Acute effects of foam rolling on passive tissue stiffness and fascial sliding: study protocol for a randomized controlled trial

Frieder Krause, Jan Wilke, Daniel Niederer, Lutz Vogt, Winfried Banzer, Frieder Krause, Jan Wilke, Daniel Niederer, Lutz Vogt, Winfried Banzer

Abstract

Background: Self-myofascial release (SMR) aims to mimic the effects of manual therapy and tackle dysfunctions of the skeletal muscle and connective tissue. It has been shown to induce improvements in flexibility, but the underlying mechanisms are still poorly understood. In addition to neuronal mechanisms, improved flexibility may be driven by acute morphological adaptations, such as a reduction in passive tissue stiffness or improved movement between fascial layers. The aim of the intended study is to evaluate the acute effects of SMR on the passive tissue stiffness of the anterior thigh muscles and the sliding properties of the associated fasciae.

Methods: In a crossover study design, 16 participants will receive all of the following interventions in a permutated random order: (1) one session of 2 × 60 s of SMR at the anterior thigh, (2) one session of 2 × 60 s of passive static stretching of the anterior thigh and (3) no intervention. Passive tissue stiffness, connective tissue sliding, angle of first stretch sensation, as well as maximal active and passive knee flexion angle, will be evaluated before and directly after each intervention.

Discussion: The results of the intended study will allow a better understanding of, and provide further evidence on, the local effects of SMR techniques and the underlying mechanisms for flexibility improvements.

Trial registration: ClinicalTrials.gov, identifier: NCT02919527 . Registered on 27 September 2016.

Keywords: Connective tissue; Cross-correlation; Fascia; Flexibility; Foam rolling; Self-myofascial release; Tissue stiffness; Ultrasound.

Figures

Fig. 1
Fig. 1
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) figure

References

    1. Halperin I, Aboodarda SJ, Button DC, Andersen LL, Behm DG. Roller massager improves range of motion of plantar flexor muscles without subsequent decreases in force parameters. Int J Sports Phys Ther. 2014;9:92–102.
    1. Behara B, Jacobson BH. The acute effects of deep tissue foam rolling and dynamic stretching on muscular strength, power and flexibility in Division I Lineman. J Orthop Trauma. 2015
    1. Bradbury-Squires DJ, Noftall JC, Sullivan KM, Behm DG, Power KE, Button DC. Roller-massager application to the quadriceps and knee-joint range of motion and neuromuscular efficiency during a lunge. J Athl Train. 2015;50:133–40. doi: 10.4085/1062-6050-49.5.03.
    1. Junker D, Stöggl T. The foam roll as a tool to improve hamstring flexibility. J Strength Cond Res. 2015
    1. MacDonald GZ, Penney, Michael DH, Mullaley ME, Cuconato AL, Drake, Corey DJ, Behm DG, Button DC. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013;27:812–21. doi: 10.1519/JSC.0b013e31825c2bc1.
    1. Mohr AR, Long BC, Goad CL. Effect of foam rolling and static stretching on passive hip-flexion range of motion. J Sport Rehabil. 2014;23:296–9. doi: 10.1123/JSR.2013-0025.
    1. Vigotsky AD, Lehman GJ, Contreras B, Beardsley C, Chung B, Feser EH. Acute effects of anterior thigh foam rolling on hip angle, knee angle, and rectus femoris length in the modified Thomas test. Peer J. 2015;3:e1281. doi: 10.7717/peerj.1281.
    1. Sullivan KM, Silvey, Dustin BJ, Button DC, Behm DG. Roller-massager application to the hamstrings increases sit-and-reach range of motion within five to ten seconds without performance impairments. Int J Sports Phys Ther. 2013;8:228–36.
    1. Škarabot J, Beardsley C, Stirn I. Comparing the effects of self-myofascial release with static stretching on ankle range-of-motion in adolescent athletes. Int J Sports Phys Ther. 2015;10:203–12.
    1. Beardsley C, Škarabot J. Effects of self-myofascial release: a systematic review. J Bodyw Mov Ther. 2015;19:747–58. doi: 10.1016/j.jbmt.2015.08.007.
    1. Cheatham SW, Kolber MJ, Cain M, Lee M. The effects of self myofascial release using a foam roller or roller massager on joint range of motion, muscle recovery and performance: a systematic review. Int J Sports Phys Ther. 2015;10:827–38.
    1. Schroeder AN, Best TM. Is self myofascial release an effective preexercise and recovery strategy? A literature review. Curr Sports Med Rep. 2015;14:200–8. doi: 10.1249/JSR.0000000000000148.
    1. Kelly S, Beardsley C. Specific and cross-over effects of foam rolling on ankle dorsiflexion range of motion. Int J Sports Phys Ther. 2016;11:544–51.
    1. Stecco C, Porzionato A, Lancerotto L, Stecco A, Macchi V, Day JA, de Caro R. Histological study of the deep fasciae of the limbs. J Bodyw Mov Ther. 2008;12:225–30. doi: 10.1016/j.jbmt.2008.04.041.
    1. Stecco C, Stern R, Porzionato A, Macchi V, Masiero S, Stecco A, de Caro R. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011;33:891–6. doi: 10.1007/s00276-011-0876-9.
    1. Schleip R, Müller DG. Training principles for fascial connective tissues: scientific foundation and suggested practical applications. J Bodyw Mov Ther. 2013;17:103–15. doi: 10.1016/j.jbmt.2012.06.007.
    1. Magnusson SP, Simonsen EB, Aagaard P, Gleim GW, McHugh MP, Kjaer M. Viscoelastic response to repeated static stretching in the human hamstring muscle. Scand J Med Sci Sports. 1995;5:342–7. doi: 10.1111/j.1600-0838.1995.tb00056.x.
    1. Magnusson SP, Simonsen EB, Aagaard P, Kjaer M. Biomechanical responses to repeated stretches in human hamstring muscle in vivo. Am J Sports Med. 1996;24:622–8. doi: 10.1177/036354659602400510.
    1. Nordez A, Cornu C, McNair P. Acute effects of static stretching on passive stiffness of the hamstring muscles calculated using different mathematical models. Clin Biomech (Bristol, Avon). 2006;21:755–60. doi: 10.1016/j.clinbiomech.2006.03.005.
    1. McNair PJ, Dombroski EW, Hewson DJ, Stanley SN. Stretching at the ankle joint: viscoelastic responses to holds and continuous passive motion. Med Sci Sports Exerc. 2001;33:354–8. doi: 10.1097/00005768-200103000-00003.
    1. Whatman C, Knappstein A, Hume P. Acute changes in passive stiffness and range of motion post-stretching. Phys Ther Sport. 2006;7:195–200. doi: 10.1016/j.ptsp.2006.07.002.
    1. Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Costa PB, et al. The time course of musculotendinous stiffness responses following different durations of passive stretching. J Orthop Sports Phys Ther. 2008;38:632–9. doi: 10.2519/jospt.2008.2843.
    1. Staubesand J, Li Y. Zum Feinbau der Fascia cruris mit besonderer Berücksichtigung epi- und intrafaszialer Nerven. Manuelle Medizin. 1996;34:196–200.
    1. Schleip R, Klingler W, Lehmann-Horn F. Active fascial contractility: fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics. Med Hypotheses. 2005;65:273–7. doi: 10.1016/j.mehy.2005.03.005.
    1. Schleip R, Duerselen L, Vleeming A, Naylor IL, Lehmann-Horn F, Zorn A, et al. Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther. 2012;16:94–100. doi: 10.1016/j.jbmt.2011.09.003.
    1. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92. doi: 10.1038/nature08908.
    1. Chaudhuri O, Parekh SH, Fletcher DA. Reversible stress softening of actin networks. Nature. 2007;445:295–8. doi: 10.1038/nature05459.
    1. Porter MM, Andersson M, Hellstrom U, Miller M. Passive resistive torque of the plantar flexors following eccentric loading as assessed by isokinetic dynamometry. Can J Appl Physiol. 2002;27:612–7. doi: 10.1139/h02-009.
    1. Gajdosik RL, Vander Linden DW, Williams AK. Influence of age on length and passive elastic stiffness characteristics of the calf muscle-tendon unit of women. Phys Ther. 1999;79:827–38.
    1. Bressel E, Larsen BT, McNair PJ, Cronin J. Ankle joint proprioception and passive mechanical properties of the calf muscles after an Achilles tendon rupture: a comparison with matched controls. Clin Biomech (Bristol, Avon) 2004;19:284–91. doi: 10.1016/j.clinbiomech.2003.12.008.
    1. Nordez A, Casari P, Cornu C. Accuracy of Biodex system 3 pro computerized dynamometer in passive mode. Med Eng Phys. 2008;30:880–7. doi: 10.1016/j.medengphy.2007.11.001.
    1. Araujo VL, Carvalhais VO, Souza TR, Ocarino JM, Goncalves GG, Fonseca ST. Validity and reliability of clinical tests for assessing passive ankle stiffness. Rev Bras Fisioter. 2011;15:166–73. doi: 10.1590/S1413-35552011005000027.
    1. Carvalhais, Viviane Otoni do Carmo, Araújo VLd, Souza TR, Gonçalves GGP, Ocarino JdM, Fonseca ST. Validity and reliability of clinical tests for assessing hip passive stiffness. Manual Therapy. 2011;16:240–5. doi:10.1016/j.math.2010.10.009.
    1. Nordez A, McNair P, Casari P, Cornu C. Acute changes in hamstrings musculo-articular dissipative properties induced by cyclic and static stretching. Int J Sports Med. 2008;29:414–8. doi: 10.1055/s-2007-964980.
    1. Nordez A, McNair PJ, Casari P, Cornu C. Static and cyclic stretching: their different effects on the passive torque-angle curve. J Sci Med Sport. 2010;13:156–60. doi: 10.1016/j.jsams.2009.02.003.
    1. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10:361–74. doi: 10.1016/S1050-6411(00)00027-4.
    1. Dilley A, Greening J, Lynn B, Leary R, Morris V. The use of cross-correlation analysis between high-frequency ultrasound images to measure longitudinal median nerve movement. Ultrasound Med Biol. 2001;27:1211–8. doi: 10.1016/S0301-5629(01)00413-6.
    1. Boyd BS, Gray AT, Dilley A, Wanek L, Topp KS. The pattern of tibial nerve excursion with active ankle dorsiflexion is different in older people with diabetes mellitus. Clin Biomech. 2012;27:967–71. doi: 10.1016/j.clinbiomech.2012.06.013.
    1. Dilley A, Summerhayes C, Lynn B. An in vivo investigation of ulnar nerve sliding during upper limb movements. Clin Biomech (Bristol, Avon). 2007;22:774–9. doi: 10.1016/j.clinbiomech.2007.04.004.
    1. Carroll M, Yau J, Rome K, Hing W. Measurement of tibial nerve excursion during ankle joint dorsiflexion in a weight-bearing position with ultrasound imaging. J Foot Ankle Res. 2012;5:1. doi: 10.1186/1757-1146-5-5.
    1. Coppieters MW, Hough AD, Dilley A. Different nerve-gliding exercises induce different magnitudes of median nerve longitudinal excursion: an in vivo study using dynamic ultrasound imaging. J Orthop Sports Phys Ther. 2009;39:164–71. doi: 10.2519/jospt.2009.2913.
    1. Ellis RF, Hing WA, McNair PJ. Comparison of longitudinal sciatic nerve movement with different mobilization exercises: an in vivo study utilizing ultrasound imaging. J Orthop Sports Phys Ther. 2012;42:667–75. doi: 10.2519/jospt.2012.3854.
    1. Julius A, Lees R, Dilley A, Lynn B. Shoulder posture and median nerve sliding. BMC Musculoskelet Disord. 2004;5:1. doi: 10.1186/1471-2474-5-23.
    1. Ellis R, Hing W, Dilley A, McNair P. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique. Ultrasound Med Biol. 2008;34:1209–16. doi: 10.1016/j.ultrasmedbio.2008.01.003.
    1. Natalis M, Konig A. Noninvasive, accurate and reliable measurement of cervical spine motion with a 3D real-time ultrasound motion analyzer. Ultraschall Med. 1999;20:70–3. doi: 10.1055/s-1999-14237.

Source: PubMed

3
Abonnieren