F8/F9 variants in the population-based PedNet Registry cohort compared with locus-specific genetic databases of the European Association for Haemophilia and Allied Disorders and the Centers for Disease Control and Prevention Hemophilia A or Hemophilia B Mutation Project

Veerle Labarque, Maria Elisa Mancuso, Mutlu Kartal-Kaess, Rolf Ljung, Torben S Mikkelsen, Nadine G Andersson, Veerle Labarque, Maria Elisa Mancuso, Mutlu Kartal-Kaess, Rolf Ljung, Torben S Mikkelsen, Nadine G Andersson

Abstract

Background: Hemophilia A and B are caused by variants in the factor (F) VIII or FIX gene. Selective reporting may influence the distribution of variants reported in genetic databases.

Objectives: To compare the spectrum of F8 and F9 variants in an international population-based pediatric cohort (PedNet Registry) with the spectrum found in the European Association for Haemophilia and Allied Disorders (EAHAD) and the Centers for Disease Control and Prevention Hemophilia A or Hemophilia B Mutation Project (CHAMP/CHBMP) databases.

Methods: All patients registered in the PedNet Registry on January 1, 2021 were included in this study. As comparators, data from patients with severe hemophilia included in the CHAMP/CHBMP registry (US center data) and EAHAD were used.

Results: Genetic information was available for 1941 patients. Intron 22 inversion was present in 52% of patients with severe hemophilia A; frameshift (36%), missense (28%), and nonsense (20%) were the most frequent variants in patients with severe hemophilia A who were inversion-negative. The most frequent variants in severe hemophilia B were missense (48%). In nonsevere disease, most variants were missense variants (moderate hemophilia A: 91%; mild hemophilia A: 95%, moderate and mild hemophilia B: 86% each). Comparison with the databases demonstrated a higher proportion of missense variants associated with severe hemophilia B in EAHAD (68%) than in PedNet (48%) and CHBMP (46%).

Conclusion: The PedNet population-based cohort provides an alternative to the established databases, which collect data by selective reporting, as it is a well-maintained database covering the full spectrum of pathogenic F8 and F9 variants, and indicates the number of patients affected by each particular variant.

Keywords: factor IX; factor VIII; genetic databases; hemophilia A; hemophilia B; population.

© 2023 The Authors.

Figures

Figure 1
Figure 1
Location of missense variants in moderate and mild hemophilia. (A) Location according to the factor VIII protein domains in moderate or mild hemophilia A; (B) Location according to the factor IX protein structure in moderate or mild hemophilia B. GLA: c-carboxy glutamic acid domain; EGF: epidermal growth factor like domain; ACT-Peptide: activating peptide
Figure 2
Figure 2
Spectrum of variant effects in the PedNet cohort compared with the CHAMP/CHBMP US files and EAHAD database. (A) inversion-negative patients with severe hemophilia A; (B) severe hemophilia B patients. Data are presented in percentages.

References

    1. Gitschier J., Wood W.I., Goralka T.M., Wion K.L., Chen E.Y., Eaton D.H., et al. Characterization of the human factor VIII gene. Nature. 1984;312:326–330.
    1. Kurachi K., Davie E.W. Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci U S A. 1982;79:6461–6464.
    1. Oldenburg J., Pavlova A. Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia. 2006;12(Suppl 6):15–22.
    1. Hamosh A., Scott A.F., Amberger J., Bocchini C., Valle D., McKusick V.A. Online Mendelian Inheritance in Man (OMIM), a KnowledgeBase of human genes and genetic disorders. Nucleic Acids Res. 2002;30:52–55.
    1. Stenson P.D., v Ball E.V., Howells K., Phillips A.D., Mort M., Cooper D.N. The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum Genomics. 2009;4:69–72.
    1. Giannelli F., Green P.M., High K.A., Lozier J.N., Lillicrap D.P., Ludwig M., et al. Haemophilia B: database of point mutations and short additions and deletions. Nucleic Acids Res. 1990;18:4053–4059.
    1. Tuddenham E.G., Cooper D.N., Gitschier J., Higuchi M., Hoyer L.W., Yoshioka A., et al. Haemophilia A: database of nucleotide substitutions, deletions, insertions and rearrangements of the factor VIII gene. Nucleic Acids Res. 1991;19:4821–4833.
    1. Kemball-Cook G., Tuddenham E.G. The Factor VIII Mutation Database on the World Wide Web: the haemophilia A mutation, search, test and resource site. HAMSTeRS update (version 3.0) Nucleic Acids Res. 1997;25:128–132.
    1. Wacey A.I., Kemball-Cook G., Kazazian H.H., Antonarakis S.E., Schwaab R., Lindley P., et al. The haemophilia A mutation search test and resource site, home page of the factor VIII mutation database: HAMSTeRS. Nucleic Acids Res. 1996;24:100–102.
    1. Vidal FG. Hemobase. 2010 [accessed June 21, 2022].
    1. Payne A.B., Miller C.H., Kelly F.M., Michael Soucie J., Craig Hooper W. The CDC Hemophilia A Mutation Project (CHAMP) mutation list: a new online resource. Hum Mutat. 2013;34:E2382–E2391.
    1. Li T., Miller C.H., Payne A.B., Craig Hooper W. The CDC Hemophilia B mutation project mutation list: a new online resource. Mol Genet Genomic Med. 2013;1:238–245.
    1. McVey J.H., Rallapalli P.M., Kemball-Cook G., Hampshire D.J., Giansily-Blaizot M., Gomez K., et al. The European Association for Haemophilia and Allied Disorders (EAHAD) Coagulation Factor Variant Databases: important resources for haemostasis clinicians and researchers. Haemophilia. 2020;26:306–313.
    1. Soucie J.M., Miller C.H., Kelly F.M., Payne A.B., Creary M., Bockenstedt P.L., et al. A study of prospective surveillance for inhibitors among persons with haemophilia in the United States. Haemophilia. 2014;20:230–237.
    1. Blanchette V.S., Key N.S., Ljung L.R., Manco-Johnson M.J., van den Berg H.M., Srivastava A., et al. Definitions in hemophilia: communication from the SSC of the ISTH. J Thromb Haemost. 2014;12:1935–1939.
    1. Fischer K., Ljung R., Platokouki H., Liesner R., Claeyssens S., Smink E., et al. Prospective observational cohort studies for studying rare diseases: the European PedNet Haemophilia Registry. Haemophilia. 2014;20:e280–e286.
    1. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.
    1. den Dunnen J.T., Dalgleish R., Maglott D.R., Hart R.K., Greenblatt M.S., McGowan-Jordan J., et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564–569.
    1. Lakich D., Kazazian H.H., Antonarakis S.E., Gitschier J. Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. 1993;5:236–241.
    1. Lopes T.J.S., Rios R., Nogueira T., Mello R.F. Prediction of hemophilia A severity using a small-input machine-learning framework. NPJ Syst Biol Appl. 2021;7:22.
    1. Meireles M.R., Bragatte M.A.S., Bandinelli E., Salzano F.M., Vieira G.F. A new in silico approach to investigate molecular aspects of factor IX missense causative mutations and their impact on the hemophilia B severity. Hum Mutat. 2019;40:706–715.
    1. Mukherjee S., Saha A., Biswas P., Mandal C., Ray K. Structural analysis of factor IX protein variants to predict functional aberration causing haemophilia B. Haemophilia. 2008;14:1076–1081.
    1. Sengupta M., Sarkar D., Ganguly K., Sengupta D., Bhaskar S., Ray K. In silico analyses of missense mutations in coagulation factor VIII: identification of severity determinants of haemophilia A. Haemophilia. 2015;21:662–669.
    1. Feng Y., Li Q., Shi P., Liu N., Kong X., Guo R. Mutation analysis in the F8 gene in 485 families with haemophilia A and prenatal diagnosis in China. Haemophilia. 2021;27:e88–e92.
    1. Reitter S., Sturn R., Horvath B., Freitag R., Male C., Muntean W., et al. Spectrum of causative mutations in patients with haemophilia A in Austria. Thromb Haemost. 2010;104:78–85.
    1. Tagariello G., Belvini D., Salviato R., di Gaetano R., Zanotto D., Radossi P., et al. The Italian haemophilia B mutation database: a tool for genetic counselling, carrier detection and prenatal diagnosis. Blood Transfus. 2007;5:158–163.
    1. Atik T., Işık E., Onay H., Akgün B., Shamsali M., Kavaklı K., et al. Factor 8 gene mutation spectrum of 270 patients with hemophilia A: identification of 36 novel mutations. Turk J Haematol. 2020;37:145–153.
    1. Chen J., Li Q., Lin S., Li F., Huang L., Jin W., et al. The spectrum of FVIII gene variants detected by next generation sequencing in 236 Chinese non-inversion hemophilia A pedigrees. Thromb Res. 2021;202:8–13.
    1. Margaglione M., Castaman G., Morfini M., Rocino A., Santagostino E., Tagariello G., et al. The Italian AICE-Genetics hemophilia A database: results and correlation with clinical phenotype. Haematologica. 2008;93:722–728.
    1. Miller C.H., Benson J., Ellingsen D., Driggers J., Payne A., Kelly F.M., et al. F8 and F9 mutations in US haemophilia patients: correlation with history of inhibitor and race/ethnicity. Haemophilia. 2012;18:375–382.
    1. Zahari M., Sulaiman S.A., Othman Z., Ayob Y., Karim F.A., Jamal R. Mutational profiles of F8 and F9 in a cohort of haemophilia A and haemophilia B patients in the multi-ethnic Malaysian population. Mediterr J Hematol Infect Dis. 2018;10
    1. Lu Y., Wu X., Dai J., Ding Q., Wu W., Wang X. The characteristics and spectrum of F9 mutations in Chinese sporadic haemophilia B pedigrees. Haemophilia. 2019;25:316–323.
    1. Halldén C., Mårtensson A., Nilsson D., Säll T., Lind-Halldén C., Lidén A.C., et al. Origin of Swedish hemophilia B mutations. J Thromb Haemost. 2013;11:2001–2008.
    1. White G.C., Rosendaal F., Aledort L.M., Lusher J.M., Rothschild C., Ingerslev J., et al. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001;85:560.
    1. Ghosh K., Shetty S., Quadros L., Kulkarni B. Double mutations causing haemophilia B: a double whammy. Br J Haematol. 2009;145:433–435.
    1. Kentsis A., Anewalt R., Ganguly A., Allen J.B., Neufeld E.J. Discordant haemophilia A in male siblings due to a de novo mutation on a familial missense mutant allele. Haemophilia. 2009;15:971–972.
    1. Shetty S., Bhave M., Ghosh K. Challenges of multiple mutations in individual patients with haemophilia. Eur J Haematol. 2011;86:185–190.
    1. Trampuš Bakija A., Debeljak M., Preložnik Zupan I., Benedik Dolničar M., Kovač J., Jazbec J. Specific and global coagulation tests in patients with mild haemophilia A with a double mutation (Glu113Asp, Arg593Cys) Blood Transfus. 2015;13:622–630.

Source: PubMed

3
Abonnieren