Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer

Francis W Hunter, Hilary R Barker, Barbara Lipert, Françoise Rothé, Géraldine Gebhart, Martine J Piccart-Gebhart, Christos Sotiriou, Stephen M F Jamieson, Francis W Hunter, Hilary R Barker, Barbara Lipert, Françoise Rothé, Géraldine Gebhart, Martine J Piccart-Gebhart, Christos Sotiriou, Stephen M F Jamieson

Abstract

The HER2-targeted antibody-drug conjugate trastuzumab emtansine (T-DM1) is approved for the treatment of metastatic, HER2-positive breast cancer after prior trastuzumab and taxane therapy, and has also demonstrated efficacy in the adjuvant setting in incomplete responders to neoadjuvant therapy. Despite its objective activity, intrinsic and acquired resistance to T-DM1 remains a major clinical challenge. T-DM1 mediates its activity in a number of ways, encompassing HER2 signalling blockade, Fc-mediated immune response and payload-mediated microtubule poisoning. Resistance mechanisms relating to each of these features have been demonstrated, and we outline the findings of these studies in this review. In our overview of the substantial literature on T-DM1 activity and resistance, we conclude that the T-DM1 resistance mechanisms most strongly supported by the experimental data relate to dysfunctional intracellular metabolism of the construct and subversion of DM1-mediated cell killing. Loss of dependence on signalling initiated by HER2-HER2 homodimers is not substantiated as a resistance mechanism by clinical or experimental studies, and the impact of EGFR expression and tumour immunological status requires further investigation. These findings are instructive with respect to strategies that might overcome T-DM1 resistance, including the use of second-generation anti-HER2 antibody-drug conjugates that deploy alternative linker-payload chemistries.

Conflict of interest statement

F.W.H. is an employee and shareholder of Johnson & Johnson, Inc., received honoraria from Threshold Pharmaceuticals, Inc., received research funding from Roche and received consulting fees from Merck KGaA. M.J.P.-G. received honoraria and consulted for Genentech/Roche. C.S. is named on patents on gene expression and methylation signatures, participated in advisory boards, and/or spoke at meetings, and/or was a recipient of travel support for participation in medical meetings for/from (in alphabetical order): Amgen, Astellas, AstraZeneca, Bayer, Celgene, Nanostring Technologies, Novartis, Pfizer, Puma Biotechnology, Roche, and Seattle Genetics. Other authors declare no conflict of interest.

Figures

Fig. 1. Structure of T-DM1.
Fig. 1. Structure of T-DM1.
T-DM1 is comprised of the monoclonal antibody trastuzumab conjugated via a non-cleavable MCC thioether linker to 3–3.6 moieties of the potent tubulin polymerisation inhibitor mertansine (DM1).
Fig. 2. Mechanisms of action of T-DM1.
Fig. 2. Mechanisms of action of T-DM1.
T-DM1 exerts anti-tumour activity via at least three distinct mechanisms. As for trastuzumab, engagement of HER2 receptors by T-DM1 inhibits downstream signalling pathways (via RAS–mitogen-activated protein kinase [MAPK] and phosphatidylinositol 3-kinase [PI3K]–AKT–mammalian target of rapamycin [mTOR]) and ectodomain shedding while also eliciting immune effector cell function (e.g. antibody-dependent cellular cytotoxicity) mediated via Fc receptors. T-DM1–HER2 complexes are also internalised via receptor-mediated endocytosis, after which endocytic vesicles mature through the endosomal pathway for ultimate delivery to lysosomes. Trastuzumab is proteolytically degraded in lysosomes, liberating lysine-MCC-DM1 for active transport into the cytoplasm, where it inhibits tubulin polymerisation resulting in failure of the mitotic spindle and ultimate mitotic catastrophe.
Fig. 3. T-DM1 resistance arising from loss…
Fig. 3. T-DM1 resistance arising from loss of trastuzumab-mediated activity.
A reduction in HER2 expression can impair T-DM1 binding and internalisation, preventing the intracellular release of DM1. Shedding of the extracellular domain of HER2 to generate the truncated form, p95HER2, also can prevent T-DM1 binding and DM1 intracellular release. Mutations in PIK3CA and loss of function of PTEN can lead to constitutive phosphatidylinositol 3-kinase (PI3K)–AKT–mammalian target of rapamycin (mTOR) signalling despite T-DM1-mediated inhibition of HER2. Heterodimerisation of HER2 with HER3 or epidermal growth factor receptor (EGFR) can induce PI3K and mitogen-activated protein kinase (MAPK) signalling in the presence of T-DM1. Finally, immunosuppression can limit the antibody-dependent cell-mediated cytotoxicity (ADCC) associated with T-DM1.
Fig. 4. T-DM1 resistance arising from dysfunctional…
Fig. 4. T-DM1 resistance arising from dysfunctional intracellular trafficking and metabolism.
HER2–T-DM1 complex internalisation might be reduced by enhanced recycling of HER2–T-DM1 complexes back to the plasma membrane, thereby promoting the efflux of T-DM1. Altered expression of certain endocytic and cytoskeletal proteins could impair normal transit of HER2–T-DM1 complexes through the endosomal maturation pathway. Altered lysosomal pH regulation resulting in decreased acidity of lysosomal vesicles can reduce catabolism of HER2–T-DM1 to lysine-MCC-DM1 and prevent the release of the active compound. Reduced expression of lysosomal transporter proteins, such as SLC46A3, might also impair the release of lysine-MCC-DM1 into the cytoplasm.
Fig. 5. T-DM1 resistance arising from impairment…
Fig. 5. T-DM1 resistance arising from impairment of DM1-mediated cytotoxicity.
Increased expression of drug efflux transporters for which DM1 is a substrate might promote the efflux of lysine-MCC-DM1 from cells. Alternatively, cells might escape from DM1-mediated mitotic catastrophe through reduced induction of cyclin B1 or increased expression of polo-like kinase 1 (PLK1), allowing cells to complete mitosis and avoid apoptosis despite having an abnormal mitotic spindle.

References

    1. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68:9280–9290. doi: 10.1158/0008-5472.CAN-08-1776.
    1. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012;367:1783–1791. doi: 10.1056/NEJMoa1209124.
    1. Krop IE, Kim SB, Martin AG, LoRusso PM, Ferrero JM, Badovinac-Crnjevic T, et al. Trastuzumab emtansine versus treatment of physician’s choice in patients with previously treated HER2-positive metastatic breast cancer (TH3RESA): final overall survival results from a randomised open-label phase 3 trial. Lancet Oncol. 2017;18:743–754. doi: 10.1016/S1470-2045(17)30313-3.
    1. Welslau M, Diéras V, Sohn JH, Hurvitz SA, Lalla D, Fang L, et al. Patient-reported outcomes from EMILIA, a randomized phase 3 study of trastuzumab emtansine (T-DM1) versus capecitabine and lapatinib in human epidermal growth factor receptor 2-positive locally advanced or metastatic breast cancer. Cancer. 2014;120:642–651. doi: 10.1002/cncr.28465.
    1. Perez EA, Barrios C, Eiermann W, Toi M, Im YH, Conte P, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2-positive, advanced breast cancer: Primary results from the phase III MARIANNE study. J. Clin. Oncol. 2017;35:141–148. doi: 10.1200/JCO.2016.67.4887.
    1. Hurvitz SA, Martin M, Symmans WF, Jung KH, Huang CS, Thompson AM, et al. Neoadjuvant trastuzumab, pertuzumab, and chemotherapy versus trastuzumab emtansine plus pertuzumab in patients with HER2-positive breast cancer (KRISTINE): a randomised, open-label, multicentre, phase 3 trial. Lancet Oncol. 2018;19:115–126. doi: 10.1016/S1470-2045(17)30716-7.
    1. Hurvitz SA, Martin M, Jung KH, Huang C-S, Harbeck N, Valero V, et al. Neoadjuvant trastuzumab emtansine and pertuzumab in human epidermal growth factor receptor 2–positive breast cancer: Three-year outcomes from the phase III KRISTINE study. J. Clin. Oncol. 2019;37:2206–2216. doi: 10.1200/JCO.19.00882.
    1. Bergh JCS, Andersson A, Bjohle J, Bosch A, Carlsson L, Dreifaldt AC, et al. Docetaxel, trastuzumab, pertuzumab versus trastuzumab emtansine as neoadjuvant treatment of HER2-positive breast cancer: Results from the Swedish PREDIX HER2 trial identifying a new potential de-escalation standard? J. Clin. Oncol. 2019;37:501–501. doi: 10.1200/JCO.2019.37.15_suppl.501.
    1. Okines A. TDM1 in the neoadjuvant treatment of HER2 positive breast cancer: Impact of the KRISTINE (TRIO-021) trial. Rev. Recent Clin. Trials. 2017;12:216–222.. doi: 10.2174/1574887112666170529094911.
    1. Ocaña A, Amir E, Pandiella A. Dual targeting of HER2-positive breast cancer with trastuzumab emtansine and pertuzumab: Understanding clinical trial results. Oncotarget. 2018;9:31915–31919.. doi: 10.18632/oncotarget.25739.
    1. von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 2019;380:617–628. doi: 10.1056/NEJMoa1814017.
    1. FDA approves ado-trastuzumab emtansine for early breast cancer. 2019. .
    1. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16:209. doi: 10.1186/bcr3621.
    1. Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66:4426–4433. doi: 10.1158/0008-5472.CAN-05-4489.
    1. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107:1039–1046. doi: 10.1111/cas.12966.
    1. Issell BF, Crooke ST. Maytansine. Cancer Treat. Rev. 1978;5:199–207. doi: 10.1016/S0305-7372(78)80014-0.
    1. Barok M, Tanner M, Köninki K, Isola J. Trastuzumab-DM1 is highly effective in preclinical models of HER2-positive gastric cancer. Cancer Lett. 2011;306:171–179. doi: 10.1016/j.canlet.2011.03.002.
    1. Junttila TT, Li G, Parsons K, Phillips GL, Sliwkowski MX. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res. Treat. 2011;128:347–356. doi: 10.1007/s10549-010-1090-x.
    1. Hudis CA. Trastuzumab—mechanism of action and use in clinical practice. N. Engl. J. Med. 2007;357:39–51. doi: 10.1056/NEJMra043186.
    1. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J. Baselga J. Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61:4744–4749.
    1. Scaltriti M, Rojo F, Ocaña A, Anido J, Guzman M, Cortes J, et al. Expression of p95HER2, a truncated form of the HER2 receptor, and response to Anti-HER2 therapies in breast cancer. J. Natl Cancer Inst. 2007;99:628–638. doi: 10.1093/jnci/djk134.
    1. Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin. Cancer Res. 2004;10:5650–5655. doi: 10.1158/1078-0432.CCR-04-0225.
    1. Cooley S, Burns LJ, Repka T, Miller JS. Natural killer cell cytotoxicity of breast cancer targets is enhanced by two distinct mechanisms of antibody-dependent cellular cytotoxicity against LFA-3 and HER2/neu. Exp. Hematol. 1999;27:1533–1541. doi: 10.1016/S0301-472X(99)00089-2.
    1. Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J. Clin. Oncol. 2009;27:5838–5847. doi: 10.1200/JCO.2009.22.1507.
    1. Mittendorf EA, Wu Y, Scaltriti M, Meric-Bernstam F, Hunt KK, Dawood S, et al. Loss of HER2 amplification following trastuzumab-based neoadjuvant systemic therapy and survival outcomes. Clin. Cancer Res. 2009;15:7381–8. doi: 10.1158/1078-0432.CCR-09-1735.
    1. Loganzo F, Tan X, Sung M, Jin G, Myers JS, Melamud E, et al. Tumor cells chronically treated with a trastuzumab-maytansinoid antibody-drug conjugate develop varied resistance mechanisms but respond to alternate treatments. Mol. Cancer Ther. 2015;14:952–963. doi: 10.1158/1535-7163.MCT-14-0862.
    1. Sabbaghi MA, Gil-Gomez G, Guardia C, Servitja S, Arpí O, García-Alonso S, et al. Defective cyclin B1 induction in trastuzumab-emtansine (T-DM1) acquired resistance in HER2-positive breast cancer. Clin. Cancer Res. 2017;23:7006–7019. doi: 10.1158/1078-0432.CCR-17-0696.
    1. Sung M, Tan X, Lu B, Golas J, Hosselet C, Wang F, et al. Caveolae-mediated endocytosis as a novel mechanism of resistance to trastuzumab emtansine (T-DM1) Mol. Cancer Ther. 2017;17:243–253. doi: 10.1158/1535-7163.MCT-17-0403.
    1. Li G, Guo J, Shen B-Q, Yadav DB, Sliwkowski MX, Crocker LM, et al. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol. Cancer Ther. 2018;17:1441–1453. doi: 10.1158/1535-7163.MCT-17-0296.
    1. Saatci Ö, Borgoni S, Akbulut Ö, Durmuş S, Raza U, Eyüpoğlu E, et al. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene. 2018;37:2251–2269. doi: 10.1038/s41388-017-0108-9.
    1. Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci. 2017;108:1458–1468. doi: 10.1111/cas.13253.
    1. Ríos-Luci C, García-Alonso S, Díaz-Rodríguez E, Nadal-Serrano M, Arribas J, Ocaña A, et al. Resistance to the antibody–drug conjugate T-DM1 is based in a reduction in lysosomal proteolytic activity. Cancer Res. 2017;77:4639–4651. doi: 10.1158/0008-5472.CAN-16-3127.
    1. Sakai H, Tsurutani J, Iwasa T, Komoike Y, Sakai K, Nishio K, et al. HER2 genomic amplification in circulating tumor DNA and estrogen receptor positivity predict primary resistance to trastuzumab emtansine (T-DM1) in patients with HER2-positive metastatic breast cancer. Breast Cancer. 2018;25:605–613. doi: 10.1007/s12282-018-0861-9.
    1. Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, et al. Rat MUC4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int. J. Cancer. 2002;99:783–791. doi: 10.1002/ijc.10410.
    1. Nagy P, Friedländer E, Tanner M, Kapanen AI, Carraway KL, Isola J, et al. Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a Herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Res. 2005;65:473–82.
    1. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70. doi: 10.1038/nature11412.
    1. Loibl S, Majewski I, Guarneri V, Nekljudova V, Holmes E, Bria E, et al. PIK3CA mutations are associated with reduced pathological complete response rates in primary HER2-positive breast cancer: pooled analysis of 967 patients from five prospective trials investigating lapatinib and trastuzumab. Ann. Oncol. 2016;27:1519–25. doi: 10.1093/annonc/mdw197.
    1. de Haas S, Hurvitz S, Martin M, Kiermaier A, Lewis Phillips G, Xu J, et al. Biomarker analysis from the neoadjuvant KRISTINE study in HER2-positive early breast cancer (EBC) Cancer Res. 2017;77(4 Suppl):P6–07–09.
    1. Baselga J, Phillips GDL, Verma S, Ro J, Huober J, Guardino AE, et al. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin. Cancer Res. 2016;22:3755–3763. doi: 10.1158/1078-0432.CCR-15-2499.
    1. Kim SB, Wildiers H, Krop IE, Smitt M, Yu R, Lysbet de Haas S, et al. Relationship between tumor biomarkers and efficacy in TH3RESA, a phase III study of trastuzumab emtansine (T-DM1) vs. treatment of physician’s choice in previously treated HER2-positive advanced breast cancer. Int. J. Cancer. 2016;139:2336–2342. doi: 10.1002/ijc.30276.
    1. Baldassarre T, Truesdell P, Craig AW. Endophilin A2 promotes HER2 internalization and sensitivity to trastuzumab-based therapy in HER2-positive breast cancers. Breast Cancer Res. 2017;19:110. doi: 10.1186/s13058-017-0900-z.
    1. Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011;71:1871–1882. doi: 10.1158/0008-5472.CAN-10-1872.
    1. Luque-Cabal M, García-Teijido P, Fernández-Pérez Y, Sánchez-Lorenzo L, Palacio-Vázquez I. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it. Clin. Med. Insights Oncol. 2016;10:21–30..
    1. Phillips GDL, Fields CT, Li G, Dowbenko D, Schaefer G, Miller K, et al. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: Critical role for neuregulin blockade in antitumor response to combination therapy. Clin. Cancer Res. 2014;20:456–468. doi: 10.1158/1078-0432.CCR-13-0358.
    1. Force J, Howie LJ, Abbott SE, Bentley R, Marcom PK, Kimmick G, et al. Early stage HER2-positive breast cancers not achieving a pCR from neoadjuvant rrastuzumab- or pertuzumab-based regimens have an immunosuppressive phenotype. Clin. Breast Cancer. 2018;18:410–417. doi: 10.1016/j.clbc.2018.02.010.
    1. Turcotte M, Allard D, Mittal D, Bareche Y, Buisseret L, Jose V, et al. CD73 promotes resistance to HER2/ErbB2 antibody therapy. Cancer Res. 2017;77(4 Suppl):5652–5663. doi: 10.1158/0008-5472.CAN-17-0707.
    1. Gianni L, Bianchini G, Valagussa P, Belousov A, Thomas M, Pusztai L, et al. Adaptive immune system and immune checkpoints are associated with response to pertuzumab (P) and trastuzumab (H) in the NeoSphere study. Cancer Res. 2012;72(4 Suppl):S6–7.
    1. Müller, P., Kreuzaler, M., Khan, T., Thommen, D. S., Martin, K., Glatz, K. et al. Trastuzumab emtansine (T-DM1) renders HER2 + breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med. 7, pp. 315ra188 (2015).
    1. Emens L, Esteva F, Beresford M, Saura C, De Laurentiis M, Kim S-B, et al. Results from KATE2, a randomized phase 2 study of atezolizumab (atezo)+trastuzumab emtansine (T-DM1) vs placebo (pbo)+T-DM1 in previously treated HER2+ advanced breast cancer (BC) Cancer Res. 2019;79(4 Suppl):PD3–01.
    1. Filho OM, Viale G, Trippa L, Li T, Yardley DA, Mayer IA, et al. HER2 heterogeneity as a predictor of response to neoadjuvant T-DM1 plus pertuzumab: Results from a prospective clinical trial. J. Clin. Oncol. 2019;37:502–502. doi: 10.1200/JCO.2019.37.15_suppl.502.
    1. Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): The ZEPHIR trial. Ann. Oncol. 2016;27:619–624. doi: 10.1093/annonc/mdv577.
    1. Austin CD, De Mazière AM, Pisacane PI, Van Dijk SM, Eigenbrot C, Sliwkowski MX, et al. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. Mol. Biol. Cell. 2004;15:5268–5282. doi: 10.1091/mbc.e04-07-0591.
    1. Chung, Y. C., Kuo, J. F., Wei, W. C., Chang, K. J., Chao, W. T., Tan, M. Caveolin-1 dependent endocytosis enhances the chemosensitivity of HER-2 positive breast cancer cells to trastuzumab emtansine (T-DM1). PLoS ONE10, e0133072 10.1371/journal.pone.0133072 (2015).
    1. Chung, Y. C., Chang, C. M., Wei, W. C., Chang, T. W., Chang, K. J., Chao, W. T. Metformin-induced caveolin-1 expression promotes T-DM1 drug efficacy in breast cancer cells. Sci. Rep.8, 3930 10.1038/s41598-018-22250-8 (2018).
    1. Sauveur J, Matera E-L, Chettab K, Valet P, Guitton J, Savina A, et al. Esophageal cancer cells resistant to T-DM1 display alterations in cell adhesion and the prostaglandin pathway. Oncotarget. 2018;9:21141–21155.. doi: 10.18632/oncotarget.24975.
    1. Hamblett KJ, Jacob AP, Gurgel JL, Tometsko ME, Rock BM, Patel SK, et al. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015;75:5329–5340. doi: 10.1158/0008-5472.CAN-15-1610.
    1. Kinneer K, Meekin J, Tiberghien AC, Tai Y-T, Phipps S, Kiefer CM, et al. SLC46A3 as a potential predictive biomarker for antibody–drug conjugates bearing noncleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin. Cancer Res. 2018;24:6570–6582. doi: 10.1158/1078-0432.CCR-18-1300.
    1. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010;70:2528–2537. doi: 10.1158/0008-5472.CAN-09-3546.
    1. Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int. J. Cancer. 2017;141:1682–1689. doi: 10.1002/ijc.30870.
    1. Gavet O, Pines J. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell. 2010;18:533–543. doi: 10.1016/j.devcel.2010.02.013.
    1. Visconti, R., Della Monica, R., Grieco, D. Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res. 35, 153 10.1186/s13046-016-0433-9 (2016).
    1. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, et al. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res. 2016;22:5097–5108. doi: 10.1158/1078-0432.CCR-15-2822.
    1. Iwata H, Tamura K, Doi T, Tsurutani J, Modi S, Park H, et al. Trastuzumab deruxtecan (DS-8201a) in subjects with HER2-expressing solid tumors: Long-term results of a large phase 1 study with multiple expansion cohorts. J. Clin. Oncol. 2018;36:2501–2501. doi: 10.1200/JCO.2018.36.15_suppl.2501.
    1. Doi T, Shitara K, Naito Y, Shimomura A, Fujiwara Y, Yonemori K, et al. Safety, pharmacokinetics, and antitumour activity of trastuzumab deruxtecan (DS-8201), a HER2-targeting antibody–drug conjugate, in patients with advanced breast and gastric or gastro-oesophageal tumours: a phase 1 dose-escalation study. Lancet Oncol. 2017;18:1512–1522. doi: 10.1016/S1470-2045(17)30604-6.
    1. Tamura K, Tsurutani J, Takahashi S, Iwata H, Krop IE, Redfern C, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20:816–826. doi: 10.1016/S1470-2045(19)30097-X.
    1. Shitara K, Iwata H, Takahashi S, Tamura K, Park H, Modi S, et al. Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive gastric cancer: a dose-expansion, phase 1 study. Lancet Oncol. 2019;20:827–836. doi: 10.1016/S1470-2045(19)30088-9.
    1. Elgersma RC, Coumans RGE, Huijbregts T, WMPB Menge, JAF Joosten, Spijker HJ, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: Toward selection of HER2-targeting antibody-drug conjugate SYD985. Mol. Pharm. 2015;12:1813–35.. doi: 10.1021/mp500781a.
    1. van der Lee MMC, Groothuis PG, Ubink R, van der Vleuten MAJ, van Achterberg TA, Loosveld EM, et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol. Cancer Ther. 2015;14:692–703. doi: 10.1158/1535-7163.MCT-14-0881-T.
    1. Menderes G, Bonazzoli E, Bellone S, Black J, Predolini F, Pettinella F, et al. SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows antitumor activity in uterine and ovarian carcinosarcoma with HER2/Neu expression. Clin. Cancer Res. 2017;23:5836–5845. doi: 10.1158/1078-0432.CCR-16-2862.
    1. Banerji U, van Herpen CML, Saura C, Thistlethwaite F, Lord S, Moreno V, et al. Trastuzumab duocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019;20:1124–1135. doi: 10.1016/S1470-2045(19)30328-6.
    1. Spring L, Goel S, Sutherland S, Supko JG, Juric D, Isakoff SJ, et al. Trastuzumab emtansine (T-DM1) and ribociclib, an oral inhibitor of cyclin dependent kinase 4 and 6 (CDK 4/6), for patients with metastatic HER2-positive breast cancer. J. Clin. Oncol. 2019;37:1028–1028. doi: 10.1200/JCO.2019.37.15_suppl.1028.
    1. Brandão M, Pondé NF, Poggio F, Kotecki N, Salis M, Lambertini M, et al. Combination therapies for the treatment of HER2-positive breast cancer: current and future prospects. Expert Rev. Anticancer Ther. 2018;18:629–649. doi: 10.1080/14737140.2018.1477596.
    1. Jain S, Shah AN, Santa-Maria CA, Siziopikou K, Rademaker A, Helenowski I, et al. Phase I study of alpelisib (BYL-719) and trastuzumab emtansine (T-DM1) in HER2-positive metastatic breast cancer (MBC) after trastuzumab and taxane therapy. Breast Cancer Res. Treat. 2018;171:371–381. doi: 10.1007/s10549-018-4792-0.
    1. Gottesman, M. M., Pastan, I. H. The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl Cancer Inst.107, pp. djv222 (2015).

Source: PubMed

3
Abonnieren