Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication

Enkhmend Enkhtaivan, Chang Hoon Lee, Enkhmend Enkhtaivan, Chang Hoon Lee

Abstract

Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.

Keywords: acetylcholine; dopamine; histamime; melanogenesis; serotonin; skin pigment abnormality; vitiligo.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Biosynthesis of melanin.
Figure 2
Figure 2
Amine neurotransmitters.
Figure 3
Figure 3
Receptors of amine neurotransmitters.
Figure 4
Figure 4
Chemical structures of agonist (red), antagonist (blue), and enzyme inhibitors or others (purple) related to DA neurotransmitters.
Figure 5
Figure 5
Chemical structures of agonist (red), antagonist (blue), and enzyme inhibitors or others (purple) related to GABA, glutamate neurotransmitters.
Figure 6
Figure 6
Chemical structures of agonist (red), and antagonist (blue) of histamine.
Figure 7
Figure 7
Chemical structures of agonist (red), antagonist (blue), and enzyme inhibitors or others (purple) related to serotonin neurotransmitters.
Figure 8
Figure 8
Chemical structures of compounds inducing (black) or inhibiting (green) melanogenesis.

References

    1. Chuong C.-M., Nickoloff B., Elias P., Goldsmith L., Macher E., Maderson P., Sundberg J., Tagami H., Plonka P., Thestrup-Pederson K. What is the ‘true’ function of skin? Exp. Dermatol. 2002;11:159–187.
    1. Slominski A., Fischer T.W., Zmijewski M.A., Wortsman J., Semak I., Zbytek B., Slominski R.M., Tobin D.J. On the role of melatonin in skin physiology and pathology. Endocrine. 2005;27:137–147. doi: 10.1385/ENDO:27:2:137.
    1. Jevtić M., Löwa A., Nováčková A., Kováčik A., Kaessmeyer S., Erdmann G., Vávrová K., Hedtrich S. Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020;1867:118722. doi: 10.1016/j.bbamcr.2020.118722.
    1. Yamaguchi Y., Brenner M., Hearing V.J. The regulation of skin pigmentation. J. Biol. Chem. 2007;282:27557–27561. doi: 10.1074/jbc.R700026200.
    1. Slominski A., Tobin D.J., Zmijewski M.A., Wortsman J., Paus R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab. 2008;19:17–24. doi: 10.1016/j.tem.2007.10.007.
    1. Bertolesi G.E., Song Y.N., Atkinson-Leadbeater K., Yang J.L.J., McFarlane S. Interaction and developmental activation of two neuroendocrine systems that regulate light-mediated skin pigmentation. Pigment Cell Melanoma Res. 2017;30:413–423. doi: 10.1111/pcmr.12589.
    1. Bertolesi G.E., Vazhappilly S.T., Hehr C.L., McFarlane S. Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light. Pigment Cell Melanoma Res. 2016;29:186–198. doi: 10.1111/pcmr.12442.
    1. Lin J.Y., Fisher D.E. Melanocyte biology and skin pigmentation. Nature. 2007;445:843–850. doi: 10.1038/nature05660.
    1. Lee A.Y. Recent progress in melasma pathogenesis. Pigment Cell Melanoma Res. 2015;28:648–660. doi: 10.1111/pcmr.12404.
    1. Rocha J. The evolutionary history of human skin pigmentation. J. Mol. Evol. 2020;88:77–87. doi: 10.1007/s00239-019-09902-7.
    1. Filoni A., Mariano M., Cameli N. Melasma: How hormones can modulate skin pigmentation. J. Cosmet. Dermatol. 2019;18:458–463. doi: 10.1111/jocd.12877.
    1. Hawthorne C. Addison’s Disease with Phthisis Pulmonalis and Atypical Pigmentation of the Skin; Melanoderma with Symmetrical Patches of Leucoderma. Glasg. Med. J. 1896;46:266.
    1. Yamamoto T. Latent adrenal insufficiency: Concept, clues to detection, and diagnosis. Endocr. Pract. 2018;24:746–755. doi: 10.4158/EP-2018-0114.
    1. Del Bino S., Duval C., Bernerd F. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int. J. Mol. Sci. 2018;19:2668. doi: 10.3390/ijms19092668.
    1. Ezzedine K., Vance T.M., Hamzavi I.H., Qureshi A.A. Vitiligo: Targeted Therapies Add Color to Disease Pathophysiology. J. Investig. Dermatol. 2020;140:1498–1500. doi: 10.1016/j.jid.2020.01.033.
    1. Marçon C.R., Maia M. Albinism: Epidemiology, genetics, cutaneous characterization, psychosocial factors. An. Bras. Dermatol. 2019;94:503–520. doi: 10.1016/j.abd.2019.09.023.
    1. Saleem M.D., Oussedik E., Picardo M., Schoch J.J. Acquired disorders with hypopigmentation: A clinical approach to diagnosis and treatment. J. Am. Acad. Dermatol. 2019;80:1233–1250. doi: 10.1016/j.jaad.2018.07.070.
    1. Dina Y., McKesey J., Pandya A.G. Disorders of Hypopigmentation. J. Drugs Dermatol. 2019;18:s115–s116.
    1. Slominski A., Tobin D.J., Shibahara S., Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004;84:1155–1228. doi: 10.1152/physrev.00044.2003.
    1. Ohbayashi N., Fukuda M. Recent advances in understanding the molecular basis of melanogenesis in melanocytes. F1000Research. 2020;9:608. doi: 10.12688/f1000research.24625.1.
    1. Lee H.J., Park M.K., Kim S.Y., Park Choo H.Y., Lee A.Y., Lee C.H. Serotonin induces melanogenesis via serotonin receptor 2A. Br. J. Dermatol. 2011;165:1344–1348. doi: 10.1111/j.1365-2133.2011.10490.x.
    1. Park H., Kosmadaki M., Yaar M., Gilchrest B. Cellular mechanisms regulating human melanogenesis. Cell. Mol. Life Sci. 2009;66:1493–1506. doi: 10.1007/s00018-009-8703-8.
    1. Rzepka Z., Buszman E., Beberok A., Wrześniok D. From tyrosine to melanin: Signaling pathways and factors regulating melanogenesis. Postepy Hig. Med. Dosw. (Online) 2016;70:695–708. doi: 10.5604/17322693.1208033.
    1. Kondo T., Hearing V.J. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev. Dermatol. 2011;6:97–108. doi: 10.1586/edm.10.70.
    1. Lambert M.W., Maddukuri S., Karanfilian K.M., Elias M.L., Lambert W.C. The physiology of melanin deposition in health and disease. Clin. Dermatol. 2019;37:402–417. doi: 10.1016/j.clindermatol.2019.07.013.
    1. Land E., Ito S., Wakamatsu K., Riley P. Rate constants for the first two chemical steps of eumelanogenesis. Pigment cell Res. 2003;16:487–493. doi: 10.1034/j.1600-0749.2003.00082.x.
    1. Ito S., Wakamatsu K. Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin. J. Eur. Acad. Dermatol. Venereol. 2011;25:1369–1380. doi: 10.1111/j.1468-3083.2011.04278.x.
    1. O’Sullivan J.D., Nicu C., Picard M., Chéret J., Bedogni B., Tobin D.J., Paus R. The biology of human hair greying. Biol. Rev. 2021;96:107–128. doi: 10.1111/brv.12648.
    1. Palumbo A., Solano F., Misuraca G., Aroca P., Borron J.C.G., Lozano J.A., Prota G. Comparative action of dopachrome tautomerase and metal ions on the rearrangement of dopachrome. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1991;1115:1–5. doi: 10.1016/0304-4165(91)90003-Y.
    1. Wakamatsu K., Ohtara K., Ito S. Chemical analysis of late stages of pheomelanogenesis: Conversion of dihydrobenzothiazine to a benzothiazole structure. Pigment Cell Melanoma Res. 2009;22:474–486. doi: 10.1111/j.1755-148X.2009.00580.x.
    1. Olivares C., Solano F. New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 2009;22:750–760. doi: 10.1111/j.1755-148X.2009.00636.x.
    1. Tanaka H., Yamashita Y., Umezawa K., Hirobe T., Ito S., Wakamatsu K. The pro-oxidant activity of pheomelanin is significantly enhanced by UVA irradiation: Benzothiazole moieties are more reactive than benzothiazine moieties. Int. J. Mol. Sci. 2018;19:2889. doi: 10.3390/ijms19102889.
    1. García-Borrón J.C., Solano F. Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell Res. 2002;15:162–173. doi: 10.1034/j.1600-0749.2002.02012.x.
    1. Zucca F.A., Basso E., Cupaioli F.A., Ferrari E., Sulzer D., Casella L., Zecca L. Neuromelanin of the human substantia nigra: An update. Neurotox. Res. 2014;25:13–23. doi: 10.1007/s12640-013-9435-y.
    1. Ghanem G., Fabrice J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol. Oncol. 2011;5:150–155. doi: 10.1016/j.molonc.2011.01.006.
    1. Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease. Mov. Disord. 2019;34:1440–1451. doi: 10.1002/mds.27776.
    1. Hearing V.J. Determination of melanin synthetic pathways. J. Investig. Dermatol. 2011;131:E8–E11. doi: 10.1038/skinbio.2011.4.
    1. Agrup G., Hansson C., Rorsman H., Rosengren A., Rosengren E. Trichochromes in red human hair. Acta Derm-Venereol. 1978;58:357–358.
    1. Yamaguchi Y., Morita A., Maeda A., Hearing V.J. Regulation of skin pigmentation and thickness by Dickkopf 1 (DKK1) J. Investig. Dermatol. Symp. Proc. 2009;14:73–75. doi: 10.1038/jidsymp.2009.4.
    1. Li M., Knapp S.K., Iden S. Mechanisms of melanocyte polarity and differentiation: What can we learn from other neuroectoderm-derived lineages? Curr. Opin. Cell Biol. 2020;67:99–108. doi: 10.1016/j.ceb.2020.09.001.
    1. Lee H.J., Park M.K., Lee E.J., Kim Y.L., Kim H.J., Kang J.H., Kim H.M., Lee A.Y., Lee C.H. Histamine receptor 2-mediated growth-differentiation factor-15 expression is involved in histamine-induced melanogenesis. Int. J. Biochem. Cell Biol. 2012;44:2124–2128. doi: 10.1016/j.biocel.2012.08.020.
    1. Vandamme N., Berx G. From neural crest cells to melanocytes: Cellular plasticity during development and beyond. Cell. Mol. Life Sci. 2019;76:1919–1934. doi: 10.1007/s00018-019-03049-w.
    1. Cichorek M., Wachulska M., Stasiewicz A., Tymińska A. Skin melanocytes: Biology and development. Adv. Dermatol. Allergol. /Postȩpy Dermatol. I Alergol. 2013;30:30. doi: 10.5114/pdia.2013.33376.
    1. Singh S.K., Kurfurst R., Nizard C., Schnebert S., Perrier E., Tobin D.J. Melanin transfer in human skin cells is mediated by filopodia—A model for homotypic and heterotypic lysosome-related organelle transfer. FASEB J. 2010;24:3756–3769. doi: 10.1096/fj.10-159046.
    1. Vijayasaradhi S., Bouchard B., Houghton A. The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J. Exp. Med. 1990;171:1375–1380. doi: 10.1084/jem.171.4.1375.
    1. Liu T.F., Kandala G., Setaluri V. PDZ domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase-related protein-1) J. Biol. Chem. 2001;276:35768–35777. doi: 10.1074/jbc.M103585200.
    1. Jackson I.J. A cDNA encoding tyrosinase-related protein maps to the brown locus in mouse. Proc. Natl. Acad. Sci. USA. 1988;85:4392–4396. doi: 10.1073/pnas.85.12.4392.
    1. Halaban R., Moellmann G. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc. Natl. Acad. Sci. USA. 1990;87:4809–4813. doi: 10.1073/pnas.87.12.4809.
    1. Kobayashi T., Hearing V.J. Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J. Cell Sci. 2007;120:4261–4268. doi: 10.1242/jcs.017913.
    1. Mockus S.M., Vrana K.E. Advances in the molecular characterization of tryptophan hydroxylase. J. Mol. Neurosci. 1998;10:163–179. doi: 10.1007/BF02761772.
    1. Hoashi T., Sato S., Yamaguchi Y., Passeron T., Tamaki K., Hearing V.J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J. 2010;24:1616–1629. doi: 10.1096/fj.09-151019.
    1. Zhang X., Beaulieu J.M., Sotnikova T.D., Gainetdinov R.R., Caron M.G. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science. 2004;305:217. doi: 10.1126/science.1097540.
    1. Theos A.C., Tenza D., Martina J.A., Hurbain I., Peden A.A., Sviderskaya E.V., Stewart A., Robinson M.S., Bennett D.C., Cutler D.F. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol. Biol. Cell. 2005;16:5356–5372. doi: 10.1091/mbc.e05-07-0626.
    1. Yamaguchi Y., Hearing V.J. Physiological factors that regulate skin pigmentation. Biofactors. 2009;35:193–199. doi: 10.1002/biof.29.
    1. Brenner M., Hearing V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008;84:539–549. doi: 10.1111/j.1751-1097.2007.00226.x.
    1. Huang Y., Li Y., Hu Z., Yue X., Proetto M.T., Jones Y., Gianneschi N.C. Mimicking melanosomes: Polydopamine nanoparticles as artificial microparasols. ACS Cent. Sci. 2017;3:564–569. doi: 10.1021/acscentsci.6b00230.
    1. Land E.J., Ramsden C.A., Riley P.A. Quinone chemistry and melanogenesis. Methods Enzym. 2004;378:88–109. doi: 10.1016/S0076-6879(04)78005-2.
    1. Schallreuter K.U., Kothari S., Chavan B., Spencer J.D. Regulation of melanogenesis—Controversies and new concepts. Exp. Dermatol. 2008;17:395–404. doi: 10.1111/j.1600-0625.2007.00675.x.
    1. Kobayashi T., Urabe K., Winder A., Jiménez-Cervantes C., Imokawa G., Brewington T., Solano F., García-Borrón J., Hearing V. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 1994;13:5818–5825. doi: 10.1002/j.1460-2075.1994.tb06925.x.
    1. Plonka P.M., Handjiski B., Michalczyk D., Popik M., Paus R. Oral zinc sulphate causes murine hair hypopigmentation and is a potent inhibitor of eumelanogenesis in vivo. Br. J. Derm. 2006;155:39–49. doi: 10.1111/j.1365-2133.2006.07376.x.
    1. Vachtenheim J., Borovanský J. “Transcription physiology” of pigment formation in melanocytes: Central role of MITF. Exp. Dermatol. 2010;19:617–627. doi: 10.1111/j.1600-0625.2009.01053.x.
    1. Ongenae K., Van Geel N., Naeyaert J.M. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 2003;16:90–100. doi: 10.1034/j.1600-0749.2003.00023.x.
    1. Fan K.-C., Yang T.-H., Huang Y.-C. Vitiligo and thyroid disease: A systematic review and meta-analysis. Eur. J. Dermatol. 2018;28:750–763.
    1. Alkhateeb A., Fain P.R., Thody A., Bennett D.C., Spritz R.A. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment. Cell Res. 2003;16:208–214. doi: 10.1034/j.1600-0749.2003.00032.x.
    1. Goldgeier M.H., Klein L.E., Klein-Angerer S., Moellmann G., Nordlund J.J. The distribution of melanocytes in the leptomeninges of the human brain. J. Investig. Dermatol. 1984;82:235–238. doi: 10.1111/1523-1747.ep12260111.
    1. Garcia Hernandez F.J., Ocana Medina C., Castillo Palma M.J., Sanchez Roman J., Rueda Rueda T., Pulido Aguilera M.C., Lopez Checa F. [Vogt-Koyanagi-Harada disease. Characteristics of a series of Andalusian patients] Rev. Clin. Esp. 2006;206:388–391. doi: 10.1157/13090507.
    1. Okamura K., Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res. 2021;34:190–203. doi: 10.1111/pcmr.12927.
    1. Somashekar P.H., Girisha K.M., Nampoothiri S., Gowrishankar K., Devi R.R., Gupta N., Narayanan D.L., Kaur A., Bajaj S., Jagadeesh S., et al. Locus and allelic heterogeneity and phenotypic variability in Waardenburg syndrome. Clin. Genet. 2019;95:398–402. doi: 10.1111/cge.13468.
    1. Ansons A.M., Davis H. Diagnosis and Management of Ocular Motility Disorders. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2008.
    1. Summers C.G. Albinism: Classification, clinical characteristics, and recent findings. Optom. Vis. Sci. 2009;86:659–662. doi: 10.1097/OPX.0b013e3181a5254c.
    1. Fistarol S.K., Itin P.H. Disorders of pigmentation. JDDG J. Dtsch. Dermatol. Ges. 2010;8:187–202. doi: 10.1111/j.1610-0387.2009.07137.x.
    1. Yuan L., Lee P.D. A new mechanism for freckle initiation based on microstructural level simulation. Acta Mater. 2012;60:4917–4926. doi: 10.1016/j.actamat.2012.04.043.
    1. Ebanks J.P., Wickett R.R., Boissy R.E. Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration. Int. J. Mol. Sci. 2009;10:4066–4087. doi: 10.3390/ijms10094066.
    1. Ak M. A comprehensive review of acne vulgaris. J. Clin. Pharm. 2019;1:17–45.
    1. Jallouli M., Francès C., Piette J.-C., Moguelet P., Factor C., Zahr N., Miyara M., Saadoun D., Mathian A., Haroche J. Hydroxychloroquine-induced pigmentation in patients with systemic lupus erythematosus: A case-control study. JAMA Dermatol. 2013;149:935–940. doi: 10.1001/jamadermatol.2013.709.
    1. Dai N.-T., Chang H.-I., Wang Y.-W., Fu K.-Y., Huang T.-C., Huang N.-C., Li J.-K., Hsieh P.-S., Dai L.-G., Hsu C.-K. Restoration of skin pigmentation after deep partial or full-thickness burn injury. Adv. Drug Deliv. Rev. 2018;123:155–164. doi: 10.1016/j.addr.2017.10.010.
    1. Adhikari M., Ali A., Kaushik N.K., Choi E.H. Comprehensive Clinical Plasma Medicine. Springer; Cham, Switzerland: 2018. Perspective in pigmentation disorders; pp. 363–400.
    1. Stulberg D.L., Clark N., Tovey D. Common hyperpigmentation disorders in adults: Part II. Melanoma, seborrheic keratoses, acanthosis nigricans, melasma, diabetic dermopathy, tinea versicolor, and postinflammatory hyperpigmentation. Am. Fam. Physician. 2003;68:1963–1968.
    1. Sinha S., Schwartz R.A. Juvenile acanthosis nigricans. J. Am. Acad. Dermatol. 2007;57:502–508. doi: 10.1016/j.jaad.2006.08.016.
    1. Ono T., Egawa K., Kayashima K.I., Kitoh M. Late onset dermal melanocytosis: An upper back variant. J. Dermatol. 1991;18:97–103. doi: 10.1111/j.1346-8138.1991.tb03050.x.
    1. Nakamura M., Morita A., Seité S., Haarmann-Stemmann T., Grether-Beck S., Krutmann J. Environment-induced lentigines: Formation of solar lentigines beyond ultraviolet radiation. Exp. Dermatol. 2015;24:407–411. doi: 10.1111/exd.12690.
    1. Remington B.K., Remington T.K. Treatment of facial lentigines in Peutz–Jeghers syndrome with an intense pulsed light source. Dermatol. Surg. 2002;28:1079–1081. doi: 10.1097/00042728-200211000-00021.
    1. Martínez-Quintana E., Rodríguez-González F. LEOPARD syndrome: Clinical features and gene mutations. Mol. Syndromol. 2012;3:145–157. doi: 10.1159/000342251.
    1. Engwa G.A., Ferdinand P.U., Nwalo F.N., Unachukwu M.N. Poisoning in the Modern World—New Tricks for an Old Dog? Volume 10. Intechopen; London, UK: 2019. Mechanism and health effects of heavy metal toxicity in humans; pp. 1–23.
    1. Sotaniemi E., Kreus K., Kaipainen W. Pigmentation and oral contraceptives. Br. Med. J. 1968;2:120. doi: 10.1136/bmj.2.5597.120.
    1. Barthel A., Benker G., Berens K., Diederich S., Manfras B., Gruber M., Kanczkowski W., Kline G., Kamvissi-Lorenz V., Hahner S. An update on Addison’s disease. Exp. Clin. Endocrinol. Diabetes. 2019;127:165–175. doi: 10.1055/a-0804-2715.
    1. Mills P.R., Skerrow C.J., MacKie R.M. Melanin pigmentation of the skin in primary biliary cirrhosis. J. Cutan. Pathol. 1981;8:404–410. doi: 10.1111/j.1600-0560.1981.tb01029.x.
    1. García R.M.G., Molina S.C. Drug-induced hyperpigmentation: Review and case series. J. Am. Board Fam. Med. 2019;32:628–638. doi: 10.3122/jabfm.2019.04.180212.
    1. Das S., Kourosh A.S. Cutaneous Drug Eruptions. Springer; London, UK: 2015. Pigment changes and drug reactions; pp. 87–106.
    1. Granstein R.D., Sober A.J. Drug-and heavy metal-induced hyperpigmentation. J. Am. Acad. Dermatol. 1981;5:1–18. doi: 10.1016/S0190-9622(81)70072-0.
    1. Dang N., Meng X., Song H. Nicotinic acetylcholine receptors and cancer. Biomed. Rep. 2016;4:515–518. doi: 10.3892/br.2016.625.
    1. Chen J., Cheuk I.W.Y., Shin V.Y., Kwong A. Acetylcholine receptors: Key players in cancer development. Surg. Oncol. 2019;31:46–53. doi: 10.1016/j.suronc.2019.09.003.
    1. Ishii M., Kurachi Y. Muscarinic acetylcholine receptors. Curr. Pharm. Des. 2006;12:3573–3581. doi: 10.2174/138161206778522056.
    1. Kawashima K., Fujii T. Basic and clinical aspects of non-neuronal acetylcholine: Overview of non-neuronal cholinergic systems and their biological significance. J. Pharmacol. Sci. 2008;106:167–173. doi: 10.1254/jphs.FM0070073.
    1. Elwary S.M., Chavan B., Schallreuter K.U. The vesicular acetylcholine transporter is present in melanocytes and keratinocytes in the human epidermis. J. Investig. Dermatol. 2006;126:1879–1884. doi: 10.1038/sj.jid.5700268.
    1. Wu Q., Xia Y., Dai K., Bai P., Kwan K.K.L., Guo M.S.S., Dong T.T.X., Tsim K.W.K. Solar light induces the release of acetylcholine from skin keratinocytes affecting melanogenesis. FASEB J. 2020;34:8941–8958. doi: 10.1096/fj.202000708R.
    1. Wu Q., Fung A.H.Y., Xu M.L., Poon K., Liu E.Y.L., Kong X.P., Yao P., Xiong Q.P., Dong T.T.X., Tsim K.W.K. Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J. Biol. Chem. 2018;293:14417–14428. doi: 10.1074/jbc.RA118.003729.
    1. Lamacz M., Tonon M.C., Louiset E., Cazin L., Strosberg D., Vaudry H. Acetylcholine stimulates alpha-melanocyte-stimulating hormone release from frog pituitary melanotrophs through activation of muscarinic and nicotinic receptors. Endocrinology. 1989;125:707–714. doi: 10.1210/endo-125-2-707.
    1. Fujii R., Miyashita Y., Fujii Y. Muscarinic cholinoceptors mediate neurally evoked pigment aggregation in glass catfish melanophores. J. Neural Transm. 1982;54:29–39. doi: 10.1007/BF01249276.
    1. Buchli R., Ndoye A., Arredondo J., Webber R.J., Grando S.A. Identification and characterization of muscarinic acetylcholine receptor subtypes expressed in human skin melanocytes. Mol. Cell. Biochem. 2001;228:57–72. doi: 10.1023/A:1013368509855.
    1. Hasse S., Chernyavsky A.I., Grando S.A., Paus R. The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sci. 2007;80:2248–2252. doi: 10.1016/j.lfs.2007.01.056.
    1. Van Strien F.J., Roubos E.W., Vaudry H., Jenks B.G. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Endocrinology. 1996;137:4298–4307. doi: 10.1210/endo.137.10.8828489.
    1. Khanam S., Siddique Y.H. Dopamine: Agonists and neurodegenerative disorders. Curr. Drug Targets. 2018;19:1599–1611. doi: 10.2174/1389450118666171117124340.
    1. Vallone D., Picetti R., Borrelli E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 2000;24:125–132. doi: 10.1016/S0149-7634(99)00063-9.
    1. Tursunov D. Assessment of L-Dopa induced dyskinesia. Parkinsonism Relat. Disord. 2018;46:e45. doi: 10.1016/j.parkreldis.2017.11.149.
    1. Amenta F., Ricci A., Rossodivita I., Avola R., Tayebati S. The dopaminergic system in hypertension. Clin. Exp. Hypertens. 2001;23:15–24. doi: 10.1081/CEH-100001193.
    1. Beaulieu J.-M., Gainetdinov R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011;63:182–217. doi: 10.1124/pr.110.002642.
    1. Tammaro A., Cavallotti C., Gaspari A., Narcisi A., Parisella F. Dopaminergic receptors in the human skin. J. Biol. Regul. Homeost. Agents. 2012;26:789–795.
    1. Lezcano N.E., Salvatierra N.A., Celis M.E. α-Melanotropin hormone inhibits the binding of [3H] SCH 23390 to the dopamine D1 receptor in vitro. Eur. J. Pharmacol. 1998;363:211–215. doi: 10.1016/S0014-2999(98)00772-9.
    1. Chu C.Y., Liu Y.L., Chiu H.C., Jee S.H. Dopamine-induced apoptosis in human melanocytes involves generation of reactive oxygen species. Br. J. Dermatol. 2006;154:1071–1079. doi: 10.1111/j.1365-2133.2006.07293.x.
    1. Hedges D.M., Yorgason J.T., Perez A.W., Schilaty N.D., Williams B.M., Watt R.K., Steffensen S.C. Spontaneous Formation of Melanin from Dopamine in the Presence of Iron. Antioxidants. 2020;9:1285. doi: 10.3390/antiox9121285.
    1. Kim B., Hwang J.S., Kim H.S. N-Nicotinoyl dopamine inhibits skin pigmentation by suppressing of melanosome transfer. Eur. J. Pharmacol. 2015;769:250–256. doi: 10.1016/j.ejphar.2015.11.025.
    1. Kim Y.H., Park J.I., hwan Myung C., eun Lee J., Bang S., Chang S.E., Hwang J.S. 1-Phenyl-3-(2-thiazolyl)-2-thiourea inhibits melanogenesis via a dual-action mechanism. Arch. Dermatol. Res. 2016;308:473–479. doi: 10.1007/s00403-016-1659-2.
    1. Leoty-Okombi S., Bonnet S., Rival D., Degrave V., Lin X., Vogelgesang B., Andre-Frei V. In vitro melanogenesis inhibitory effects of N-feruloyldopamine. J. Cosmet. Sci. 2013;64:133–144.
    1. Burchill S.A., Thody A.J. Dopaminergic inhibition of tyrosinase activity in hair follicular melanocytes of the mouse. J. Endocrinol. 1986;111:233–237. doi: 10.1677/joe.0.1110233.
    1. Jung J.M., Kim S.Y., Lee W.J., Hwang J.S., Chang S.E. Dopamine D4 receptor antagonist inhibits melanogenesis through transcriptional downregulation of MITF via ERK signalling. Exp. Dermatol. 2016;25:325–328. doi: 10.1111/exd.12943.
    1. Le Poole I., Van den Wijngaard R., Smit N., Oosting J., Westerhof W., Pavel S. Catechol-O-methyltransferase in vitiligo. Arch. Dermatol. Res. 1994;286:81–86. doi: 10.1007/BF00370732.
    1. Myburgh J. Norepinephrine: More of a neurohormone than a vasopressor. Crit. Care. 2010;14:196. doi: 10.1186/cc9246.
    1. Mittal R., Debs L.H., Patel A.P., Nguyen D., Patel K., O’Connor G., Grati M., Mittal J., Yan D., Eshraghi A.A., et al. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis. J. Cell. Physiol. 2017;232:2359–2372. doi: 10.1002/jcp.25518.
    1. Axelrod J., Reisine T.D. Stress hormones: Their interaction and regulation. Science. 1984;224:452–459. doi: 10.1126/science.6143403.
    1. Tank A.W., Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr. Physiol. 2015;5:1–15. doi: 10.1002/cphy.c140007.
    1. Pierce K.L., Premont R.T., Lefkowitz R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002;3:639–650. doi: 10.1038/nrm908.
    1. Bylund D.B., Eikenberg D.C., Hieble J.P., Langer S.Z., Lefkowitz R.J., Minneman K.P., Molinoff P.B., Ruffolo R.R., Jr., Trendelenburg U. International Union of Pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 1994;46:121–136.
    1. Schallreuter K.U., Korner C., Pittelkow M.R., Swanson N.N., Gardner M.L. The induction of the alpha-1-adrenoceptor signal transduction system on human melanocytes. Exp. Dermatol. 1996;5:20–23. doi: 10.1111/j.1600-0625.1996.tb00088.x.
    1. Scarparo A.C., Visconti M.A., de Oliveira A.R., Castrucci A.M. Adrenoceptors in normal and malignant human melanocytes. Arch. Dermatol. Res. 2000;292:265–267. doi: 10.1007/s004030050485.
    1. Gillbro J.M., Marles L.K., Hibberts N.A., Schallreuter K.U. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J. Investig. Dermatol. 2004;123:346–353. doi: 10.1111/j.0022-202X.2004.23210.x.
    1. Moretti S., Massi D., Farini V., Baroni G., Parri M., Innocenti S., Cecchi R., Chiarugi P. beta-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab. Investig. 2013;93:279–290. doi: 10.1038/labinvest.2012.175.
    1. Kindermann C., Narayan E.J., Hero J.M. The neuro-hormonal control of rapid dynamic skin colour change in an amphibian during amplexus. PLoS ONE. 2014;9:e114120. doi: 10.1371/journal.pone.0114120.
    1. Kjær A., Knigge U., Matzen S., Warberg J. β-Adrenergic receptors are involved in histamine-induced secretion of proopiomelanocortin-derived peptides and prolactin in rats. Eur. J. Endocrinol. 1995;132:223–228. doi: 10.1530/eje.0.1320223.
    1. Lan W.-J., Wang H.-Y., Lan W., Wang K.-Y., Wang R.-M. Evidence that geniposide abrogates norepinephrine-induced hypopigmentation by the activation of GLP-1R-dependent c-kit receptor signaling in melanocyte. J. Ethnopharmacol. 2008;118:154–158. doi: 10.1016/j.jep.2008.03.021.
    1. Orecchia G. Alternative therapies for vitiligo. In: Hann S.K., Nordlund J.J., editors. Vitiligo-a Monograph on the Basic and Clinical Science. Blackwell Science; Oxford, UK: 2000.
    1. Mendelsohn A.R., Larrick J.W. The Danger of Being Too Sympathetic: Norepinephrine in Alzheimer’s Disease and Graying of Hair. Rejuvenation Res. 2020;23:68–72. doi: 10.1089/rej.2020.2309.
    1. Schallreuter K.U., Wood J.M., Lemke R., LePoole C., Das P., Westerhof W., Pittelkow M.R., Thody A.J. Production of catecholamines in the human epidermis. Biochem. Biophys. Res. Commun. 1992;189:72–78. doi: 10.1016/0006-291X(92)91527-W.
    1. Watanabe M., Maemura K., Kanbara K., Tamayama T., Hayasaki H. GABA and GABA receptors in the central nervous system and other organs. Int. Rev. Cytol. 2002;213:1–47. doi: 10.1016/s0074-7696(02)13011-7.
    1. Denda M., Inoue K., Inomata S., Denda S. γ-aminobutyric acid (A) receptor agonists accelerate cutaneous barrier recovery and prevent epidermal hyperplasia induced by barrier disruption. J. Investig. Dermatol. 2002;119:1041–1047. doi: 10.1046/j.1523-1747.2002.19504.x.
    1. Stoebner P., Carayon P., Penarier G., Frechin N., Barneon G., Casellas P., Cano J., Meynadier J., Meunier L. The expression of peripheral benzodiazepine receptors in human skin: The relationship with epidermal cell differentiation. Br. J. Dermatol. 1999;140:1010–1016. doi: 10.1046/j.1365-2133.1999.02896.x.
    1. Allen J.R., Skeath J.B., Johnson S.L. Maintenance of Melanocyte Stem Cell Quiescence by GABA-A Signaling in Larval Zebrafish. Genetics. 2019;213:555–566. doi: 10.1534/genetics.119.302416.
    1. Pomeranz Krummel D.A., Nasti T.H., Kaluzova M., Kallay L., Bhattacharya D., Melms J.C., Izar B., Xu M., Burnham A., Ahmed T., et al. Melanoma Cell Intrinsic GABAA Receptor Enhancement Potentiates Radiation and Immune Checkpoint Inhibitor Response by Promoting Direct and T Cell-Mediated Antitumor Activity. Int. J. Radiat. Oncol. Biol. Phys. 2021;109:1040–1053. doi: 10.1016/j.ijrobp.2020.10.025.
    1. Seo J.A., Jeon H.Y., Kim M., Lee Y.J., Han E.T., Park W.S., Hong S.H., Kim Y.M., Ha K.S. Anti-metastatic effect of midazolam on melanoma B16F10 cells in the lungs of diabetic mice. Biochem. Pharmacol. 2020;178:114052. doi: 10.1016/j.bcp.2020.114052.
    1. Lv J., Fu Y., Gao R., Li J., Kang M., Song G., Yun C. Diazepam enhances melanogenesis, melanocyte dendricity and melanosome transport via the PBR/cAMP/PKA pathway. Int. J. Biochem. Cell Biol. 2019;116:105620. doi: 10.1016/j.biocel.2019.105620.
    1. Matthew E., Laskin J.D., Zimmerman E.A., Weinstein I.B., Hsu K.C., Engelhardt D.L. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells. Proc. Natl. Acad. Sci. USA. 1981;78:3935–3939. doi: 10.1073/pnas.78.6.3935.
    1. Fuziwara S., Inoue K., Denda M. NMDA-type glutamate receptor is associated with cutaneous barrier homeostasis. J. Investig. Dermatol. 2003;120:1023–1029. doi: 10.1046/j.1523-1747.2003.12238.x.
    1. Teh J.L., Shah R., Shin S.S., Wen Y., Mehnert J.M., Goydos J., Chen S. Metabotropic glutamate receptor 1 mediates melanocyte transformation via transactivation of insulin-like growth factor 1 receptor. Pigment Cell Melanoma Res. 2014;27:621–629. doi: 10.1111/pcmr.12237.
    1. Hoogduijn M., Hitchcock I., Smit N., Gillbro J., Schallreuter K., Genever P. Glutamate receptors on human melanocytes regulate the expression of MiTF. Pigment Cell Res. 2006;19:58–67. doi: 10.1111/j.1600-0749.2005.00284.x.
    1. Choi K.Y., Chang K., Pickel J.M., Badger J.D., 2nd, Roche K.W. Expression of the metabotropic glutamate receptor 5 (mGluR5) induces melanoma in transgenic mice. Proc. Natl. Acad. Sci. USA. 2011;108:15219–15224. doi: 10.1073/pnas.1107304108.
    1. Devi S., Markandeya Y., Maddodi N., Dhingra A., Vardi N., Balijepalli R.C., Setaluri V. Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes. Pigment Cell Melanoma Res. 2013;26:348–356. doi: 10.1111/pcmr.12083.
    1. Ni J., Wang N., Gao L., Li L., Zheng S., Liu Y., Ozukum M., Nikiforova A., Zhao G., Song Z. The effect of the NMDA receptor-dependent signaling pathway on cell morphology and melanosome transfer in melanocytes. J. Dermatol. Sci. 2016;84:296–304. doi: 10.1016/j.jdermsci.2016.08.534.
    1. Hajdu T., Juhasz T., Szucs-Somogyi C., Racz K., Zakany R. NR1 and NR3B Composed Intranuclear N-methyl-d-aspartate Receptor Complexes in Human Melanoma Cells. Int. J. Mol. Sci. 2018;19:1929. doi: 10.3390/ijms19071929.
    1. Yang N., Mu L., Zhao B., Wang M., Hu S., Zhao B., Chen Y., Wu X. RNAi-mediated SLC7A11 knockdown inhibits melanogenesis-related genes expression in rabbit skin fibroblasts. J. Genet. 2018;97:463–468. doi: 10.1007/s12041-018-0945-5.
    1. Marieb E., Hoehn K. Human Anatomy and Physiology. Benjamin Cummings; San Francisco, CA, USA: 2001. The Respiratory System.
    1. Nieto-Alamilla G., Márquez-Gómez R., García-Gálvez A.-M., Morales-Figueroa G.-E., Arias-Montaño J.-A. The histamine H3 receptor: Structure, pharmacology, and function. Mol. Pharmacol. 2016;90:649–673. doi: 10.1124/mol.116.104752.
    1. Lieberman P. The basics of histamine biology. Ann. Allergy Asthma Immunol. 2011;106:S2–S5. doi: 10.1016/j.anai.2010.08.005.
    1. Albrecht M., Dittrich A. Expression and function of histamine and its receptors in atopic dermatitis. Mol. Cell. Pediatrics. 2015;2:1–8. doi: 10.1186/s40348-015-0027-1.
    1. Reynolds J., Akhter J., Morris D. In vitro effect of histamine and histamine H1 and H2 receptor antagonists on cellular proliferation of human malignant melanoma cell lines. Melanoma Res. 1996;6:95–99. doi: 10.1097/00008390-199604000-00003.
    1. McEwan M.T., Parsons P.G. Regulation of tyrosinase expression and activity in human melanoma cells via histamine receptors. J. Investig. Dermatol. 1991;97:868–873. doi: 10.1111/1523-1747.ep12491593.
    1. Chang T.-S., Chen C.-T. Inhibitory effect of homochlorcyclizine on melanogenesis in α-melanocyte stimulating hormone-stimulated mouse B16 melanoma cells. Arch. Pharmacal Res. 2012;35:119–127. doi: 10.1007/s12272-012-0113-z.
    1. Jangi S.-M., Díaz-Pérez J.L., Ochoa-Lizarralde B., Martín-Ruiz I., Asumendi A., Pérez-Yarza G., Gardeazabal J., Díaz-Ramón J.L., Boyano M.D. H1 histamine receptor antagonists induce genotoxic and caspase-2-dependent apoptosis in human melanoma cells. Carcinogenesis. 2006;27:1787–1796. doi: 10.1093/carcin/bgl021.
    1. Moon H.R., Jo S.Y., Kim H.T., Lee W.J., Won C.H., Lee M.W., Choi J.H., Chang S.E. Loratadine, an H1 Antihistamine, Inhibits Melanogenesis in Human Melanocytes. BioMed Res. Int. 2019;2019:5971546. doi: 10.1155/2019/5971546.
    1. Yoshida M., Takahashi Y., Inoue S. Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J. Investig. Dermatol. 2000;114:334–342. doi: 10.1046/j.1523-1747.2000.00874.x.
    1. Kim N.H., Lee A.Y. Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival. Exp. Dermatol. 2010;19:1073–1079. doi: 10.1111/j.1600-0625.2010.01133.x.
    1. Le Gros G., Zhang X., Parsons P. Alteration of tyrosinase activity in human melanocytes and melanoma cells by histamine H2 and H3 ligands. Melanoma Res. 1994;4:359–364. doi: 10.1097/00008390-199412000-00003.
    1. Massari N.A., Nicoud M.B., Sambuco L., Cricco G.P., Lamas D.J.M., Ducloux M.V.H., Blanco H., Rivera E.S., Medina V.A. Histamine therapeutic efficacy in metastatic melanoma: Role of histamine H4 receptor agonists and opportunity for combination with radiation. Oncotarget. 2017;8:26471. doi: 10.18632/oncotarget.15594.
    1. Pytliak M., Vargova V., Mechirova V., Felsoci M. Serotonin receptors—From molecular biology to clinical applications. Physiol. Res. 2011;60:15–25. doi: 10.33549/physiolres.931903.
    1. Johansson O., Liu P.-Y., Liang Y., Gangi S., Bondesson L., Nordlind K., Olsson M.J., Löntz W., Verhofstad A. A serotonin-like immunoreactivity is present in human cutaneous melanocytes. J. Investig. Dermatol. 1998;111:1010–1014. doi: 10.1046/j.1523-1747.1998.00460.x.
    1. English K.B., Wang Z.Z., Stayner N., Stensaas L.J., Martin H., Tuckett R.P. Serotonin-like immunoreactivity in Merkel cells and their afferent neurons in touch domes from the hairy skin of rats. Anat. Rec. 1992;232:112–120. doi: 10.1002/ar.1092320112.
    1. Slominski A., Pisarchik A., Semak I., Sweatman T., Wortsman J., Szczesniewski A., Slugocki G., McNulty J., Kauser S., Tobin D.J. Serotoninergic and melatoninergic systems are fully expressed in human skin. FASEB J. 2002;16:896–898. doi: 10.1096/fj.01-0952fje.
    1. Lefebvre H., Compagnon P., Contesse V., Delarue C., Thuillez C., Vaudry H., Kuhn J.-M. Production and metabolism of serotonin (5-HT) by the human adrenal cortex: Paracrine stimulation of aldosterone secretion by 5-HT. J. Clin. Endocrinol. Metab. 2001;86:5001–5007. doi: 10.1210/jcem.86.10.7917.
    1. Fink K.B., Göthert M. 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 2007;59:360–417. doi: 10.1124/pr.59.07103.
    1. Talley N.J. Serotoninergic neuroenteric modulators. Lancet. 2001;358:2061–2068. doi: 10.1016/S0140-6736(01)07103-3.
    1. Slominski A., Pisarchik A., Zbytek B., Tobin D.J., Kauser S., Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J. Cell. Physiol. 2003;196:144–153. doi: 10.1002/jcp.10287.
    1. Bockaert J., Claeysen S., Bécamel C., Dumuis A., Marin P. Neuronal 5-HT metabotropic receptors: Fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 2006;326:553–572. doi: 10.1007/s00441-006-0286-1.
    1. Slominski A., Wortsman J., Tobin D.J. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2005;19:176–194. doi: 10.1096/fj.04-2079rev.
    1. Lundeberg L., El-Nour H., Mohabbati S., Morales M., Azmitia E., Nordlind K. Expression of serotonin receptors in allergic contact eczematous human skin. Arch. Dermatol. Res. 2002;294:393–398. doi: 10.1007/s00403-002-0350-y.
    1. Nordlind K., Azmitia E.C., Slominski A. The skin as a mirror of the soul: Exploring the possible roles of serotonin. Exp. Dermatol. 2008;17:301–311. doi: 10.1111/j.1600-0625.2007.00670.x.
    1. Slominski A., Pisarchik A., Johansson O., Jing C., Semak I., Slugocki G., Wortsman J. Tryptophan hydroxylase expression in human skin cells. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2003;1639:80–86. doi: 10.1016/S0925-4439(03)00124-8.
    1. Oh E.J., Park J.I., Lee J.E., Myung C.H., Kim S.Y., Chang S.E., Hwang J.S. A Novel Role of Serotonin Receptor 2B Agonist as an Anti-Melanogenesis Agent. Int. J. Mol. Sci. 2016;17:546. doi: 10.3390/ijms17040546.
    1. Zhou L., Cai M., Ren Y., Wu H., Liu M., Chen H., Shang J. The different roles of 5-HT1A/2A receptors in fluoxetine ameliorated pigmentation of C57BL/6 mouse skin in response to stress. J. Dermatol. Sci. 2018;92:222–229. doi: 10.1016/j.jdermsci.2018.10.002.
    1. Liu L., Fu M., Pei S., Zhou L., Shang J. R-Fluoxetine Increases Melanin Synthesis Through a 5-HT1A/2A Receptor and p38 MAPK Signaling Pathways. Int. J. Mol. Sci. 2018;20:80. doi: 10.3390/ijms20010080.
    1. Perdomo J., Quintana C., Gonzalez I., Hernandez I., Rubio S., Loro J.F., Reiter R.J., Estevez F., Quintana J. Melatonin Induces Melanogenesis in Human SK-MEL-1 Melanoma Cells Involving Glycogen Synthase Kinase-3 and Reactive Oxygen Species. Int. J. Mol. Sci. 2020;21:4970. doi: 10.3390/ijms21144970.
    1. Kim T.K., Lin Z., Tidwell W.J., Li W., Slominski A.T. Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol. Cell. Endocrinol. 2015;404:1–8. doi: 10.1016/j.mce.2014.07.024.
    1. Cabrera J., Negrin G., Estevez F., Loro J., Reiter R.J., Quintana J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J. Pineal. Res. 2010;49:45–54. doi: 10.1111/j.1600-079X.2010.00765.x.
    1. Slominski A., Pruski D. Melatonin inhibits proliferation and melanogenesis in rodent melanoma cells. Exp. Cell Res. 1993;206:189–194. doi: 10.1006/excr.1993.1137.
    1. BinSaif G.A., Al Samary A., Al Mohizea S. Failure of botulinum toxin treatment for localized vitiligo. J. Drugs Dermatol. 2010;9:1092–1094.
    1. Iyengar B. Modulation of melanocytic activity by acetylcholine. Acta Anat. (Basel) 1989;136:139–141. doi: 10.1159/000146813.
    1. Kurzen H., Schallreuter K.U. Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Exp. Dermatol. 2004;13:27–30. doi: 10.1111/j.1600-0625.2004.00258.x.
    1. Said E.R., Nagui N., Rashed L.A., Mostafa W.Z. Oxidative stress and the cholinergic system in non-segmental vitiligo: Effect of narrow band ultraviolet b. Photodermatol. Photoimmunol. Photomed. 2021;37:306–312. doi: 10.1111/phpp.12653.
    1. Schallreuter K.U., Elwary S.M., Gibbons N.C., Rokos H., Wood J.M. Activation/deactivation of acetylcholinesterase by H2O2: More evidence for oxidative stress in vitiligo. Biochem. Biophys. Res. Commun. 2004;315:502–508. doi: 10.1016/j.bbrc.2004.01.082.
    1. Ali S.A., Meitei K.V. Nigella sativa seed extract and its bioactive compound thymoquinone: The new melanogens causing hyperpigmentation in the wall lizard melanophores. J. Pharm. Pharmacol. 2011;63:741–746. doi: 10.1111/j.2042-7158.2011.01271.x.
    1. Sallam A., Mira A., Ashour A., Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine. 2016;23:1005–1011. doi: 10.1016/j.phymed.2016.06.014.
    1. Kotb El-Sayed M.-I., El-Ghany A., Ahmed A., Mohamed R.R. Neural and endocrinal pathobiochemistry of vitiligo: Comparative study for a hypothesized mechanism. Front. Endocrinol. 2018;9:197. doi: 10.3389/fendo.2018.00197.
    1. Reimann E., Kingo K., Karelson M., Reemann P., Loite U., Keermann M., Abram K., Vasar E., Silm H., Koks S. Expression profile of genes associated with the dopamine pathway in vitiligo skin biopsies and blood sera. Dermatology. 2012;224:168–176. doi: 10.1159/000338023.
    1. Kingo K., Aunin E., Karelson M., Philips M.-A., Rätsep R., Silm H., Vasar E., Soomets U., Kõks S. Gene expression analysis of melanocortin system in vitiligo. J. Dermatol. Sci. 2007;48:113–122. doi: 10.1016/j.jdermsci.2007.06.004.
    1. Kanoff J.M., Colby K. Pigmented deposits on a Boston keratoprosthesis from topical ibopamine. Cornea. 2010;29:1069–1071. doi: 10.1097/ICO.0b013e3181d07567.
    1. Guler Aksu G., Akdere P., Toros F. Methylphenidate associated vitiligo in a child: A case report. Asia-Pac. Psychiatry. 2019;11:e12351. doi: 10.1111/appy.12351.
    1. Giordano F., Bonetti C., Surace E.M., Marigo V., Raposo G. The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Hum. Mol. Genet. 2009;18:4530–4545. doi: 10.1093/hmg/ddp415.
    1. Vetrini F., Auricchio A., Du J., Angeletti B., Fisher D.E., Ballabio A., Marigo V. The microphthalmia transcription factor (Mitf) controls expression of the ocular albinism type 1 gene: Link between melanin synthesis and melanosome biogenesis. Mol. Cell. Biol. 2004;24:6550–6559. doi: 10.1128/MCB.24.15.6550-6559.2004.
    1. Lopez V.M., Decatur C.L., Stamer W.D., Lynch R.M., McKay B.S. L-DOPA is an endogenous ligand for OA1. PLoS Biol. 2008;6:e236. doi: 10.1371/journal.pbio.0060236.
    1. Basnet B., Bhushan A., Khan R., Kumar G., Sharma V.K., Sharma A., Gupta S. Plasma & urinary catecholamines & urinary vanillylmandelic acid levels in patients with generalized vitiligo. Indian J. Med. Res. 2018;147:384–390. doi: 10.4103/ijmr.IJMR_657_16.
    1. Wu C.S., Yu H.S., Chang H.R., Yu C.L., Yu C.L., Wu B.N. Cutaneous blood flow and adrenoceptor response increase in segmental-type vitiligo lesions. J. Dermatol. Sci. 2000;23:53–62. doi: 10.1016/S0923-1811(99)00090-0.
    1. Schallreuter K.U., Wood J.M., Pittelkow M.R., Buttner G., Swanson N., Korner C., Ehrke C. Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch. Dermatol. Res. 1996;288:14–18. doi: 10.1007/BF02505037.
    1. Cucchi M.L., Frattini P., Santagostino G., Preda S., Orecchia G. Catecholamines increase in the urine of non-segmental vitiligo especially during its active phase. Pigment Cell Res. 2003;16:111–116. doi: 10.1034/j.1600-0749.2003.00015.x.
    1. Schallreuter K.U. Epidermal adrenergic signal transduction as part of the neuronal network in the human epidermis. J. Investig. Dermatol. Symp. Proc. 1997;2:37–40. doi: 10.1038/jidsymp.1997.9.
    1. Zhao G., Zhou W., Liu Y., Wang Y., Li Z., Song Z. Critical role of metabotropic glutamate receptor 4 in bone marrow-derived dendritic cells in the Th17 cell differentiation and the melanogenesis of B16 cells. Braz. J. Med. Biol. Res. 2020;53:e9282. doi: 10.1590/1414-431x20209282.
    1. Lin X., Meng X., Song Z., Lin J. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch. Biochem. Biophys. 2020;696:108670. doi: 10.1016/j.abb.2020.108670.
    1. Natarajan V.T., Singh A., Kumar A.A., Sharma P., Kar H.K., Marrot L., Meunier J.R., Natarajan K., Rani R., Gokhale R.S. Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J. Investig. Dermatol. 2010;130:2781–2789. doi: 10.1038/jid.2010.201.
    1. Flores-Cantu H., Camara-Lemarroy C.R., Calderon-Hernandez H.J., Zapata-Rivera M.A., Villareal-Perez J.Z., Villareal-Velazquez H.J. Anti-GAD antibody, seizures, cerebellar ataxias and vitiligo: A diagnostic challenge. Cerebellum. 2015;14:375–377. doi: 10.1007/s12311-014-0625-9.
    1. Jog M.S., Lambert C.D., Lang A.E. Stiff-person syndrome. Can. J. Neurol. Sci. 1992;19:383–388. doi: 10.1017/S0317167100042025.
    1. Caballero P.E.J. Stiff person syndrome: Presentation of a case with repetitive complex discharges in electromiograms. Neurologist. 2009;15:227–229. doi: 10.1097/NRL.0b013e3181935a29.
    1. Burbridge T., Choudhury B., Collard K. The uptake of gamma-aminobutyric acid and glutamate by synaptosomes from the visual cortex of albino and pigmented rabbits. J. Neural Transm. 1996;103:299–305. doi: 10.1007/BF01271241.
    1. Yoshida M., Hirotsu S., Nakahara M., Uchiwa H., Tomita Y. Histamine is involved in ultraviolet B-induced pigmentation of guinea pig skin. J. Investig Dermatol. 2002;118:255–260. doi: 10.1046/j.0022-202x.2001.01668.x.
    1. Tomita Y., Maeda K., Tagami H. Histamine stimulates normal human melanocytes in vitro: One of the possible inducers of hyperpigmentation in urticaria pigmentosa. J. Dermatol. Sci. 1993;6:146–154. doi: 10.1016/0923-1811(93)90005-A.
    1. Liu J., Xu Y., Lin T.-K., Lv C., Elias P.M., Man M.-Q. Topical histamine stimulates repigmentation of nonsegmental vitiligo by a receptor-dependent mechanism. Ski. Pharmacol. Physiol. 2017;30:139–145. doi: 10.1159/000464335.
    1. Bushby S., Green A. The release of histamine by polymyxin B and polymyxin E. Br. J. Pharmacol. Chemother. 1955;10:215. doi: 10.1111/j.1476-5381.1955.tb00085.x.
    1. Mattos K., Cintra M., Gouvêa I., Ferreira L., Velho P., Moriel P. Skin hyperpigmentation following intravenous polymyxin B treatment associated with melanocyte activation and inflammatory process. J. Clin. Pharm. Ther. 2017;42:573–578. doi: 10.1111/jcpt.12543.
    1. Panja S.K., Bhattacharya B., Lahiri S.C. Role of histamine as a toxic mediator in the pathogenesis of vitiligo. Indian J. Dermatol. 2013;58:421. doi: 10.4103/0019-5154.119947.
    1. Foldès C., Wallach D., Launay J.-M., Chirio R. Congenital dyschromia with erythrocyte, platelet, and tryptophan metabolism abnormalities. J. Am. Acad. Dermatol. 1988;19:642–655. doi: 10.1016/S0190-9622(88)70218-2.
    1. Lekman A., Witt-Engerström I., Gottfries J., Hagberg B.A., Percy A.K., Svennerholm L. Rett syndrome: Biogenic amines and metabolites in postmortem brain. Pediatric Neurol. 1989;5:357–362. doi: 10.1016/0887-8994(89)90049-0.
    1. Gerritsen S., Akkerman J., Nijmeijer B., Sixma J., Witkop C., White J. The Hermansky-Pudlak Syndrome: Evidence for a Lowered 5-Hydroxytryptamine Content in Platelets of Heterozygotes. Scand. J. Haematol. 1977;18:249–256. doi: 10.1111/j.1600-0609.1977.tb02337.x.
    1. Weiss H.J., Tschopp T.B., Rogers J., Brand H. Studies of platelet 5-hydroxytryptamine (serotonin) in storage pool disease and albinism. J. Clin. Investig. 1974;54:421–432. doi: 10.1172/JCI107778.
    1. Kurbanov K., Beresov T.T. Metabolism of tryptophan in vitiligo. Vopr. Meditsinskoj Khimii. 1976;22:683.
    1. Cucchi M.L., Frattini P., Santagostino G., Orecchia G. Higher plasma catecholamine and metabolite levels in the early phase of nonsegmental vitiligo. Pigment. Cell Res. 2000;13:28–32. doi: 10.1034/j.1600-0749.2000.130106.x.
    1. Lindsay H. Leukoderma—its treatment. Calif. West. Med. 1932;37:36.
    1. Menon A. Ultra-violet therapy in cases of leucoderma. Indian Med. Gaz. 1945;80:612.
    1. El Mofty A.M. A preliminary clinical report on the treatment of leucodermia with Ammi majus Linn. J. Egypt. Med. Assoc. 1948;31:651–665.
    1. Iyengar B. Photomodulation of the Melanocyte Cell cycle by Indoleamines. Neurosignals. 1998;7:345–350. doi: 10.1159/000014558.
    1. Iyengar B. Indoleamines and the UV-light-sensitive photoperiodic responses of the melanocyte network: A biological calendar? Experientia. 1994;50:733–736. doi: 10.1007/BF01919373.
    1. Van Gool A.R., Fekkes D., Kruit W.H., Mulder P.G., Ten Hagen T.L., Bannink M., Maes M., Eggermont A.M. Serum amino acids, biopterin and neopterin during long-term immunotherapy with interferon-alpha in high-risk melanoma patients. Psychiatry Res. 2003;119:125–132. doi: 10.1016/S0165-1781(03)00113-6.
    1. Hu M.-f., Li Y.-l., Zhuang L. A case report of concomitant vitiligo in a patient treated with interferon alfa-1b for chronic hepatitis B infection. Chin. J. Hepatol. 2010;18:872.
    1. Hamadah I., Binamer Y., Sanai F.M., Abdo A.A., Alajlan A. Interferon-induced vitiligo in hepatitis C patients: A case series. Int. J. Dermatol. 2010;49:829–833. doi: 10.1111/j.1365-4632.2009.04443.x.
    1. Kocer B., Nazliel B., Oztas M., Batur H. Vitiligo and multiple sclerosis in a patient treated with interferon beta-1a: A case report. Eur. J. Neurol. 2009;16:e78. doi: 10.1111/j.1468-1331.2009.02563.x.
    1. Namian A.-M., Shahbaz S., Salmanpoor R., Namazi M.-R., Dehghani F., Kamali-Sarvestani E. Association of interferon-gamma and tumor necrosis factor alpha polymorphisms with susceptibility to vitiligo in Iranian patients. Arch. Dermatol. Res. 2009;301:21–25. doi: 10.1007/s00403-008-0904-8.
    1. Anbar T., Abdel-Rahman A., Ahmad H. Vitiligo occurring at site of interferon-a 2b injection in a patient with chronic viral hepatitis C: A case report. Clin. Exp. Dermatol. 2008;33:503. doi: 10.1111/j.1365-2230.2008.02719.x.
    1. Taffaro M., Pyrsopoulos N., Cedron H., Cacayorin E., Weppler D., Moon J., Nishida S., Levi D., Kato T., Selvaggi G. Vitiligo improvement in a hepatitis C patient after treatment with PEG-interferon α-2A and ribavirin: A case report. Dig. Dis. Sci. 2007;52:3435. doi: 10.1007/s10620-006-9721-0.
    1. Tinio P., Hadi S., Al-Ghaithi K., Al-Qari H., Rudikoff D. Segmental Vitiligo and Hair Curling After Interferon α and Ribavirin Treatment for Hepatitis C. Skinmed. 2006;5:50–51. doi: 10.1111/j.1540-9740.2006.04772.x.
    1. Seçkin D., Durusoy Ç., Şahin S. Concomitant vitiligo and psoriasis in a patient treated with interferon alfa-2a for chronic hepatitis B infection. Pediatric Dermatol. 2004;21:577–579. doi: 10.1111/j.0736-8046.2004.21512.x.
    1. Primo J., Merino C., Belda A.G. Vitiligo and alopecia in patients with chronic hepatitis C treated with alpha interferon associated or not with ribavirin. Gastroenterol. Hepatol. 2000;23:362–363.
    1. Nouri K., Busso M., Machler B.C. Vitiligo associated with alpha-interferon in a patient with chronic active hepatitis C. Cutis. 1997;60:289–290.
    1. Simsek H., Savas C., Akkiz H., Telatar H. Interferon-lnduced Vitiligo in a Patient with Chronic Viral Hepatitis C Infection. Dermatology. 1996;193:65–66. doi: 10.1159/000246208.
    1. Harris J., Bines S., Das Gupta T. Therapy of disseminated malignant melanoma with recombinant α 2b-interferon and piroxicam: Clinical results with a report of an unusual response-associated feature (Vitiligo) and unusual toxicity (diffuse pulmonary interstitial fibrosis) Med. Pediatric Oncol. 1994;22:103–106. doi: 10.1002/mpo.2950220208.

Source: PubMed

3
Abonnieren