Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review

William S Dodd, Dimitri Laurent, Aaron S Dumont, David M Hasan, Pascal M Jabbour, Robert M Starke, Koji Hosaka, Adam J Polifka, Brian L Hoh, Nohra Chalouhi, William S Dodd, Dimitri Laurent, Aaron S Dumont, David M Hasan, Pascal M Jabbour, Robert M Starke, Koji Hosaka, Adam J Polifka, Brian L Hoh, Nohra Chalouhi

Abstract

Delayed cerebral ischemia is a major predictor of poor outcomes in patients who suffer subarachnoid hemorrhage. Treatment options are limited and often ineffective despite many years of investigation and clinical trials. Modern advances in basic science have produced a much more complex, multifactorial framework in which delayed cerebral ischemia is better understood and novel treatments can be developed. Leveraging this knowledge to improve outcomes, however, depends on a holistic understanding of the disease process. We conducted a review of the literature to analyze the current state of investigation into delayed cerebral ischemia with emphasis on the major themes that have emerged over the past decades. Specifically, we discuss microcirculatory dysfunction, glymphatic impairment, inflammation, and neuroelectric disruption as pathological factors in addition to the canonical focus on cerebral vasospasm. This review intends to give clinicians and researchers a summary of the foundations of delayed cerebral ischemia pathophysiology while also underscoring the interactions and interdependencies between pathological factors. Through this overview, we also highlight the advances in translational studies and potential future therapeutic opportunities.

Keywords: delayed cerebral ischemia; intracranial aneurysm; stroke; subarachnoid hemorrhage.

Conflict of interest statement

None.

Figures

Figure 1. Vascular dysfunction after subarachnoid hemorrhage.
Figure 1. Vascular dysfunction after subarachnoid hemorrhage.
Transient global ischemia and free hemoglobin toxicity are the ultimate sources of vascular dysfunction leading to microthrombosis and vasospasm. Perturbation of the NO pathway is a pivotal mechanism connecting vascular dysfunction to inflammation and cortical spreading ischemia. The glymphatic system and meningeal lymphatic vessels are also emerging as a possible mediator of delayed cerebral ischemia. CBF indicates cerebral blood flow; CSF, cerebrospinal fluid; ICP, intracranial pressure; ROS, reactive oxygen species; SAH, subarachnoid hemorrhage; and SDs, spreading depolarizations.
Figure 2. Mechanisms of inflammatory response after…
Figure 2. Mechanisms of inflammatory response after subarachnoid hemorrhage.
Subarachnoid hemorrhage elicits an inflammatory response from resident CNS glia directly through TLR4 and CD163 receptor signaling. Reactive microglia then contribute to inflammatory cytokine production, vasospasm, and neuronal apoptosis. The endothelium of the cerebrovasculature also contributes to inflammation by recruiting circulating leukocytes. Neutrophils, monocytes, and lymphocytes all enter the CNS after SAH and promote vasospasm and inflammatory cytokine release. CD163 indicates cluster of differentiation 163; CNS, central nervous system; SAH, subarachnoid hemorrhage; and TLR4, toll‐like receptor 4.
Figure 3. Spreading depolarizations after subarachnoid hemorrhage…
Figure 3. Spreading depolarizations after subarachnoid hemorrhage and potential therapeutic targets.
Spreading depolarizations cause cerebral ischemia by increasing metabolic demand in injured tissue unable to compensate with increased perfusion. SAH itself also promotes the development of spreading depolarizations by the release of K+ and glutamate from extravasated erythrocytes and platelets. A couple of promising therapeutic agents to prevent spreading depolarizations/cortical spreading ischemia are ketamine and cilostazol. Ketamine works through inhibiting NMDA receptors and the propagation of spreading depolarizations. Cilostazol reduces ischemia by improving neurovascular response to depolarization. DCI indicates delayed cerebral ischemia; NMDA, N‐methyl‐D‐aspartate; and SAH, subarachnoid hemorrhage.

References

    1. Hop JW, Rinkel GJE, Algra A, van Gijn J . Case‐fatality rates and functional outcome after subarachnoid hemorrhage. Stroke. 1997;28:660–664. DOI: 10.1161/01.STR.28.3.660.
    1. Lovelock CE, Rinkel GJE, Rothwell PM. Time trends in outcome of subarachnoid hemorrhage: population‐based study and systematic review. Neurology. 2010;74:1494–1501. DOI: 10.1212/WNL.0b013e3181dd42b3.
    1. Hijdra A, Van Gijn J, Stefanko S, Van Dongen KJ, Vermeulen M, Van Crevel H. Delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: clinicoanatomic correlations. Neurology. 1986;36:329–333. DOI: 10.1212/WNL.36.3.329.
    1. Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, Connolly ES. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010;21:221–233. DOI: 10.1016/j.nec.2009.10.002.
    1. Rivero‐Arias O, Gray A, Wolstenholme J. Burden of disease and costs of aneurysmal subarachnoid haemorrhage (aSAH) in the United Kingdom. Cost Eff Resour Alloc. 2010;8:6. DOI: 10.1186/1478-7547-8-6.
    1. Stienen MN, Germans M, Burkhardt J‐K, Neidert MC, Fung C, Bervini D, Zumofen D, Roethlisberger M, Marbacher S, Maduri R, et al. Predictors of in‐hospital death after aneurysmal subarachnoid hemorrhage: analysis of a nationwide database (Swiss SOS [Swiss Study on Aneurysmal Subarachnoid Hemorrhage]). Stroke. 2018;49:333–340. DOI: 10.1161/STROKEAHA.117.019328.
    1. Velat GJ, Kimball MM, Mocco JD, Hoh BL. Vasospasm after aneurysmal subarachnoid hemorrhage: review of randomized controlled trials and meta‐analyses in the literature. World Neurosurg. 2011;76:446–454. DOI: 10.1016/j.wneu.2011.02.030.
    1. Mackey J, Khoury JC, Alwell K, Moomaw CJ, Kissela BM, Flaherty ML, Adeoye O, Woo D, Ferioli S, De Los Rios La Rosa F, et al. Stable incidence but declining case‐fatality rates of subarachnoid hemorrhage in a population. Neurology. 2016;87:2192–2197. DOI: 10.1212/WNL.0000000000003353.
    1. Robertson EG. Cerebral lesions due to intracranial aneurysms. Brain. 1949;72:150–185. DOI: 10.1093/brain/72.2.150.
    1. Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries with special reference to saccular arterial aneurisms. J Neurosurg. 1951;8:660–667. Available at: . Accessed August 11, 2019.
    1. Zucker MB. A study of the substances in blood, serum, and platelets which stimulate smooth muscle. Am J Physiol Legacy Content. 1944;142:12–26. DOI: 10.1152/ajplegacy.1944.142.1.12.
    1. Roos YBWEM, De Haan RJ, Beenen LFM, Groen RJM, Albrecht KW, Vermeulen M. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry. 2000;68:337–341. DOI: 10.1136/jnnp.68.3.337.
    1. Dorsch NW. Cerebral arterial spasm—a clinical review. Br J Neurosurg. 1995;9:403–412. DOI: 10.1080/02688699550041403.
    1. Weir B, Grace M, Hansen J, Rothberg C. Time course of vasospasm in man. J Neurosurg. 1978;48:173–178. DOI: 10.3171/jns.1978.48.2.0173.
    1. Romano JG, Rabinstein AA, Arheart KL, Nathan S, Campo‐Bustillo I, Koch S, Forteza AM. Microemboli in aneurysmal subarachnoid hemorrhage. J Neuroimaging. 2008;18:396–401. DOI: 10.1111/j.1552-6569.2007.00215.x.
    1. Rabinstein AA, Weigand S, Atkinson JLD, Wijdicks EFM. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005;36:992–997. DOI: 10.1161/01.STR.0000163090.59350.5a.
    1. Vergouwen MDI, Ilodigwe D, MacDonald RL. Cerebral infarction after subarachnoid hemorrhage contributes to poor outcome by vasospasm‐dependent and ‐independent effects. Stroke. 2011;42:924–929. DOI: 10.1161/STROKEAHA.110.597914.
    1. Dhar R, Scalfani MT, Blackburn S, Zazulia AR, Videen T, Diringer M. Relationship between angiographic vasospasm and regional hypoperfusion in aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1788–1794. DOI: 10.1161/STROKEAHA.111.646836.
    1. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double‐blind, placebo‐controlled phase 3 trial (CONSCIOUS‐2). Lancet Neurol. 2011;10:618–625. DOI: 10.1016/S1474-4422(11)70108-9.
    1. MacDonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I, Bach D, Frey A, et al. Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke. 2012;43:1463–1469. DOI: 10.1161/STROKEAHA.111.648980.
    1. MacDonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S, Frey A, Roux S, Pasqualin A. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS‐1): randomized, double‐blind, placebo‐controlled phase 2 dose‐finding trial. Stroke. 2008;39:3015–3021. DOI: 10.1161/STROKEAHA.108.519942.
    1. Vergouwen MDI, Vermeulen M, van Gijn J , Rinkel GJE, Wijdicks EF, Muizelaar JP, Mendelow AD, Juvela S, Yonas H, Terbrugge KG, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–2395. DOI: 10.1161/STROKEAHA.110.589275.
    1. Jaja BNR, Attalla D, Macdonald RL, Schweizer TA, Cusimano MD, Etminan N, Hanggi D, Hasan D, Johnston SC, Le Roux P, et al. The Subarachnoid Hemorrhage International Trialists (SAHIT) Repository: advancing clinical research in subarachnoid hemorrhage. Neurocrit Care. 2014;21:551–559. DOI: 10.1007/s12028-014-9990-y.
    1. Clarke JV, Suggs JM, Diwan D, Lee JV, Lipsey K, Vellimana AK, Zipfel GJ. Microvascular platelet aggregation and thrombosis after subarachnoid hemorrhage: a review and synthesis. J Cereb Blood Flow Metab. 2020;40:1565–1575. DOI: 10.1177/0271678X20921974.
    1. de Oliveira Manoel AL , Macdonald RL. Neuroinflammation as a target for intervention in subarachnoid hemorrhage. Front Neurol. 2018;9:292. DOI: 10.3389/fneur.2018.00292.
    1. Flynn L, Andrews P. Advances in the understanding of delayed cerebral ischaemia after aneurysmal subarachnoid haemorrhage. F1000Res. 2015;4:1200. DOI: 10.12688/f1000research.6635.1.
    1. Topkoru B, Egemen E, Solaroglu I, Zhang JH. Early brain injury or vasospasm? An overview of common mechanisms. Curr Drug Targets. 2017;18:1424–1429. DOI: 10.2174/1389450117666160905112923.
    1. Gathier CS, Van Den Bergh WM, Van Der Jagt M, Verweij BH, Dankbaar JW, Müller MC, Oldenbeuving AW, Rinkel GJE, Slooter AJC, Algra A, et al. Induced hypertension for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage a randomized clinical trial. Stroke. 2018;49:76–83. DOI: 10.1161/STROKEAHA.117.017956.
    1. Egge A, Waterloo K, Sjøholm H, Solberg T, Ingebrigtsen T, Romner B. Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery. 2001;49:593–606.
    1. Treggiari MM, Walder B, Suter PM, Romand JA. Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage. J Neurosurg. 2003;98:978–984. DOI: 10.3171/jns.2003.98.5.0978.
    1. . Clinical research study with clazosentan to evaluate its effects on preventing complications due to the narrowing of the blood vessels (Vasospasm) in the brain, caused by bleeding onto the surface of the brain—NCT03585270. Available at: . Accessed December 13, 2020.
    1. McLean RM. Magnesium and its therapeutic uses: a review. Am J Med. 1994;96:63–76. DOI: 10.1016/0002-9343(94)90117-1.
    1. Mees SMD, Algra A, Vandertop WP, Van Kooten F, Kuijsten HAJM, Boiten J, Van Oostenbrugge RJ, Salman R‐S, Lavados PM, Rinkel GJE, et al. Magnesium for aneurysmal subarachnoid haemorrhage (MASH‐2): a randomised placebo‐controlled trial. Lancet. 2012;380:44–49. DOI: 10.1016/S0140-6736(12)60724-7.
    1. Dorhout Mees SM, Rinkel GJE, Feigin VL, Algra A, Van Den Bergh WM, Vermeulen M, Van Gijn J. Calcium antagonists for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2007;2007:CD000277. DOI: 10.1002/14651858.CD000277.pub3.
    1. Pickard JD, Murray GD, Illingworth R, Shaw MDM, Teasdale GM, Foy PM, Humphreys PRD, Lang DA, Nelson R, Richards P, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298:636–642. DOI: 10.1136/bmj.298.6674.636.
    1. Philippon J, Grob R, Dagreou F, Guggiari M, Rivierez M, Viars P. Prevention of vasospasm in subarachnoid haemorrhage. A controlled study with nimodipine. Acta Neurochir (Wien). 1986;82:110–114. DOI: 10.1007/BF01456369.
    1. Petruk KC, West M, Mohr G, Weir BKA, Benoit BG, Gentili F, Disney LB, Khan MI, Grace M, Holness RO, et al. Nimodipine treatment in poor‐grade aneurysm patients. Results of a multicenter double‐blind placebo‐controlled trial. J Neurosurg. 1988;68:505–517. DOI: 10.3171/jns.1988.68.4.0505.
    1. Carlson AP, Hänggi D, Wong GK, Etminan N, Mayer SA, Aldrich F, Diringer MN, Schmutzhard E, Faleck HJ, Ng D, et al. Single‐dose intraventricular nimodipine microparticles versus oral nimodipine for aneurysmal subarachnoid hemorrhage. Stroke. 2020;51:1142–1149. DOI: 10.1161/STROKEAHA.119.027396.
    1. Kirkpatrick PJ, Turner CL, Smith C, Hutchinson PJ, Murray GD. Simvastatin in aneurysmal subarachnoid haemorrhage (STASH): a multicentre randomised phase 3 trial. Lancet Neurol. 2014;13:666–675. DOI: 10.1016/S1474-4422(14)70084-5.
    1. Wong GKC, Chan DYC, Siu DYW, Zee BCY, Poon WS, Chan MTV, Gin T, Leung M, Zhu XL, Liang M, et al. High‐dose simvastatin for aneurysmal subarachnoid hemorrhage: multicenter randomized controlled double‐blinded clinical trial. Stroke. 2015;46:382–388. DOI: 10.1161/STROKEAHA.114.007006.
    1. Zhang S, Wang L, Liu M, Wu B. Tirilazad for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2010;2:CD006778. DOI: 10.1002/14651858.CD006778.pub2.
    1. Saber H, Desai A, Palla M, Mohamed W, Seraji‐Bozorgzad N, Ibrahim M. Efficacy of cilostazol in prevention of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage: a meta‐analysis. J Stroke Cerebrovasc Dis. 2018;27:2979–2985. DOI: 10.1016/j.jstrokecerebrovasdis.2018.06.027.
    1. Grote E, Hassler W. The critical first minutes after subarachnoid hemorrhage. Neurosurgery. 1988;22:654–661. DOI: 10.1227/00006123-198804000-00006.
    1. Hayashi T, Suzuki A, Hatazawa J, Kanno I, Shirane R, Yoshimoto T, Yasui N. Cerebral circulation and metabolism in the acute stage of subarachnoid hemorrhage. J Neurosurg. 2000;93:1014–1018. DOI: 10.3171/jns.2000.93.6.1014.
    1. Naredi S, Lambert G, Edén E, Zäll S, Runnerstam M, Rydenhag B, Friberg P. Increased sympathetic nervous activity in patients with nontraumatic subarachnoid hemorrhage. Stroke. 2000;31:901–906. DOI: 10.1161/01.STR.31.4.901.
    1. Svendgaard NA, Delgado TJ, Brun A. Effect of selective lesions in the hypothalamic‐pituitary region on the development of cerebral vasospasm following an experimental subarachnoid hemorrhage in the rat. J Cereb Blood Flow Metab. 1986;6:650–657. DOI: 10.1038/jcbfm.1986.120.
    1. Páztor E, Fedina L, Kocsis B, Berta Z. Activity of peripheral sympathetic efferent nerves in experimental subarachnoid haemorrhage—part I: observations at the time of intracranial hypertension. Acta Neurochir (Wien). 1986;79:125–131. DOI: 10.1007/BF01407456.
    1. Di Battista AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT, Baker AJ, Hutchison MG, Churchill N, Inaba K, et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock. 2016;46:96–103. DOI: 10.1097/SHK.0000000000000642.
    1. Dilraj A, Botha JH, Rambiritch V, Miller R, Van Dellen JR. Levels of catecholamine in plasma and cerebrospinal fluid in aneurysmal subarachnoid hemorrhage. Neurosurgery. 1992;31:42–51.
    1. Macmillan C, Grant I, Andrews P. Pulmonary and cardiac sequelae of subarachnoid haemorrhage: time for active management? Intensive Care Med. 2002;28:1012–1023. DOI: 10.1007/s00134-002-1382-7.
    1. Takemoto Y, Hasegawa Y, Hayashi K, Cao C, Hamasaki T, Kawano T, Mukasa A, Kim‐Mitsuyama S. The stabilization of central sympathetic nerve activation by renal denervation prevents cerebral vasospasm after subarachnoid hemorrhage in rats. Transl Stroke Res. 2020;11:528–540. DOI: 10.1007/s12975-019-00740-9.
    1. Zubkov AY, Ogihara K, Bernanke DH, Parent AD, Zhang J. Apoptosis of endothelial cells in vessels affected by cerebral vasospasm. Surg Neurol. 2000;53:260–266. DOI: 10.1016/S0090-3019(99)00187-1.
    1. Friedrich V, Flores R, Sehba FA. Cell death starts early after subarachnoid hemorrhage. Neurosci Lett. 2012;512:6–11. DOI: 10.1016/j.neulet.2012.01.036.
    1. Peeyush Kumar T, McBride DW, Dash PK, Matsumura K, Rubi A, Blackburn SL. Endothelial cell dysfunction and injury in subarachnoid hemorrhage. Mol Neurobiol. 2019;56:1992–2006. DOI: 10.1007/s12035-018-1213-7.
    1. Dóczi T. The pathogenetic and prognostic significance of blood‐brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien). 1985;77:110–132.
    1. Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–1232. DOI: 10.1161/01.STR.0000015624.29071.1F.
    1. Pluta RM, Boock RJ, Afshar JK, Clouse K, Bacic M, Ehrenreich H, Oldfield EH. Source and cause of endothelin‐1 release into cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg. 1997;87:287–293. DOI: 10.3171/jns.1997.87.2.0287.
    1. Juvela S. Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;92:390–400. DOI: 10.3171/jns.2000.92.3.0390.
    1. Barth M, Capelle HH, Münch E, Thomé C, Fiedler F, Schmiedek P, Vajkoczy P. Effects of the selective endothelin A (ETA) receptor antagonist Clazosentan on cerebral perfusion and cerebral oxygenation following severe subarachnoid hemorrhage—preliminary results from a randomized clinical series. Acta Neurochir (Wien). 2007;149:911–918. DOI: 10.1007/s00701-007-1249-3.
    1. Rao SS, Chung DY, Wolcott Z, Sheriff F, Khawaja AM, Lee H, Guanci MM, Leslie‐Mazwi TM, Kimberly WT, Patel AB, et al. Intermittent CSF drainage and rapid EVD weaning approach after subarachnoid hemorrhage: association with fewer VP shunts and shorter length of stay. J Neurosurg. 2020;132:1583–1588. DOI: 10.3171/2019.1.JNS182702.
    1. Olson DM, Zomorodi M, Britz GW, Zomorodi AR, Amato A, Graffagnino C. Continuous cerebral spinal fluid drainage associated with complications in patients admitted with subarachnoid hemorrhage. J Neurosurg. 2013;119:974–980. DOI: 10.3171/2013.6.JNS122403.
    1. Chung DY, Mayer SA, Rordorf GA. External ventricular drains after subarachnoid hemorrhage: is less more? Neurocrit Care. 2018;28:157–161. DOI: 10.1007/s12028-017-0443-2.
    1. Klimo P, Kestle JRW, Macdonald JD, Schmidt RH. Marked reduction of cerebral vasospasm with lumbar drainage of cerebrospinal fluid after subarachnoid hemorrhage. J Neurosurg. 2004;100:215–224. DOI: 10.3171/jns.2004.100.2.0215.
    1. Panni P, Donofrio CA, Barzaghi LR, Giudice L, Albano L, Righi C, Simionato F, Scomazzoni F, Cozzi S, Calvi MR, et al. Safety and feasibility of lumbar drainage in the management of poor grade aneurysmal subarachnoid hemorrhage. J Clin Neurosci. 2019;64:64–70. DOI: 10.1016/j.jocn.2019.04.010.
    1. Blackburn SL, Grande AW, Swisher CB, Hauck EF, Jagadeesan B, Provencio JJ. Prospective trial of cerebrospinal fluid filtration after aneurysmal subarachnoid hemorrhage via lumbar catheter (PILLAR). Stroke. 2019;50:2558–2561. DOI: 10.1161/STROKEAHA.119.025399.
    1. Pluta RM, Afshar JKB, Boock RJ, Oldfield EH. Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J Neurosurg. 1998;88:557–561. DOI: 10.3171/jns.1998.88.3.0557.
    1. Nosko M, Weir BKA, Lunt A, Grace M, Allen P, Mielke B. Effect of clot removal at 24 hours on chronic vasospasm after SAH in the primate model. J Neurosurg. 1987;66:416–422. DOI: 10.3171/jns.1987.66.3.0416.
    1. Handa Y, Weir BKA, Nosko M, Mosewich R, Tsuji T, Grace M. The effect of timing of clot removal on chronic vasospasm in a primate model. J Neurosurg. 1987;67:558–564. DOI: 10.3171/jns.1987.67.4.0558.
    1. Aoki T, Takenaka K, Suzuki S, Kassell NF, Sagher O, Lee KS. The role of hemolysate in the facilitation of oxyhemoglobin‐induced contraction in rabbit basilar arteries. J Neurosurg. 1994;81:261–266. DOI: 10.3171/jns.1994.81.2.0261.
    1. Wickman G, Lan C, Vollrath B. Functional roles of the Rho/Rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res. 2003;92:809–816. DOI: 10.1161/01.RES.0000066663.12256.B2.
    1. Shibuya M, Suzuki Y, Sugita K, Saito I, Sasaki T, Takakura K, Nagata I, Kikuchi H, Takemae T, Hidaka H, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: results of a prospective placebo‐controlled double‐blind trial. J Neurosurg. 1992;76:571–577. DOI: 10.3171/jns.1992.76.4.0571.
    1. Zhao J, Zhou D, Guo J, Ren Z, Zhou L, Wang S, Xu B, Wang R. Effect of fasudil hydrochloride, a protein kinase inhibitor, on cerebral vasospasm and delayed cerebral ischemic symptoms after aneurysmal subarachnoid hemorrhage: results of a randomized trial of fasudil hydrochloride versus nimodipine. Neurol Med Chir (Tokyo). 2006;46:421–427. DOI: 10.2176/nmc.46.421.
    1. Zhao J, Zhou D, Guo J, Ren Z, Zhou L, Wang S, Zhang Y, Xu B, Zhao K, Wang R, et al. Efficacy and safety of fasudil in patients with subarachnoid hemorrhage: final results of a randomized trial of fasudil versus nimodipine. Neurol Med Chir (Tokyo). 2011;51:679–683. DOI: 10.2176/nmc.51.679.
    1. Gresele P, Momi S, Falcinelli E. Anti‐platelet therapy: phosphodiesterase inhibitors. Br J Clin Pharmacol. 2011;72:634–646. DOI: 10.1111/j.1365-2125.2011.04034.x.
    1. Matsuda N, Naraoka M, Ohkuma H, Shimamura N, Ito K, Asano K, Hasegawa S, Takemura A. Effect of cilostazol on cerebral vasospasm and outcome in patients with aneurysmal subarachnoid hemorrhage: a randomized, double‐blind, placebo‐controlled trial. Cerebrovasc Dis. 2016;42:97–105. DOI: 10.1159/000445509.
    1. Kim‐Shapiro DB, Schechter AN, Gladwin MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26:697–705.
    1. Azarov I, He X, Jeffers A, Basu S, Ucer B, Hantgan RR, Levy A, Kim‐Shapiro DB. Rate of nitric oxide scavenging by hemoglobin bound to haptoglobin. Nitric Oxide. 2008;18:296–302. DOI: 10.1016/j.niox.2008.02.006.
    1. Jung CS, Oldfield EH, Harvey‐White J, Espey MG, Zimmermann M, Seifert V, Pluta RM. Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2007;107:945–950. DOI: 10.3171/JNS-07/11/0945.
    1. Appel D, Seeberger M, Schwedhelm E, Czorlich P, Goetz AE, Böger RH, Hannemann J. Asymmetric and symmetric dimethylarginines are markers of delayed cerebral ischemia and neurological outcome in patients with subarachnoid hemorrhage. Neurocrit Care. 2018;29:84–93. DOI: 10.1007/s12028-018-0520-1.
    1. Pluta RM, Thompson BG, Dawson TM, Snyder SH, Boock RJ, Oldfield EH. Loss of nitric oxide synthase immunoreactivity in cerebral vasospasm. J Neurosurg. 1996;84:648–654. DOI: 10.3171/jns.1996.84.4.0648.
    1. Hino A, Tokuyama Y, Weir B, Takeda J, Yano H, Bell GI, Macdonald RL. Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery. 1996;39:562–568.
    1. Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113:1708–1714. DOI: 10.1161/CIRCULATIONAHA.105.602532.
    1. Raabe A, Zimmermann M, Setzer M, Vatter H, Berkefeld J, Seifert V, Dumont AS, Kassell NF, Salem A, Thomas JE, et al. Effect of intraventricular sodium nitroprusside on cerebral hemodynamics and oxygenation in poor‐grade aneurysm patients with severe, medically refractory vasospasm. Neurosurgery. 2002;50:1006–1014.
    1. Pluta RM, Oldfield EH, Boock RJ. Reversal and prevention of cerebral vasospasm by intracarotid infusions of nitric oxide donors in a primate model of subarachnoid hemorrhage. J Neurosurg. 1997;87:746–751. DOI: 10.3171/jns.1997.87.5.0746.
    1. Sabri M, Ai J, Lass E, D'abbondanza J, Macdonald RL. Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013;33:1008–1014. DOI: 10.1038/jcbfm.2013.49.
    1. Vellimana AK, Milner E, Azad TD, Harries MD, Zhou M‐L, Gidday JM, Han BH, Zipfel GJ. Endothelial nitric oxide synthase mediates endogenous protection against subarachnoid hemorrhage‐induced cerebral vasospasm. Stroke. 2011;42:776–782. DOI: 10.1161/STROKEAHA.110.607200.
    1. Alheid U, Frölich J, Förstermann U. Endothelium‐derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets. Thromb Res. 1987;47:561–571. DOI: 10.1016/0049-3848(87)90361-6.
    1. Radomski MW, Palmer RMJ, Moncada S. The anti‐aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol. 1987;92:639–646. DOI: 10.1111/j.1476-5381.1987.tb11367.x.
    1. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991;88:4651–4655. DOI: 10.1073/pnas.88.11.4651.
    1. Garg UC, Hassid A. Nitric oxide‐generating vasodilators and 8‐bromo‐cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest. 1989;83:1774–1777. DOI: 10.1172/JCI114081.
    1. McBride DW, Blackburn SL, Peeyush KT, Matsumura K, Zhang JH. The role of thromboinflammation in delayed cerebral ischemia after subarachnoid hemorrhage. Front Neurol. 2017;8:555. DOI: 10.3389/fneur.2017.00555.
    1. Suzuki S, Kimura M, Souma M, Ohkima H, Iwabuchi T, Shimizu T. Cerebral microthrombosis in symptomatic cerebral vasospasm—a quantitative histological study in autopsy cases. Neurol Med Chir (Tokyo). 1990;30:309–316.
    1. Stein SC, Browne KD, Chen XH, Smith DH, Graham DI. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59:781–787. DOI: 10.1227/01.NEU.0000227519.27569.45.
    1. Ohkuma H, Itoh K, Shibata S, Suzuki S. Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs. Neurosurgery. 1997;41:230–236. DOI: 10.1097/00006123-199707000-00036.
    1. Chauhan AK, Kisucka J, Brill A, Walsh MT, Scheiflinger F, Wagner DD. ADAMTS13: a new link between thrombosis and inflammation. J Exp Med. 2008;205:2065–2074. DOI: 10.1084/jem.20080130.
    1. Vergouwen M, Bakhtiari K, Van Geloven N, Vermeulen M, Roos YB, Meijers J. Reduced ADAMTS13 activity in delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:1734–1741. DOI: 10.1038/jcbfm.2009.88.
    1. Li W, Hui C, Ju H. Expression and significance of vWF, GMP‐140 and ADAMTS13 in patients with aneurysmal subarachnoid hemorrhage. Eur Rev Med Pharmacol Sci. 2017;21:4350–4356.
    1. Nissen JJ, Mantle D, Gregson B, Mendelow AD. Serum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies. J Neurol Neurosurg Psychiatry. 2001;71:329–333. DOI: 10.1136/jnnp.71.3.329.
    1. Frijns CJM, Kasius KM, Algra A, Fijnheer R, Rinkel GJE. Endothelial cell activation markers and delayed cerebral ischaemia in patients with subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2006;77:863–867. DOI: 10.1136/jnnp.2005.081539.
    1. Sabri M, Ai J, Lakovic K, D’abbondanza J, Ilodigwe D, Macdonald RL. Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience. 2012;224:26–37. DOI: 10.1016/j.neuroscience.2012.08.002.
    1. Ishikawa M, Kusaka G, Yamaguchi N, Sekizuka E, Nakadate H, Minamitani H, Shinoda S, Watanabe E. Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage. Neurosurgery. 2009;64:546–553. DOI: 10.1227/01.NEU.0000337579.05110.F4.
    1. Tremolizzo L, DiFrancesco JC, Rodriguez‐Menendez V, Sirtori E, Longoni M, Cassetti A, Bossi M, El Mestikawy S, Cavaletti G, Ferrarese C. Human platelets express the synaptic markers VGLUT1 and 2 and release glutamate following aggregation. Neurosci Lett. 2006;404:262–265. DOI: 10.1016/j.neulet.2006.06.015.
    1. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurogibol. 2014;115:157–188. DOI: 10.1016/j.pneurobio.2013.11.006.
    1. Wu CT, Wen LL, Wong CS, Tsai SY, Chan SM, Yeh CC, Borel CO, Cherng CH. Temporal changes in glutamate, glutamate transporters, basilar arteries wall thickness, and neuronal variability in an experimental rat model of subarachnoid hemorrhage. Anesth Analg. 2011;112:666–673. DOI: 10.1213/ANE.0b013e318207c51f.
    1. Bell JD, Thomas TC, Lass E, Ai J, Wan H, Lifshitz J, Baker AJ, MacDonald RL. Platelet‐mediated changes to neuronal glutamate receptor expression at sites of microthrombosis following experimental subarachnoid hemorrhage: laboratory investigation. J Neurosurg. 2014;1424–1431. DOI: 10.3171/2014.3.JNS132130.
    1. Nilsson OG, Säveland H, Boris‐Möller F, Brandt L, Wieloch T. Increased levels of glutamate in patients with subarachnoid haemorrhage as measured by intracerebral microdialysis. Acta Neurochir Suppl. 1996;1996:45–47.
    1. Wurm G, Tomancok B, Nussbaumer K, Adelwöhrer C, Holl K. Reduction of ischemic sequelae following spontaneous subarachnoid hemorrhage: a double‐blind, randomized comparison of enoxaparin versus placebo. Clin Neurol Neurosurg. 2004;106:97–103. DOI: 10.1016/j.clineuro.2004.01.006.
    1. Siironen J, Juvela S, Varis J, Porras M, Poussa K, Ilveskero S, Hernesniemi J, Lassila R. No effect of enoxaparin on outcome of aneurysmal subarachnoid hemorrhage: a randomized, double‐blind, placebo‐controlled clinical trial. J Neurosurg. 2003;99:953–959. DOI: 10.3171/jns.2003.99.6.0953.
    1. Simard JM, Aldrich EF, Schreibman D, James RF, Polifka A, Beaty N. Low‐dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment—clinical article. J Neurosurg. 2013;119:1611–1619. DOI: 10.3171/2013.8.JNS1337.
    1. James RF, Khattar NK, Aljuboori ZS, Page PS, Shao EY, Carter LM, Meyer KS, Daniels MW, Craycroft J, Gaughen JR, et al. Continuous infusion of low‐dose unfractionated heparin after aneurysmal subarachnoid hemorrhage: a preliminary study of cognitive outcomes. J Neurosurg. 2019;130:1460–1467. DOI: 10.3171/2017.11.JNS17894.
    1. Kole MJ, Wessell AP, Ugiliweneza B, Cannarsa GJ, Fortuny E, Stokum JA, Shea P, Chryssikos T, Khattar NK, Crabill GA, et al. Low‐dose intravenous heparin infusion after aneurysmal subarachnoid hemorrhage is associated with decreased risk of delayed neurological deficit and cerebral infarction. Neurosurgery. 2021;88:523–530. DOI: 10.1093/neuros/nyaa473.
    1. Simard JM, Tosun C, Ivanova S, Kurland DB, Hong C, Radecki L, Gisriel C, Mehta R, Schreibman D, Gerzanich V. Heparin reduces neuroinflammation and transsynaptic neuronal apoptosis in a model of subarachnoid hemorrhage. Transl Stroke Res. 2012;3:155–165. DOI: 10.1007/s12975-012-0166-9.
    1. Dorhout Mees S, Van Den Bergh WM, Algra A, Rinkel GJE. Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2007;4:CD006184. DOI: 10.1002/14651858.CD006184.pub2.
    1. Nagahama Y, Allan L, Nakagawa D, Zanaty M, Starke RM, Chalouhi N, Jabbour P, Brown RD, Derdeyn CP, Leira EC, et al. Dual antiplatelet therapy in aneurysmal subarachnoid hemorrhage: association with reduced risk of clinical vasospasm and delayed cerebral ischemia. J Neurosurg. 2018;129:702–710. DOI: 10.3171/2017.5.JNS17831.
    1. Altenburg A, Haage P. Antiplatelet and anticoagulant drugs in interventional radiology. Cardiovasc Intervent Radiol. 2012;35:30–42.
    1. Samaniego EA, Gibson E, Nakagawa D, Ortega‐Gutierrez S, Zanaty M, Roa JA, Jabbour P, Hasan DM. Safety of tirofiban and dual antiplatelet therapy in treating intracranial aneurysms. Stroke Vasc Neurol. 2019;4:36–42. DOI: 10.1136/svn-2018-000192.
    1. Limaye K, Zanaty M, Hudson J, Nakagawa D, Al Kasab S, Alvarez C, Dandapat S, Kung DK, Ortega‐Gutierrez S, Jabbour P, et al. The safety and efficacy of continuous tirofiban as a monoantiplatelet therapy in the management of ruptured aneurysms treated using stent‐assisted coiling or flow diversion and requiring ventricular drainage. Neurosurgery. 2019;85:E1037–E1042. DOI: 10.1093/neuros/nyz226.
    1. Zanaty M, Osorno‐Cruz C, Byer S, Roa JA, Limaye K, Ishii D, Nakagawa D, Torner J, Yongjun LU, Ortega‐Gutiérrez S, et al. Tirofiban protocol protects against delayed cerebral ischemia: a case‐series study. Neurosurgery. 2020;87:E552–E556. DOI: 10.1093/neuros/nyaa170.
    1. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. DOI: 10.1038/nature14432.
    1. Sun BL, Xie FM, Yang MF, Cao MZ, Yuan H, Wang HT, Wang JR, Jia L. Blocking cerebral lymphatic drainage deteriorates cerebral oxidative injury in rats with subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:49–53.
    1. Chen J, Wang L, Xu H, Xing L, Zhuang Z, Zheng Y, Li X, Wang C, Chen S, Guo Z, et al. Meningeal lymphatics clear erythrocytes that arise from subarachnoid hemorrhage. Nat Commun. 2020;11:3159. DOI: 10.1038/s41467-020-16851-z.
    1. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127:3210–3219. DOI: 10.1172/JCI90603.
    1. Luo C, Yao X, Li J, He B, Liu Q, Ren H, Liang F, Li M, Lin H, Peng J, et al. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 2016;7:e2160. DOI: 10.1038/cddis.2016.63.
    1. Nagelhus EA, Ottersen OP. Physiological roles of aquaporin‐4 in brain. Physiol Rev. 2013;93:1543–1562. DOI: 10.1152/physrev.00011.2013.
    1. Liu E, Sun L, Zhang Y, Wang A, Yan J. Aquaporin4 knockout aggravates early brain injury following subarachnoid hemorrhage through impairment of the glymphatic system in rat brain. Acta Neurochir Suppl. 2020;127:59–64.
    1. Siler DA, Gonzalez JA, Wang RK, Cetas JS, Alkayed NJ. Intracisternal administration of tissue plasminogen activator improves cerebrospinal fluid flow and cortical perfusion after subarachnoid hemorrhage in mice. Transl Stroke Res. 2014;5:227–237. DOI: 10.1007/s12975-014-0329-y.
    1. Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238. DOI: 10.1152/physrev.1959.39.2.183.
    1. Kety SS, Schmidt CF. The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J Clin Invest. 1948;27:484–492.
    1. Armstead WM. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol Clin. 2016;34:465–477. DOI: 10.1016/j.anclin.2016.04.002.
    1. Andresen J, Shafi NI, Bryan RM. Endothelial influences on cerebrovascular tone. J Appl Physiol. 2006;100:318–327. DOI: 10.1152/japplphysiol.00937.2005.
    1. Yundt KD, Grubb RL, Diringer MN, Powers WJ. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998;18:419–424. DOI: 10.1097/00004647-199804000-00010.
    1. Lam JMK, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000;47:819–826. DOI: 10.1097/00006123-200010000-00004.
    1. Jaeger M, Soehle M, Schuhmann MU, Meixensberger J. Clinical significance of impaired cerebrovascular autoregulation after severe aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:2097–2101. DOI: 10.1161/STROKEAHA.112.659888.
    1. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke. 2012;43:3230–3237. DOI: 10.1161/STROKEAHA.112.669788.
    1. Bøthun ML, Haaland ØA, Moen G, Logallo N, Svendsen F, Thomassen L, Helland CA. Impaired cerebrovascular reactivity may predict delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2019;407:116539. DOI: 10.1016/j.jns.2019.116539.
    1. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ. Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo‐controlled trial. Stroke. 2005;36:1627–1632. DOI: 10.1161/01.STR.0000176743.67564.5d.
    1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. DOI: 10.1038/nature07201.
    1. Anan M, Nagai Y, Fudaba H, Fujiki M. Lactate and lactate dehydrogenase in cistern as biomarkers of early brain injury and delayed cerebral ischemia of subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 2020;29:104765. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104765.
    1. Rasmussen R, Bache S, Stavngaard T, Møller K. Plasma levels of IL‐6, IL‐8, IL‐10, ICAM‐1, VCAM‐1, IFNγ, and TNFα are not associated with delayed cerebral ischemia, cerebral vasospasm, or clinical outcome in patients with subarachnoid hemorrhage. World Neurosurg. 2019;128:e1131–e1136. DOI: 10.1016/j.wneu.2019.05.102.
    1. McGirt MJ, Mavropoulos JC, McGirt LY, Alexander MJ, Friedman AH, Laskowitz DT, Lynch JR. Leukocytosis as an independent risk factor for cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1222–1226. DOI: 10.3171/jns.2003.98.6.1222.
    1. McMahon CJ, Hopkins S, Vail A, King AT, Smith D, Illingworth KJ, Clark S, Rothwell NJ, Tyrrell PJ. Inflammation as a predictor for delayed cerebral ischemia after aneurysmal subarachnoid haemorrhage. J Neurointerv Surg. 2013;5:512–517. DOI: 10.1136/neurintsurg-2012-010386.
    1. Badjatia N, Monahan A, Carpenter A, Zimmerman J, Schmidt JM, Claassen J, Connolly ES, Mayer SA, Karmally W, Seres D. Inflammation, negative nitrogen balance, and outcome after aneurysmal subarachnoid hemorrhage. Neurology. 2015;84:680–687. DOI: 10.1212/WNL.0000000000001259.
    1. Al‐Mufti F, Amuluru K, Damodara N, Dodson V, Roh D, Agarwal S, Meyers PM, Connolly ES, Schmidt MJ, Claassen J, et al. Admission neutrophil‐lymphocyte ratio predicts delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. J Neurointerv Surg. 2019;11:1135–1140. DOI: 10.1136/neurintsurg-2019-014759.
    1. Tam AKH, Ilodigwe D, Mocco J, Mayer S, Kassell N, Ruefenacht D, Schmiedek P, Weidauer S, Pasqualin A, MacDonald RL. Impact of systemic inflammatory response syndrome on vasospasm, cerebral infarction, and outcome after subarachnoid hemorrhage: exploratory analysis of CONSCIOUS‐1 database. Neurocrit Care. 2010;13:182–189. DOI: 10.1007/s12028-010-9402-x.
    1. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–412. DOI: 10.1007/s12028-008-9054-2.
    1. Chyatte D, Fode NC, Nichols DA, Sundt TM. Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 1987;21:157–160. DOI: 10.1227/00006123-198708000-00004.
    1. Hashi K, Takakura K, Sano K, Ohta T, Saito I, Okada K. Intravenous hydrocortisone in large doses in the treatment of delayed ischemic neurological deficits following subarachnoid hemorrhage—results of a multi‐center controlled double‐blind clinical study. No To Shinkei. 1988;40:373–382.
    1. Mohney N, Williamson CA, Rothman E, Ball R, Sheehan KM, Pandey AS, Fletcher JJ, Jacobs TL, Thompson BG, Rajajee V. A propensity score analysis of the impact of dexamethasone use on delayed cerebral ischemia and poor functional outcomes after subarachnoid hemorrhage. World Neurosurg. 2018;109:e655–e661. DOI: 10.1016/j.wneu.2017.10.051.
    1. Olldashi F, Muzha I, Filipi N, Lede R, Copertari P, Traverso C, Copertari A, Vergara EA, Montenegro C, De Huidobro RR, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo‐controlled trial. Lancet. 2004;364:1321–1328.
    1. Muroi C, Hugelshofer M, Seule M, Keller E. The impact of nonsteroidal anti‐inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2014;20:240–246. DOI: 10.1007/s12028-013-9930-2.
    1. Nassiri F, Ibrahim GM, Badhiwala JH, Witiw CD, Mansouri A, Alotaibi NM, Macdonald RL. A propensity score‐matched study of the use of non‐steroidal anti‐inflammatory agents following aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2016;25:351–358. DOI: 10.1007/s12028-016-0266-6.
    1. Hop JW, Rinkel GJE, Algra A, Berkelbach Van Der Sprenkel JW, Van Gijn J. Randomized pilot trial of postoperative aspirin in subarachnoid hemorrhage. Neurology. 2000;54:872–878. DOI: 10.1212/WNL.54.4.872.
    1. Van Den Bergh WM. Randomized controlled trial of acetylsalicylic acid in aneurysmal subarachnoid hemorrhage: the MASH study. Stroke. 2006;37:2326–2330. DOI: 10.1161/01.STR.0000236841.16055.0f.
    1. Mathiesen T, Andersson B, Loftenius A, Von Holst H. Increased interleukin‐6 levels in cerebrospinal fluid following subarachnoid hemorrhage. J Neurosurg. 1993;78:562–567. DOI: 10.3171/jns.1993.78.4.0562.
    1. Hendryk S, Jarzab B, Josko J. Increase of the IL‐1β and IL‐6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuro Endocrinol Lett. 2004;25:141–147.
    1. Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, Hashiguchi T, Suzuki M, Maruyama I, Maekawa T. High‐mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care. 2009;11:362–368. DOI: 10.1007/s12028-009-9276-y.
    1. Ahn SH, Savarraj JPJ, Parsha K, Hergenroeder GW, Chang TR, Kim DH, Kitagawa RS, Blackburn SL, Choi HA. Inflammation in delayed ischemia and functional outcomes after subarachnoid hemorrhage. J Neuroinflammation. 2019;16:213. DOI: 10.1186/s12974-019-1578-1.
    1. Figueiredo RT, Fernandez PL, Mourao‐Sa DS, Porto BN, Dutra FF, Alves LS, Oliveira MF, Oliveira PL, Graça‐Souza AV, Bozza MT. Characterization of heme as activator of Toll‐like receptor 4. J Biol Chem. 2007;282:20221–20229. DOI: 10.1074/jbc.M610737200.
    1. Vaure C, Liu Y. A comparative review of Toll‐like receptor 4 expression and functionality in different animal species. Front Immunol. 2014;5:316. DOI: 10.3389/fimmu.2014.00316.
    1. Zhou M‐L, Wu W, Ding Y‐S, Zhang F‐F, Hang C‐H, Wang H‐D, Cheng H‐L, Yin H‐X, Shi J‐X. Expression of Toll‐like receptor 4 in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res. 2007;1173:110–116. DOI: 10.1016/j.brainres.2007.07.059.
    1. Hanafy KA. The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation. 2013;10:868. DOI: 10.1186/1742-2094-10-83.
    1. Schneider UC, Davids A‐M, Brandenburg S, Müller A, Elke A, Magrini S, Atangana E, Turkowski K, Finger T, Gutenberg A, et al. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol. 2015;130:215–231. DOI: 10.1007/s00401-015-1440-1.
    1. Taylor RA, Chang C‐F, Goods BA, Hammond MD, Grory BM, Ai Y, Steinschneider AF, Renfroe SC, Askenase MH, McCullough LD, et al. TGF‐β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest. 2017;127:280–292. DOI: 10.1172/JCI88647.
    1. Ayer RE, Ostrowski RP, Sugawara T, Ma Q, Jafarian N, Tang J, Zhang JH. Statin‐induced T‐lymphocyte modulation and neuroprotection following experimental subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:259–266.
    1. Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484. DOI: 10.3389/fimmu.2020.00484.
    1. Wang L, Zhang Z, Liang L, Wu Y, Zhong J, Sun X. Anti‐high mobility group box‐1 antibody attenuated vascular smooth muscle cell phenotypic switching and vascular remodelling after subarachnoid haemorrhage in rats. Neurosci Lett. 2019;708:134338. DOI: 10.1016/j.neulet.2019.134338.
    1. Neil‐dwyer G, Cruickshank J. The blood leeucocyte count and its prognostic significance in subarachnoid hæmorrhage. Brain. 1974;97:79–86. DOI: 10.1093/brain/97.1.79.
    1. Kubota T, Handa Y, Tsuchida A, Kaneko M, Kobayashi H, Kubota T. The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke. 1993;24:1993–2000. DOI: 10.1161/01.STR.24.12.1993.
    1. Mathiesen T, Lefvert AK. Cerebrospinal fluid and blood lymphocyte subpopulations following subarachnoid haemorrhage. Br J Neurosurg. 1996;10:89–92. DOI: 10.1080/02688699650040584.
    1. Lim M, Bower RS, Wang Y, Sims L, Bower MR, Camara‐Quintana J, Li G, Cheshier S, Harsh GR, Steinberg GK, et al. The predictive value of serum myeloperoxidase for vasospasm in patients with aneurysmal subarachnoid hemorrhage. Neurosurg Rev. 2012;35:413–419. DOI: 10.1007/s10143-012-0375-4.
    1. Galea J, Cruickshank G, Teeling JL, Boche D, Garland P, Perry VH, Galea I. The intrathecal CD163‐haptoglobin‐hemoglobin scavenging system in subarachnoid hemorrhage. J Neurochem. 2012;121:785–792. DOI: 10.1111/j.1471-4159.2012.07716.x.
    1. Hugelshofer M, Buzzi RM, Schaer CA, Richter H, Akeret K, Anagnostakou V, Mahmoudi L, Vaccani R, Vallelian F, Deuel JW, et al. Haptoglobin administration into the subarachnoid space prevents hemoglobin‐induced cerebral vasospasm. J Clin Invest. 2019;129:5219–5235. DOI: 10.1172/JCI130630.
    1. Chaichana KL, Levy AP, Miller‐Lotan R, Shakur S, Tamargo RJ. Haptoglobin 2–2 genotype determines chronic vasospasm after experimental subarachnoid hemorrhage. Stroke. 2007;38:3266–3271.
    1. Blackburn SL, Kumar PT, McBride D, Zeineddine HA, Leclerc J, Choi HA, Dash PK, Grotta J, Aronowski J, Cardenas JC, et al. Unique contribution of haptoglobin and haptoglobin genotype in aneurysmal subarachnoid hemorrhage. Front Physiol. 2018;9:592.
    1. Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Biochem Pharmacol. 2019;163:472–480. DOI: 10.1016/j.bcp.2019.03.022.
    1. Ryba M, Pastuszko M, Iwanska K, Bidzinski J, Dziewiecki C. Cyclosporine a prevents neurological deterioration of patients with SAH—a preliminary report. Acta Neurochir (Wien). 1991;112:25–27. DOI: 10.1007/BF01402450.
    1. Manno EM, Gress DR, Ogilvy CS, Stone CM, Zervas NT. The safety and efficacy of cyclosporine A in the prevention of vasospasm in patients with Fisher grade 3 subarachnoid hemorrhages: a pilot study. Neurosurgery. 1997;40:289–293. DOI: 10.1097/00006123-199702000-00010.
    1. Handa Y, Hayashi M, Takeuchi H, Kobayashi H, Kawano H, Kabuto M. Effect of cyclosporine on the development of cerebral vasospasm in a primate model—PubMed. Neurosurgery. 1991;28:380–385.
    1. Peterson JW, Nishizawa S, Hackett JD, Bun T, Teramura A, Zervas NT. Cyclosporine a reduces cerebral vasospasm after subarachnoid hemorrhage in dogs. Stroke. 1990;21:133–137.
    1. Pradilla G, Wang PP, Legnani FG, Ogata L, Dietsch GN, Tamargo RJ. Prevention of vasospasm by anti‐CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg. 2004;101:88–92.
    1. Clatterbuck RE, Gailloud P, Ogata L, Gebremariam A, Dietsch GN, Murphy KJ, Tamargo RJ. Prevention of cerebral vasospasm by a humanized anti‐CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg. 2003;99:376–382.
    1. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM. Depletion of Ly6G/C+ cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol. 2011;232:94–100. DOI: 10.1016/j.jneuroim.2010.10.016.
    1. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE. Use of Ly6G‐specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol. 2008;83:64–70. DOI: 10.1189/jlb.0407247.
    1. Lawson C, Wolf S. ICAM‐1 signaling in endothelial cells. Pharmacol Rep. 2009;61:22–32. DOI: 10.1016/S1734-1140(09)70004-0.
    1. Kaynar MY, Tanriverdi T, Kafadar AM, Kacira T, Uzun H, Aydin S, Gumustas K, Dirican A, Kuday C. Detection of soluble intercellular adhesion molecule‐1 and vascular cell adhesion molecule‐1 in both cerebrospinal fluid and serum of patients after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;101:1030–1036. DOI: 10.3171/jns.2004.101.6.1030.
    1. Handa Y, Kubota T, Kaneko M, Tsuchida A, Kobayashi H, Kawano H, Kubota T. Expression of intercellular adhesion molecule 1 (ICAM‐1) on the cerebral artery following subarachnoid haemorrhage in rats. Acta Neurochir (Wien). 1995;132:92–97. DOI: 10.1007/BF01404854.
    1. Sills AK, Clatterbuck RE, Thompson RC, Cohen PL, Tamargo RJ. Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery. 1997;41:453–461. DOI: 10.1097/00006123-199708000-00025.
    1. Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF, Lee KS. Detection of soluble E‐selectin, ICAM‐1, VCAM‐1, and L‐selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg. 1998;89:559–567.
    1. Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, Lee KS. Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage‐induced cerebral vasospasm. Surg Neurol. 2005;64:201–205. DOI: 10.1016/j.surneu.2005.04.038.
    1. Clatterbuck RE, Hoffman PA, Dietsch GN, Pardoll DM, Tamargo RJ. Inhibition of vasospasm with lymphocyte function‐associated antigen‐1 monoclonal antibody in a femoral artery model in rats. J Neurosurg. 2002;97:676–682. DOI: 10.3171/jns.2002.97.3.0676.
    1. Oshiro EM, Hoffman PA, Dietsch GN, Watts MC, Pardoll DM, Tamargo RJ. Inhibition of experimental vasospasm with anti‐intercellular adhesion molecule‐1 monoclonal antibody in rats. Stroke. 1997;28:2031–2038. DOI: 10.1161/01.STR.28.10.2031.
    1. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS. Monoclonal antibodies against ICAM‐1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke. 1998;29:1930–1935. DOI: 10.1161/01.STR.29.9.1930.
    1. Blanco‐Colio LM, Tuñón J, Martín‐Ventura JL, Egido J. Anti‐inflammatory and immunomodulatory effects of statins. Kidney Int. 2003;63:12–23. DOI: 10.1046/j.1523-1755.2003.00744.x.
    1. Lynch JR, Wang H, McGirt MJ, Floyd J, Friedman AH, Coon AL, Blessing R, Alexander MJ, Graffagnino C, Warner DS, et al. Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke. 2005;36:2024–2026. DOI: 10.1161/01.STR.0000177879.11607.10.
    1. Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–390. DOI: 10.1152/jn.1944.7.6.359.
    1. Leao AAP, Morison RS. Propagation of spreading cortical depression. J Neurophysiol. 1945;8:33–45. DOI: 10.1152/jn.1945.8.1.33.
    1. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–447. DOI: 10.1038/nm.2333.
    1. Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–393. DOI: 10.1038/nrn3770.
    1. Cozzolino O, Marchese M, Trovato F, Pracucci E, Ratto GM, Buzzi MG, Sicca F, Santorelli FM. Understanding spreading depression from headache to sudden unexpected death. Front Neurol. 2018;9:19. DOI: 10.3389/fneur.2018.00019.
    1. Ayata C, Lauritzen M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol Rev. 2015;95:953–993. DOI: 10.1152/physrev.00027.2014.
    1. Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M. Cortical spreading depression and peri‐infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129:778–790.
    1. Hossmann KA. Periinfarct depolarizations. Cerebrovasc Brain Metab Rev. 1996;8:195–208.
    1. Dietrich WD, Feng ZC, Leistra H, Watson BD, Rosenthal M. Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab. 1994;14:20–28. DOI: 10.1038/jcbfm.1994.4.
    1. Dreier JP, Körner K, Ebert N, Görner A, Rubin I, Back T, Lindauer U, Wolf T, Villringer A, Einhäupl KM, et al. Nitric oxide scavenging by hemoglobin or nitric oxide synthase inhibition by N‐nitro‐L‐arginine induces cortical spreading ischemia when K+ is increased in the subarachnoid space. J Cereb Blood Flow Metab. 1998;18:978–990.
    1. Dreier JP, Ebert N, Priller J, Megow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhäupl KM, Victorov I, et al. Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg. 2000;93:658–666. DOI: 10.3171/jns.2000.93.4.0658.
    1. Dreier JP, Woitzik J, Fabricius M, Bhatia R, Major S, Drenckhahn C, Lehmann TN, Sarrafzadeh A, Willumsen L, Hartings JA, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129:3224–3237. DOI: 10.1093/brain/awl297.
    1. Dreier JP, Major S, Manning A, Woitzik J, Drenckhahn C, Steinbrink J, Tolias C, Oliveira‐Ferreira AI, Fabricius M, Hartings JA, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–1881. DOI: 10.1093/brain/awp102.
    1. Bosche B, Graf R, Ernestus RI, Dohmen C, Reithmeier T, Brinker G, Strong AJ, Dreier JP, Woitzik J. Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol. 2010;67:607–617. DOI: 10.1002/ana.21943.
    1. Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, Winkler M, Dahlem YA, Manville J, Diepers M, et al. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2012;32:203–212. DOI: 10.1038/jcbfm.2011.169.
    1. Dreier JP, Petzold G, Tille K, Lindauer U, Arnold G, Heinemann U, Einhäupl KM, Dirnagl U. Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats. J Physiol. 2001;531:515–526. DOI: 10.1111/j.1469-7793.2001.0515i.x.
    1. Dreier J, Windmuller O, Petzold G, Lindauer U, Einhaupl K, Dirnagl U. Ischemia triggered by red blood cell products in the subarachnoid space is inhibited by nimodipine administration or moderate volume expansion/hemodilution in rats—PubMed. Neurosurgery. 2002;51:1465–1467.
    1. Sugimoto K, Nomura S, Shirao S, Inoue T, Ishihara H, Kawano R, Kawano A, Oka F, Suehiro E, Sadahiro H, et al. Cilostazol decreases duration of spreading depolarization and spreading ischemia after aneurysmal subarachnoid hemorrhage. Ann Neurol. 2018;84:873–885. DOI: 10.1002/ana.25361.
    1. Hernándéz‐Cáceres J, Macias‐González R, Brožek G, Bureš J. Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 1987;437:360–364.
    1. Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;12:223–229. DOI: 10.1038/jcbfm.1992.32.
    1. Marrannes R, Willems R, De Prins E, Wauquier A. Evidence for a role of the N‐methyl‐d‐aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 1988;457:226–240. DOI: 10.1016/0006-8993(88)90690-7.
    1. Hertle DN, Dreier JP, Woitzik J, Hartings JA, Bullock R, Okonkwo DO, Shutter LA, Vidgeon S, Strong AJ, Kowoll C, et al. Effect of analgesics and sedatives on the occurrence of spreading depolarizations accompanying acute brain injury. Brain. 2012;135:2390–2398. DOI: 10.1093/brain/aws152.
    1. Carlson AP, Abbas M, Alunday RL, Qeadan F, William SC. Spreading depolarization in acute brain injury inhibited by ketamine: a prospective, randomized, multiple crossover trial. J Neurosurg. 2019;130:1513–1519. DOI: 10.3171/2017.12.JNS171665.
    1. Santos E, Olivares‐Rivera A, Major S, Sánchez‐Porras R, Uhlmann L, Kunzmann K, Zerelles R, Kentar M, Kola V, Aguilera AH, et al. Lasting s‐ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. Crit Care. 2019;23:427. DOI: 10.1186/s13054-019-2711-3.
    1. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;59:652–661. DOI: 10.1002/ana.20778.
    1. Bogdanov VB, Multon S, Chauvel V, Bogdanova OV, Prodanov D, Makarchuk MY, Schoenen J. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis. 2011;41:430–435. DOI: 10.1016/j.nbd.2010.10.014.
    1. Hamming AM, Van Der Toorn A, Rudrapatna US, Ma L, Van Os HJA, Ferrari MD, Van Den Maagdenberg AMJM, Van Zwet E, Poinsatte K, Stowe AM, et al. Valproate reduces delayed brain injury in a rat model of subarachnoid hemorrhage. Stroke. 2017;48:452–458. DOI: 10.1161/STROKEAHA.116.014738.
    1. Pisani A, Calabresi P, Tozzi A, D’Angelo V, Bernardi G. L‐type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons. Stroke. 1998;29:196–202.

Source: PubMed

3
Abonnieren