte RS, Levin E, Prodan A, Fuentes S, Zoetendal EG, et al.. (2018). Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. J Am Heart Assoc, 7.
    1. Zoll J, Read MN, Heywood SE, Estevez E, Marshall JPS, Kammoun HL, et al.. (2020). Fecal microbiota transplantation from high caloric-fed donors alters glucose metabolism in recipient mice, independently of adiposity or exercise status. Am J Physiol Endocrinol Metab, 319:E203-E216.
    1. Chen EB, Shapiro KE, Wun K, Kuntz T, Theriault BR, Nooromid MJ, et al.. (2020). Microbial Colonization of Germ-Free Mice Restores Neointimal Hyperplasia Development After Arterial Injury. J Am Heart Assoc, 9:e013496.
    1. Toral M, Robles-Vera I, de la Visitacion N, Romero M, Sanchez M, Gomez-Guzman M, et al.. (2019). Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxf), 227:e13285.
    1. Hu XF, Zhang WY, Wen Q, Chen WJ, Wang ZM, Chen J, et al.. (2019). Fecal microbiota transplantation alleviates myocardial damage in myocarditis by restoring the microbiota composition. Pharmacol Res, 139:412-421.
    1. Tenorio-Jimenez C, Martinez-Ramirez MJ, Tercero-Lozano M, Arraiza-Irigoyen C, Del Castillo-Codes I, Olza J, et al.. (2018). Evaluation of the effect of Lactobacillus reuteri V3401 on biomarkers of inflammation, cardiovascular risk and liver steatosis in obese adults with metabolic syndrome: a randomized clinical trial (PROSIR). BMC Complement Altern Med, 18:306.
    1. Szulinska M, Loniewski I, Skrypnik K, Sobieska M, Korybalska K, Suliburska J, et al.. (2018). Multispecies Probiotic Supplementation Favorably Affects Vascular Function and Reduces Arterial Stiffness in Obese Postmenopausal Women-A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients, 10.
    1. Bro-Jeppesen J, Johansson PI, Kjaergaard J, Wanscher M, Ostrowski SR, Bjerre M, et al.. (2017). Level of systemic inflammation and endothelial injury is associated with cardiovascular dysfunction and vasopressor support in post-cardiac arrest patients. Resuscitation, 121:179-186.
    1. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al.. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J, 27:2588-2605.
    1. Mafi A, Namazi G, Soleimani A, Bahmani F, Aghadavod E, Asemi Z (2018). Metabolic and genetic response to probiotics supplementation in patients with diabetic nephropathy: a randomized, double-blind, placebo-controlled trial. Food Funct, 9:4763-4770.
    1. Raygan F, Ostadmohammadi V, Asemi Z (2019). The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr, 38:1594-1598.
    1. Rezazadeh L, Gargari BP, Jafarabadi MA, Alipour B (2019). Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition, 62:162-168.
    1. Cicero AFG, Fogacci F, Bove M, Giovannini M, Borghi C (2021). Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: a randomized placebo-controlled clinical trial. Eur J Nutr, 60:655-663.
    1. Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R, et al.. (2018). Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circ Res, 123:1091-1102.
    1. Ruscica M, Pavanello C, Gandini S, Macchi C, Botta M, Dall'Orto D, et al.. (2019). Nutraceutical approach for the management of cardiovascular risk - a combination containing the probiotic Bifidobacterium longum BB536 and red yeast rice extract: results from a randomized, double-blind, placebo-controlled study. Nutr J, 18:13.
    1. Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, et al.. (2017). An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS One, 12:e0187964.
    1. Hibberd AA, Yde CC, Ziegler ML, Honore AH, Saarinen MT, Lahtinen S, et al.. (2019). Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef Microbes, 10:121-135.
    1. Matsumoto M, Kitada Y, Naito Y (2019). Endothelial Function is improved by Inducing Microbial Polyamine Production in the Gut: A Randomized Placebo-Controlled Trial. Nutrients, 11.
    1. Farrokhian A, Raygan F, Soltani A, Tajabadi-Ebrahimi M, Sharifi Esfahani M, Karami AA, et al.. (2019). The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: a Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins, 11:133-142.
    1. Vasquez EC, Pereira TMC, Peotta VA, Baldo MP, Campos-Toimil M (2019). Probiotics as Beneficial Dietary Supplements to Prevent and Treat Cardiovascular Diseases: Uncovering Their Impact on Oxidative Stress. Oxid Med Cell Longev, 2019:3086270.
    1. Tsikas D, Rothmann S, Schneider JY, Suchy MT, Trettin A, Modun D, et al.. (2016). Development, validation and biomedical applications of stable-isotope dilution GC-MS and GC-MS/MS techniques for circulating malondialdehyde (MDA) after pentafluorobenzyl bromide derivatization: MDA as a biomarker of oxidative stress and its relation to 15(S)-8-iso-prostaglandin F2alpha and nitric oxide (NO). J Chromatogr B Analyt Technol Biomed Life Sci, 1019:95-111.
    1. Moldogazieva NT, Mokhosoev IM, Mel'nikova TI, Porozov YB, Terentiev AA (2019). Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev, 2019:3085756.
    1. Bonomini F, Rodella LF, Rezzani R (2015). Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis, 6:109-120.
    1. Vitale M, Giacco R, Laiola M, Della Pepa G, Luongo D, Mangione A, et al.. (2021). Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: Can SCFAs play a role? Clin Nutr, 40:428-437.
    1. Guo Y, Luo S, Ye Y, Yin S, Fan J, Xia M (2021). Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. J Clin Endocrinol Metab, 106:64-79.
    1. Depommier C, Everard A, Druart C, Plovier H, Van Hul M, Vieira-Silva S, et al.. (2019). Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med, 25:1096-1103.
    1. Vetrani C, Maukonen J, Bozzetto L, Della Pepa G, Vitale M, Costabile G, et al.. (2020). Diets naturally rich in polyphenols and/or long-chain n-3 polyunsaturated fatty acids differently affect microbiota composition in high-cardiometabolic-risk individuals. Acta Diabetol, 57:853-860.

Source: PubMed

3
Abonnieren