The Human Nose Organoid Respiratory Virus Model: an Ex Vivo Human Challenge Model To Study Respiratory Syncytial Virus (RSV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Pathogenesis and Evaluate Therapeutics

Anubama Rajan, Ashley Morgan Weaver, Gina Marie Aloisio, Joseph Jelinski, Hannah L Johnson, Susan F Venable, Trevor McBride, Letisha Aideyan, Felipe-Andrés Piedra, Xunyan Ye, Ernestina Melicoff-Portillo, Malli Rama Kanthi Yerramilli, Xi-Lei Zeng, Michael A Mancini, Fabio Stossi, Anthony W Maresso, Shalaka A Kotkar, Mary K Estes, Sarah Blutt, Vasanthi Avadhanula, Pedro A Piedra, Anubama Rajan, Ashley Morgan Weaver, Gina Marie Aloisio, Joseph Jelinski, Hannah L Johnson, Susan F Venable, Trevor McBride, Letisha Aideyan, Felipe-Andrés Piedra, Xunyan Ye, Ernestina Melicoff-Portillo, Malli Rama Kanthi Yerramilli, Xi-Lei Zeng, Michael A Mancini, Fabio Stossi, Anthony W Maresso, Shalaka A Kotkar, Mary K Estes, Sarah Blutt, Vasanthi Avadhanula, Pedro A Piedra

Abstract

There is an unmet need for preclinical models to understand the pathogenesis of human respiratory viruses and predict responsiveness to immunotherapies. Airway organoids can serve as an ex vivo human airway model to study respiratory viral pathogenesis; however, they rely on invasive techniques to obtain patient samples. Here, we report a noninvasive technique to generate human nose organoids (HNOs) as an alternative to biopsy-derived organoids. We made air-liquid interface (ALI) cultures from HNOs and assessed infection with two major human respiratory viruses, respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Infected HNO-ALI cultures recapitulate aspects of RSV and SARS-CoV-2 infection, including viral shedding, ciliary damage, innate immune responses, and mucus hypersecretion. Next, we evaluated the feasibility of the HNO-ALI respiratory virus model system to test the efficacy of palivizumab to prevent RSV infection. Palivizumab was administered in the basolateral compartment (circulation), while viral infection occurred in the apical ciliated cells (airways), simulating the events in infants. In our model, palivizumab effectively prevented RSV infection in a concentration-dependent manner. Thus, the HNO-ALI model can serve as an alternative to lung organoids to study respiratory viruses and test therapeutics. IMPORTANCE Preclinical models that recapitulate aspects of human airway disease are essential for the advancement of novel therapeutics and vaccines. Here, we report a versatile airway organoid model, the human nose organoid (HNO), that recapitulates the complex interactions between the host and virus. HNOs are obtained using noninvasive procedures and show divergent responses to SARS-CoV-2 and RSV infection. SARS-CoV-2 induces severe damage to cilia and the epithelium, no interferon-λ response, and minimal mucus secretion. In striking contrast, RSV induces hypersecretion of mucus and a profound interferon-λ response with ciliary damage. We also demonstrated the usefulness of our ex vivo HNO model of RSV infection to test the efficacy of palivizumab, an FDA-approved monoclonal antibody to prevent severe RSV disease in high-risk infants. Our study reports a breakthrough in both the development of a novel nose organoid model and in our understanding of the host cellular response to RSV and SARS-CoV-2 infection.

Keywords: ALI cultures; RSV; SARS-CoV-2; air-liquid interface (ALI) culture; airway; airway organoids; cilia; cytokines; epithelium; immunoprophylaxis; mucus; nose organoids; palivizumab; respiratory syncytial virus (RSV); severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therapeutics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Derivation and characterization of human nose organoids (HNOs). (A) Schematic representation of the workflow for making of HNOs. (B) Bright-field image of 3D HNOs in culture. Scale bar equals 100 μm. (C) Hematoxylin and eosin (H&E) staining of 3D HNOs. (D) H&E staining of pseudostratified airway epithelium of HNO-ALI culture. (E to G). Immunofluorescence of HNOs. Basal cells are labeled by keratin 5 (KRT5), in red. DAPI stains each nucleus. (E) Goblet cells are shown in green, labeled by mucin 5AC (MUC5AC). (F) Ciliated epithelium is shown in green, labeled by acetylated alpha tubulin (Ace-tubulin) and (G) club cells in green, labeled by CC10. Scale bar equals 10 μm.
FIG 2
FIG 2
Infection of human nose organoids (HNOs) with respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). (A to C) HNO air-liquid interface (ALI) cells were apically infected with RSV/A/Ontario (ON) and RSVB/Buenos Aires (BA) at a multiplicity of infection (MOI) of 0.01. Apical and basolateral samples were collected at 1, 2, 5, and 10 days postinoculation (dpi) in two distinct HNO cell lines (HNO2 and HNO204). RNA was isolated from media, and copy numbers of RSV N gene RNA were determined using quantitative real-time PCR (qRT-PCR). Levels of RSV N genes (copies/mL) from (A) RSV/A/ON at different time points and (B) RSV/A/BA at different time points. (C) HNO-ALI cells were apically infected with SARS-CoV-2 at an MOI of 0.01. Apical and basolateral samples were collected at the time of infection and 3 and 6 dpi in three distinct HNO cell lines (HN02, HNO204, and HNO918). RNA was isolated from media, and SARS-CoV-2 copy numbers of N gene RNA were determined using qRT-PCR. (D and E) Infectious viral titers reported as PFU per mL for RSV/A/ON and RSV/B/BA using a quantitative plaque assay. Data shown were from two individual experiments with two technical replicates per group in each experiment and are represented as the mean ± standard deviation (SD).
FIG 3
FIG 3
Immunofluorescence and morphological analysis of respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human nose organoid air-liquid interface (HNO-ALI) system. (A to D) Representative deconvoluted epifluorescence images of HNO cells showing nuclei (DAPI, blue) and basal cells (keratin 5 [KRT5], red). In panel A cilia (acetylated alpha tubulin [ace-tubulin], green) and RSV (F-protein, yellow) are shown; (B) cilia (ace-tubulin, green) and SARS-CoV-2 (spike protein, yellow); (C) goblet cells (mucin 5AC [MUC5AC], green) and RSV (fusion protein, yellow); (D) goblet cells (MUC5AC, green) and SARS-CoV-2 (spike protein, yellow). (E to G) Quantification of (E) ciliary damage, (F) epithelial damage, and (G) MUC5AC expression of HNO-ALI infected by RSV/A/ON, RSV/B/BA, and SARS-CoV-2. Data were collected from 10 representative images per group in each experiment and are represented as the mean ± SD. (*, P < 0.05; **, P < 0.01; ***, P < 0.001). Scale bar equals 10 μm.
FIG 4
FIG 4
Immune cytokine/chemokine profile of human nose organoids (HNOs) infected with respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). HNO air-liquid interface (HNO-ALI) cultures were infected apically with RSV/A/Ontario (ON), RSVB/Buenos Aires (BA), and SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01. The cultured supernatants from both the apical and basolateral compartments were harvested from mock-, RSV-, and SARS-CoV-2-infected HNO-ALI cultures. Profiles of extracellular cytokines and chemokines released in the apical and basolateral compartments were determined by the multiplex-Luminex cytokine assay. (A to F) Levels of cytokines and chemokines released from HNO2 cells infected with contemporaneous RSV strains RSV/A/ON and RSV/B/BA. (G and L) Levels of cytokines and chemokines released from HNO2 cells infected with SARS-CoV-2 (WA-1 strain). The data shown were from two technical replicates per group, and the Luminex assay was run with each sample in duplicate and assessed for cytokines.
FIG 5
FIG 5
Immunoprophylaxis treatment for respiratory syncytial virus (RSV) infection in human nose organoids (HNOs). (A to C) Viral copy numbers of RSV/A/Tracy after treatment with palivizumab of 0 μg/mL, 80 μg/mL, and 640 μg/mL at 1, 2, 4, 6, and 8 dpi were measured. Panel A demonstrates only an initial but not sustained decrease in RSV copy number with a short exposure of palivizumab pretreatment. Panel B shows a significant reduction in RSV replication during the long exposure of palivizumab across the infection period in a dose-dependent manner with the addition of a second dose of palivizumab at day 4. Panel C exhibits specificity of palivizumab pretreatment, as strain RSV/A/TracyP-Mab-R is resistant to the antibody and hence showed no decrease in infection. (D to F) Quantification of infective viral particles using a plaque assay for the experiments described above. The data shown were gathered from two technical replicates per group in each experiment and are represented as the mean ± SD. (G to K) The levels of inflammatory cytokines released by RSV-infected HNOs under palivizumab treatment conditions.

References

    1. van der Vaart J, Clevers H. 2021. Airway organoids as models of human disease. J Intern Med 289:604–613. doi:10.1111/joim.13075.
    1. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BLM. 2014. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci USA 111:E3641–E3649. doi:10.1073/pnas.1409781111.
    1. Tadokoro T, Gao X, Hong CC, Hotten D, Hogan BLM. 2016. BMP signaling and cellular dynamics during regeneration of airway epithelium from basal progenitors. Development 143:764–773. doi:10.1242/dev.126656.
    1. Dye BR, Hill DR, Ferguson MA, Tsai Y-H, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. 2015. In vitro generation of human pluripotent stem cell derived lung organoids. Elife 4:e05098. doi:10.7554/eLife.05098.
    1. Chen Y-W, Huang SX, de Carvalho ALRT, Ho S-H, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova J-L, Bhattacharya J, Liang AF, Palermo LM, Porotto M, Moscona A, Snoeck H-W. 2017. A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 19:542–549. doi:10.1038/ncb3510.
    1. Huang SXL, Islam MN, O'Neill J, Hu Z, Yang Y-G, Chen Y-W, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck H-W. 2014. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91. doi:10.1038/nbt.2754.
    1. Sachs N, Papaspyropoulos A, Zomer‐van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz‐Prince G, Iakobachvili N, Amatngalim GD, Ligt J, Hoeck A, Proost N, Viveen MC, Lyubimova A, Teeven L, Derakhshan S, Korving J, Begthel H, Dekkers JF, Kumawat K, Ramos E, Oosterhout MFM, Offerhaus GJ, Wiener DJ, Olimpio EP, Dijkstra KK, Smit EF, Linden M, Jaksani S, Ven M, Jonkers J, Rios AC, Voest EE, Moorsel CH, Ent CK, Cuppen E, Oudenaarden A, Coenjaerts FE, Meyaard L, Bont LJ, Peters PJ, Tans SJ, Zon JS, Boj SF, Vries RG, Beekman JM, Clevers H. 2019. Long-term expanding human airway organoids for disease modeling. EMBO J 38:e100300. doi:10.15252/embj.2018100300.
    1. Brewington JJ, Filbrandt ET, LaRosa FJ, Ostmann AJ, Strecker LM, Szczesniak RD, Clancy JP. 2018. Detection of CFTR function and modulation in primary human nasal cell spheroids. J Cyst Fibros 17:26–33. doi:10.1016/j.jcf.2017.06.010.
    1. Gamage AM, Tan KS, Chan WOY, Liu J, Tan CW, Ong YK, Thong M, Andiappan AK, Anderson DE, Wang DY, Wang L-F. 2020. Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathog 16:e1009130. doi:10.1371/journal.ppat.1009130.
    1. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, O'Brien KL, Roca A, Wright PF, Bruce N, Chandran A, Theodoratou E, Sutanto A, Sedyaningsih ER, Ngama M, Munywoki PK, Kartasasmita C, Simões EAF, Rudan I, Weber MW, Campbell H. 2010. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet 375:1545–1555. doi:10.1016/S0140-6736(10)60206-1.
    1. Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, Ali A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor S, Bruce N, Bruden D, Buchy P, Campbell S, Carosone-Link P, Chadha M, Chipeta J, Chou M, Clara W, Cohen C, de Cuellar E, Dang D-A, Dash-Yandag B, Deloria-Knoll M, Dherani M, Eap T, Ebruke BE, Echavarria M, de Freitas Lázaro Emediato CC, Fasce RA, Feikin DR, Feng L, et al. . 2017. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet 390:946–958., doi:10.1016/S0140-6736(17)30938-8.
    1. Welliver TP, Garofalo RP, Hosakote Y, Hintz KH, Avendano L, Sanchez K, Velozo L, Jafri H, Chavez-Bueno S, Ogra PL, McKinney LAnn, Reed JL, Welliver RC. 2007. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 195:1126–1136. doi:10.1086/512615.
    1. Hall CB. 2012. The burgeoning burden of respiratory syncytial virus among children. Infect Disord Drug Targets 12:92–97. doi:10.2174/187152612800100099.
    1. Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. 2005. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med 352:1749–1759. doi:10.1056/NEJMoa043951.
    1. Dong E, Du H, Gardner L. 2020. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20:533–534. doi:10.1016/S1473-3099(20)30120-1.
    1. Vázquez Y, González L, Noguera L, González PA, Riedel CA, Bertrand P, Bueno SM. 2019. Cytokines in the respiratory airway as biomarkers of severity and prognosis for respiratory syncytial virus infection: an update. Front Immunol 10:1154. doi:10.3389/fimmu.2019.01154.
    1. Chen Y, Wang J, Liu C, Su L, Zhang D, Fan J, Yang Y, Xiao M, Xie J, Xu Y, Li Y, Zhang S. 2020. IP-10 and MCP-1 as biomarkers associated with disease severity of COVID-19. Mol Med 26:97. doi:10.1186/s10020-020-00230-x.
    1. Ueland T, Holter JC, Holten AR, Müller KE, Lind A, Bekken GK, Dudman S, Aukrust P, Dyrhol-Riise AM, Heggelund L. 2020. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J Infect 81:e41–e43. doi:10.1016/j.jinf.2020.06.061.
    1. Dabo AJ, Cummins N, Eden E, Geraghty P. 2015. Matrix metalloproteinase 9 exerts antiviral activity against respiratory syncytial virus. PLoS One 10:e0135970. doi:10.1371/journal.pone.0135970.
    1. Guiot J, Moermans C, Henket M, Corhay J-L, Louis R. 2017. Blood biomarkers in idiopathic pulmonary fibrosis. Lung 195:273–280. doi:10.1007/s00408-017-9993-5.
    1. Zhang AJ, Lee AC-Y, Chu H, Chan JF-W, Fan Z, Li C, Liu F, Chen Y, Yuan S, Poon VK-M, Chan CC-S, Cai J-P, Wu KL-K, Sridhar S, Chan Y-S, Yuen K-Y. 2021. Severe acute respiratory syndrome coronavirus 2 infects and damages the mature and immature olfactory sensory neurons of hamsters. Clin Infect Dis 73:e503–e512. doi:10.1093/cid/ciaa995.
    1. Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, van Doremalen N, Leighton I, Yinda CK, Pérez-Pérez L, Okumura A, Lovaglio J, Hanley PW, Saturday G, Bosio CM, Anzick S, Barbian K, Cihlar T, Martens C, Scott DP, Munster VJ, de Wit E. 2020. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature 585:273–276. doi:10.1038/s41586-020-2423-5.
    1. Richard M, Kok A, de Meulder D, Bestebroer TM, Lamers MM, Okba NMA, Fentener van Vlissingen M, Rockx B, Haagmans BL, Koopmans MPG, Fouchier RAM, Herfst S. 2020. SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nat Commun 11:3496. doi:10.1038/s41467-020-17367-2.
    1. Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, Hansbro NG, Kim RY, Donovan C, Liu G, Faiz A, Short KR, Lyons JG, McCaughan GW, Gorrell MD, Cole A, Moreno C, Couteur D, Hesselson D, Triccas J, Neely GG, Gamble JR, Simpson SJ, Saunders BM, Oliver BG, Britton WJ, Wark PA, Nold-Petry CA, Hansbro PM. 2020. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol 13:877–891. doi:10.1038/s41385-020-00340-z.
    1. Taylor G. 2017. Animal models of respiratory syncytial virus infection. Vaccine 35:469–480. doi:10.1016/j.vaccine.2016.11.054.
    1. Bem RA, Domachowske JB, Rosenberg HF. 2011. Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 301:L148–L156. doi:10.1152/ajplung.00065.2011.
    1. Mulay A, Konda B, Garcia G Jr, Yao C, Beil S, Sen C, Purkayastha A, Kolls JK, Pociask DA, Pessina P, de Aja JS, Garcia-de-Alba CF, Kim CF, Gomperts B, Arumugaswami V, Stripp BR. 2020. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. bioRxiv doi:10.1101/2020.06.29.174623.
    1. Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, Groen N, Ravelli RBG, Duimel HQ, Demmers JAA, Verjans GMGM, Koopmans MPG, Muraro MJ, Peters PJ, Clevers H, Haagmans BL. 2021. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J 40:e105912. doi:10.15252/embj.2020105912.
    1. American Academy of Pediatrics Committee on Infectious Diseases, American Academy of Pediatrics Bronchiolitis Guidelines Committee. 2014. Updated guidance for palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 134:e620-38. doi:10.1542/peds.2014-1666.
    1. Subramanian KN, Weisman LE, Rhodes T, Ariagno R, Sánchez PJ, Steichen J, Givner LB, Jennings TL, Top FH Jr, Carlin D, Connor E. 1998. Safety, tolerance and pharmacokinetics of a humanized monoclonal antibody to respiratory syncytial virus in premature infants and infants with bronchopulmonary dysplasia. MEDI-493 Study Group. Pediatr Infect Dis J 17:110–115. doi:10.1097/00006454-199802000-00006.
    1. Gilbert BE, Patel N, Lu H, Liu Y, Guebre-Xabier M, Piedra PA, Glenn G, Ellingsworth L, Smith G. 2018. Respiratory syncytial virus fusion nanoparticle vaccine immune responses target multiple neutralizing epitopes that contribute to protection against wild-type and palivizumab-resistant mutant virus challenge. Vaccine 36:8069–8078. doi:10.1016/j.vaccine.2018.10.073.
    1. Benali R, Tournier JM, Chevillard M, Zahm JM, Klossek JM, Hinnrasky J, Gaillard D, Maquart FX, Puchelle E. 1993. Tubule formation by human surface respiratory epithelial cells cultured in a three-dimensional collagen lattice. Am J Physiol 264:L183–92. doi:10.1152/ajplung.1993.264.2.L183.
    1. Jiang D, Schaefer N, Chu HW. 2018. Air-liquid interface culture of human and mouse airway epithelial cells. Methods Mol Biol 1809:91–109. doi:10.1007/978-1-4939-8570-8_8.
    1. Zhou J, Li C, Sachs N, Chiu MC, Wong BH-Y, Chu H, Poon VK-M, Wang D, Zhao X, Wen L, Song W, Yuan S, Wong KK-Y, Chan JF-W, To KK-W, Chen H, Clevers H, Yuen K-Y. 2018. Differentiated human airway organoids to assess infectivity of emerging influenza virus. Proc Natl Acad Sci USA 115:6822–6827. doi:10.1073/pnas.1806308115.
    1. Cao H, Ouyang H, Ip W, Du K, Duan W, Avolio J, Wu J, Duan C, Yeger H, Bear CE, Gonska T, Hu J, Moraes TJ. 2015. Testing gene therapy vectors in human primary nasal epithelial cultures. Mol Ther Methods Clin Dev 2:15034. doi:10.1038/mtm.2015.34.
    1. Charles DD, Fisher JR, Hoskinson SM, Medina-Colorado AA, Shen YC, Chaaban MR, Widen SG, Eaves-Pyles TD, Maxwell CA, Miller AL, Popov VL, Pyles RB. 2019. Development of a novel ex vivo nasal epithelial cell model supporting colonization with human nasal microbiota. Front Cell Infect Microbiol 9:165. doi:10.3389/fcimb.2019.00165.
    1. Leung C, Wadsworth SJ, Yang SJ, Dorscheid DR. 2020. Structural and functional variations in human bronchial epithelial cells cultured in air-liquid interface using different growth media. Am J Physiol Lung Cell Mol Physiol 318:L1063–L1073. doi:10.1152/ajplung.00190.2019.
    1. Müller L, Brighton LE, Carson JL, Fischer WA, Jaspers I. 2013. Culturing of human nasal epithelial cells at the air liquid interface. JoVE 80:e50646. doi:10.3791/50646.
    1. Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Ravelli RBG, Paul van Schayck J, Mykytyn AZ, Duimel HQ, van Donselaar E, Riesebosch S, Kuijpers HJH, Schipper D, van de Wetering WJ, de Graaf M, Koopmans M, Cuppen E, Peters PJ, Haagmans BL, Clevers H. 2020. SARS-CoV-2 productively infects human gut enterocytes. Science 369:50–54.
    1. Freeman MC, Wells AI, Ciomperlik-Patton J, Myerburg MM, Anstadt J, Coyne CB. 2021. Respiratory and intestinal epithelial cells exhibit differential susceptibility and innate immune responses to contemporary EV-D68 isolates. bioRxiv 2021.01.05.425225.
    1. Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. 2002. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76:5654–5666. doi:10.1128/jvi.76.11.5654-5666.2002.
    1. Villenave R, Thavagnanam S, Sarlang S, Parker J, Douglas I, Skibinski G, Heaney LG, McKaigue JP, Coyle PV, Shields MD, Power UF. 2012. In vitro modeling of respiratory syncytial virus infection of pediatric bronchial epithelium, the primary target of infection in vivo. Proc Natl Acad Sci USA 109:5040–5045. doi:10.1073/pnas.1110203109.
    1. Rijsbergen LC, Lamers MM, Comvalius AD, Koutstaal RW, Schipper D, Duprex WP, Haagmans BL, de Vries RD, de Swart RL. 2021. Human respiratory syncytial virus subgroup A and B infections in nasal, bronchial, small-airway, and organoid-derived respiratory cultures. mSphere 6:e00237-21. doi:10.1128/mSphere.00237-21.
    1. Persson BD, Jaffe AB, Fearns R, Danahay H. 2014. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS One 9:e102368. doi:10.1371/journal.pone.0102368.
    1. Nicholson EG, Schlegel C, Garofalo RP, Mehta R, Scheffler M, Mei M, Piedra PA. 2016. Robust cytokine and chemokine response in nasopharyngeal secretions: association with decreased severity in children with physician diagnosed bronchiolitis. J Infect Dis 214:649–655. doi:10.1093/infdis/jiw191.
    1. Sung RYT, Hui SHL, Wong CK, Lam CWK, Yin J. 2001. A comparison of cytokine responses in respiratory syncytial virus and influenza A infections in infants. Eur J Pediatr 160:117–122. doi:10.1007/s004310000676.
    1. Rajan A, Piedra F-A, Aideyan L, McBride T, Robertson M, Johnson HL, Aloisio GM, Henke D, Coarfa C, Stossi F, Menon VK, Doddapaneni H, Muzny DM, Cregeen SJJ, Hoffman KL, Petrosino J, Gibbs RA, Avadhanula V, Piedra PA. 2021. Multiple RSV strains infecting HEp-2 and A549 cells reveal cell line-dependent differences in resistance to RSV infection. bioRxiv, p 2021.06.15.448622.
    1. Lambkin-Williams R, Noulin N, Mann A, Catchpole A, Gilbert AS. 2018. The human viral challenge model: accelerating the evaluation of respiratory antivirals, vaccines and novel diagnostics. Respir Res 19:123. doi:10.1186/s12931-018-0784-1.
    1. Groothuis JR, Simoes EA, Levin MJ, Hall CB, Long CE, Rodriguez WJ, Arrobio J, Meissner HC, Fulton DR, Welliver RC, Tristram DA, Siber GR, Prince GA, Van Raden M, Hemming VG, Respiratory Syncytial Virus Immune Globulin Study Group . 1993. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. N Engl J Med 329:1524–1530. doi:10.1056/NEJM199311183292102.
    1. Siber GR, Leombruno D, Leszczynski J, McIver J, Bodkin D, Gonin R, Thompson CM, Walsh EE, Piedra PA, Hemming VG, Prince GA. 1994. Comparison of antibody concentrations and protective activity of respiratory syncytial virus immune globulin and conventional immune globulin. J Infect Dis 169:1368–1373. doi:10.1093/infdis/169.6.1368.
    1. The IMpact-RSV Study Group. 1998. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102:531–537.
    1. Neuberger T, Burton B, Clark H, Van Goor F. 2011. Use of primary cultures of human bronchial epithelial cells isolated from cystic fibrosis patients for the pre-clinical testing of CFTR modulators. Methods Mol Biol 741:39–54.
    1. Poole NM, Rajan A, Maresso AW. 2018. Human intestinal enteroids for the study of bacterial adherence, invasion, and translocation. Curr Protoc Microbiol 50:e55. doi:10.1002/cpmc.55.
    1. Saxena K, Blutt SE, Ettayebi K, Zeng X-L, Broughman JR, Crawford SE, Karandikar UC, Sastri NP, Conner ME, Opekun AR, Graham DY, Qureshi W, Sherman V, Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Donowitz M, Estes MK. 2016. Human intestinal enteroids: a new model to study human rotavirus infection, host restriction, and pathophysiology. J Virol 90:43–56. doi:10.1128/JVI.01930-15.
    1. Rajan A, Vela L, Zeng X-L, Yu X, Shroyer N, Blutt SE, Poole NM, Carlin LG, Nataro JP, Estes MK, Okhuysen PC, Maresso AW. 2018. Novel segment- and host-specific patterns of enteroaggregative Escherichia coli adherence to human intestinal enteroids. mBio 9:e02419-17. doi:10.1128/mBio.02419-17.
    1. Avadhanula V, Chemaly RF, Shah DP, Ghantoji SS, Azzi JM, Aideyan LO, Mei M, Piedra PA. 2015. Infection with novel respiratory syncytial virus genotype Ontario (ON1) in adult hematopoietic cell transplant recipients, Texas, 2011–2013. J Infect Dis 211:582–589. doi:10.1093/infdis/jiu473.
    1. Avadhanula V, Nicholson EG, Ferlic-Stark L, Piedra F-A, Blunck BN, Fragoso S, Bond NL, Santarcangelo PL, Ye X, McBride TJ, Aideyan LO, Patel KD, Maurer L, Angelo LS, Piedra PA. 2021. Viral load of severe acute respiratory syndrome coronavirus 2 in adults during the first and second wave of coronavirus disease 2019 pandemic in Houston, Texas: the potential of the superspreader. J Infect Dis 223:1528–1537. doi:10.1093/infdis/jiab097.
    1. Englund JA, Piedra PA, Jewell A, Patel K, Baxter BB, Whimbey E. 1996. Rapid diagnosis of respiratory syncytial virus infections in immunocompromised adults. J Clin Microbiol 34:1649–1653. doi:10.1128/JCM.34.7.1649-1653.1996.
    1. Shi SR, Chaiwun B, Young L, Cote RJ, Taylor CR. 1993. Antigen retrieval technique utilizing citrate buffer or urea solution for immunohistochemical demonstration of androgen receptor in formalin-fixed paraffin sections. J Histochem Cytochem 41:1599–1604. doi:10.1177/41.11.7691930.
    1. Ye X, Iwuchukwu OP, Avadhanula V, Aideyan LO, McBride TJ, Ferlic-Stark LL, Patel KD, Piedra F-A, Shah DP, Chemaly RF, Piedra PA. 2018. Comparison of palivizumab-like antibody binding to different conformations of the RSV F protein in RSV-infected adult hematopoietic cell transplant recipients. J Infect Dis 217:1247–1256. doi:10.1093/infdis/jiy026.

Source: PubMed

3
Abonnieren