Four Weeks of Time-Restricted Feeding Combined with Resistance Training Does Not Differentially Influence Measures of Body Composition, Muscle Performance, Resting Energy Expenditure, and Blood Biomarkers

Matthew T Stratton, Grant M Tinsley, Michaela G Alesi, Garrett M Hester, Alex A Olmos, Paul R Serafini, Andrew S Modjeski, Gerald T Mangine, Kelsey King, Shelby N Savage, Austin T Webb, Trisha A VanDusseldorp, Matthew T Stratton, Grant M Tinsley, Michaela G Alesi, Garrett M Hester, Alex A Olmos, Paul R Serafini, Andrew S Modjeski, Gerald T Mangine, Kelsey King, Shelby N Savage, Austin T Webb, Trisha A VanDusseldorp

Abstract

Recently, interest in time-restricted feeding (TRF) has increased from reports highlighting improvements in body composition and muscular performance measures. Twenty-six recreationally active males were randomly assigned to either TRF (n = 13; ~22.9 years; 82.0 kg; 178.1 cm; 8 h eating window, 25% caloric deficit, 1.8 g/kg/day protein) or normal diet (ND; n = 13; ~22.5 years; 83.3 kg; 177.5 cm; normal meal pattern; 25% caloric deficit, 1.8 g/kg/day protein) groups. Participants underwent 4-weeks of supervised full body resistance training. Changes in body composition (fat mass (FM), fat free mass (FFM), and body fat percentage (BF%)), skeletal muscle cross sectional area (CSA) and muscle thickness (MT) of the vastus lateralis (VL), rectus femoris, (RF), and biceps brachii (BB) muscles, resting energy expenditure (REE), muscular performance, blood biomarkers, and psychometric parameters were assessed. Significant (p < 0.05) decreases were noted in BM, FM, BF%, testosterone, adiponectin, and REE, along with significant increases in BP1RM, LP1RM, VJHT, VJPP, VLCSA, BBCSA, and BBMT in both groups. Plasma cortisol levels were significantly elevated at post (p = 0.018) only in ND. Additionally, FFM was maintained equally between groups. Thus, a TRF style of eating does not enhance reductions in FM over caloric restriction alone during a 4-week hypocaloric diet.

Keywords: body composition; caloric restriction; fasting; intermittent fasting; resistance training; time-restricted feeding.

Conflict of interest statement

G.M.T. has received consulting payments from a mobile phone application developer for providing research-based information on the topic of intermittent fasting.

Figures

Figure 1
Figure 1
Study design overview. REE = resting energy expenditure; VJ = vertical jump; 4C = 4 compartment model of body composition; 1RM = 1 repetition maximum; RTF = repetitions until failure; RT = resistance training.
Figure 2
Figure 2
4-week resistance training program; All percentages were based off estimated 1RM at pretesting. RIR = Repetitions in Reserve; DB = Dumbbell; RDL = Romanian Deadlift; Sec = Seconds; Min = Minutes.
Figure 3
Figure 3
Resting energy expenditure (REE) pre and post four week intervention for both the time-restricted feeding (TRF) and normal diet (ND) groups. Error bars reflect SEM. * = main effect for time.
Figure 4
Figure 4
Leg press 1RM (A), leg press repetitions to failure (B), bench press 1RM (C), and bench press repetitions to failure (D) over the course of 4-weeks of the intervention from pre to post for both the time-restricted feeding (TRF) and normal diet (ND) groups. Error bars reflect SEM. * = main effect for time.

References

    1. Longo V.D., Mattson M.P. Fasting: Molecular mechanisms and clinical applications. Cell Metab. 2014;19:181–192. doi: 10.1016/j.cmet.2013.12.008.
    1. Paoli A., Tinsley G., Bianco A., Moro T. The Influence of Meal Frequency and Timing on Health in Humans: The Role of Fasting. Nutrients. 2019;11:719. doi: 10.3390/nu11040719.
    1. Seimon R., Roekenes J.A., Zibellini J., Zhu B., Gibson A.A., Hills A., Wood R., King N.A., Byrne N.M., Sainsbury A. Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol. Cell Endocrinol. 2015;418:153–172. doi: 10.1016/j.mce.2015.09.014.
    1. Tinsley G.M., La Bounty P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015;73:661–674. doi: 10.1093/nutrit/nuv041.
    1. Tinsley G.M., Gann J.G., La Bounty P.M. Intermittent Fasting Programs and Their Effects on Body Composition. Strength Cond. J. 2015;37:60–71. doi: 10.1519/SSC.0000000000000160.
    1. Mattson M.P., Longo V.D., Harvie M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 2016;39:46–58. doi: 10.1016/j.arr.2016.10.005.
    1. Rothschild J., Hoddy K.K., Jambazian P., Varady K.A. Time-restricted feeding and risk of metabolic disease: A review of human and animal studies. Nutr. Rev. 2014;72:308–318. doi: 10.1111/nure.12104.
    1. Varady K.A. Intermittent versus daily calorie restriction: Which diet regimen is more effective for weight loss? Obes. Rev. 2011;12:E593–E601. doi: 10.1111/j.1467-789X.2011.00873.x.
    1. Harvie M.N., Wright C., Pegington M., McMullan D., Mitchell E., Martin B., Cutler R.G., Evans D.G.R., Whiteside S., Maudsley S., et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 2013;110:1534–1547. doi: 10.1017/S0007114513000792.
    1. Harvie M.N., Pegington M., Mattson M.P., Frystyk J., Dillon B., Evans D.G.R., Cuzick J., Jebb S.A., Martin B., Cutler R.G., et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomized trial in young overweight women. Int. J. Obes. 2010;35:714–727. doi: 10.1038/ijo.2010.171.
    1. Stote K.S., Baer D.J., Spears K., Paul D.R., Harris G.K., Rumpler W.V., Strycula P., Najjar S.S., Ferrucci L., Ingram N.K., et al. A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults123. Am. J. Clin. Nutr. 2007;85:981–988. doi: 10.1093/ajcn/85.4.981.
    1. Donahoo W., McCall K., Brannon S., Melanson E.L., Gozansky W.S. Effect of 8 Weeks of Intermittent Fasting on Weight Loss, Body Composition, and Insulin Sensitivity in Obese Individuals. Obesity. 2009;17:S258.
    1. Klempel M.C., Kroeger C.M., Varady K.A. Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet. Metab. Clin. Exp. 2013;62:137–143. doi: 10.1016/j.metabol.2012.07.002.
    1. Eshghinia S., Mohammadzadeh F. The effects of modified alternate-day fasting diet on weight loss and CAD risk factors in overweight and obese women. J. Diabetes Metab. Disord. 2013;12:4. doi: 10.1186/2251-6581-12-4.
    1. Heilbronn L.K., Smith S.R., Martin C.K., Anton S.D., Ravussin E. Alternate-day fasting in nonobese subjects: Effects on body weight, body composition, and energy metabolism. Am. J. Clin. Nutr. 2005;81:69–73. doi: 10.1093/ajcn/81.1.69.
    1. Varady K.A., Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Haus J.M., Hoddy K.K., Calvo Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013;12:146. doi: 10.1186/1475-2891-12-146.
    1. Johnson J.B., Summer W., Cutler R.G., Martin B., Hyun N.-H., Dixit V.D., Pearson M., Nassar M.R., Telljohann R., Maudsley S., et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic. Boil. Med. 2007;43:1348. doi: 10.1016/j.freeradbiomed.2007.06.008.
    1. Bhutani S., Klempel M.C., Kroeger C.M., Trepanowski J.F., Varady K.A. Alternate day fasting and endurance exercise combine to reduce body weight and favorably alter plasma lipids in obese humans. Obesity. 2013;21:1370–1379. doi: 10.1002/oby.20353.
    1. Varady K.A., Bhutani S., Klempel M.C., Kroeger C.M. Comparison of effects of diet versus exercise weight loss regimens on LDL and HDL particle size in obese adults. Lipids Health Dis. 2011;10:119. doi: 10.1186/1476-511X-10-119.
    1. Varady K.A., Bhutani S., Church E.C., Klempel M.C. Short-term modified alternate-day fasting: A novel dietary strategy for weight loss and cardioprotection in obese adults. Am. J. Clin. Nutr. 2009;90:1138–1143. doi: 10.3945/ajcn.2009.28380.
    1. Moro T., Tinsley G., Bianco A., Marcolin G., Pacelli Q.F., Battaglia G., Palma A., Gentil P., Neri M., Paoli A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016;14:290. doi: 10.1186/s12967-016-1044-0.
    1. Tinsley G.M., Moore M.L., Graybeal A.J., Paoli A., Kim Y., Gonzales J.U., Harry J.R., Van Dusseldorp T.A., Kennedy D.N., Cruz M.R. Time-restricted feeding plus resistance training in active females: A randomized trial. Am. J. Clin. Nutr. 2019;110:628–640. doi: 10.1093/ajcn/nqz126.
    1. Tinsley G.M., Forsse J.S., Butler N.K., Paoli A., Bane A.A., La Bounty P.M., Morgan G.B., Grandjean P.W. Time-restricted feeding in young men performing resistance training: A randomized controlled trial. Eur. J. Sport Sci. 2016;17:200–207. doi: 10.1080/17461391.2016.1223173.
    1. Toombs R.J., Ducher G., Shepherd J.A., De Souza M.J. The Impact of Recent Technological Advances on the Trueness and Precision of DXA to Assess Body Composition. Obesity. 2011;20:30–39. doi: 10.1038/oby.2011.211.
    1. Wang Z., Pi-Sunyer F.X., Kotler D.P., Wielopolski L., Withers R.T., Pierson R.N., Heymsfield S.B. Multicomponent methods: Evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis. Am. J. Clin. Nutr. 2002;76:968–974. doi: 10.1093/ajcn/76.5.968.
    1. Thomaes T., Thomis M., Onkelinx S., Coudyzer W., Cornelissen V., Vanhees L. Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients. BMC Med. Imaging. 2012;12:7. doi: 10.1186/1471-2342-12-7.
    1. Bemben M.G. Use of diagnostic ultrasound for assessing muscle size. J. Strength Cond. Res. 2002;16:103–108.
    1. Jenkins N.D., Miller J.M., Buckner S.L., Cochrane K.C., Bergstrom H.C., Hill E.C., Smith C., Housh T., Cramer J.T. Test–Retest Reliability of Single Transverse versus Panoramic Ultrasound Imaging for Muscle Size and Echo Intensity of the Biceps Brachii. Ultrasound Med. Boil. 2015;41:1584–1591. doi: 10.1016/j.ultrasmedbio.2015.01.017.
    1. Young H.-J., Jenkins N.T., Zhao Q., McCully K.K. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve. 2015;52:963–971. doi: 10.1002/mus.24656.
    1. Pardo E., El Behi H., Boizeau P., Verdonk F., Alberti C., Lescot T. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients. BMC Anesthesiol. 2018;18:205. doi: 10.1186/s12871-018-0647-9.
    1. Wells A.J., Fukuda D.H., Hoffman J.R., Gonzalez A.M., Jajtner A.R., Townsend J.R., Mangine G.T., Fragala M.S., Stout J.R. Vastus lateralis exhibits non-homogenous adaptation to resistance training. Muscle Nerve. 2014;50:785–793. doi: 10.1002/mus.24222.
    1. Compher C., Frankenfield D., Keim N., Roth-Yousey L. Best Practice Methods to Apply to Measurement of Resting Metabolic Rate in Adults: A Systematic Review. J. Am. Diet. Assoc. 2006;106:881–903. doi: 10.1016/j.jada.2006.02.009.
    1. Zourdos M.C., Klemp A., Dolan C., Quiles J.M., Schau K.A., Jo E., Helms E., Esgro B., Duncan S., Merino S.G., et al. Novel Resistance Training–Specific Rating of Perceived Exertion Scale Measuring Repetitions in Reserve. J. Strength Cond. Res. 2016;30:267–275. doi: 10.1519/JSC.0000000000001049.
    1. Laurent C.M., Green J.M.A., Bishop P., Sjökvist J.E., Schumacker R., Richardson M.T., Curtner-Smith M. A Practical Approach to Monitoring Recovery: Development of a Perceived Recovery Status Scale. J. Strength Cond. Res. 2011;25:620–628. doi: 10.1519/JSC.0b013e3181c69ec6.
    1. Rushall B.S. A tool for measuring stress tolerance in elite athletes. J. Appl. Sport Psychol. 1990;2:51–66. doi: 10.1080/10413209008406420.
    1. Stunkard A.J., Messick S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985;29:71–83. doi: 10.1016/0022-3999(85)90010-8.
    1. Jäger R., Kerksick C., Campbell B.I., Cribb P.J., Wells S.D., Skwiat T.M., Purpura M., Ziegenfuss T.N., Ferrando A., Arent S.M., et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2017;14:20. doi: 10.1186/s12970-017-0177-8.
    1. Mettler S., Mitchell N., Tipton K. Increased Protein Intake Reduces Lean Body Mass Loss during Weight Loss in Athletes. Med. Sci. Sports Exerc. 2010;42:326–337. doi: 10.1249/MSS.0b013e3181b2ef8e.
    1. Longland T.M., Oikawa S.Y., Mitchell C.J., Devries M.C., Phillips S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016;103:738–746. doi: 10.3945/ajcn.115.119339.
    1. Phillips S.M. A brief review of higher dietary protein diets in weight loss: A focus on athletes. Sports Med. 2014;44:S149–S153. doi: 10.1007/s40279-014-0254-y.
    1. Morton R., Murphy K.T., McKellar S.R., Schoenfeld B.J., Henselmans M., Helms E.A., Aragon A., Devries M.C., Banfield L., Krieger J.W., et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2017;52:376–384. doi: 10.1136/bjsports-2017-097608.
    1. Schwartz A., Doucet E. Relative changes in resting energy expenditure during weight loss: A systematic review. Obes. Rev. 2009;11:531–547. doi: 10.1111/j.1467-789X.2009.00654.x.
    1. Fukunaga T., Miyatani M., Tachi M., Kouzaki M., Kawakami Y., Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol. Scand. 2001;172:249–255. doi: 10.1046/j.1365-201x.2001.00867.x.
    1. Castro M.J., McCann D.J., Shaffrath J.D., Adams W.C. Peak torque per unit cross-sectional area differs between strength-trained and untrained young adults. Med. Sci. Sports Exerc. 1995;27:397–403. doi: 10.1249/00005768-199503000-00016.
    1. Maughan R.J., Watson J.S., Weir J. Relationships between muscle strength and muscle cross-sectional area in male sprinters and endurance runners. Eur. J. Appl. Physiol. Occup. Physiol. 1983;50:309–318. doi: 10.1007/BF00423237.
    1. Alway S.E., Stray-Gundersen J., Grumbt W.H., Gonyea W.J. Muscle cross-sectional area and torque in resistance-trained subjects. Eur. J. Appl. Physiol. Occup. Physiol. 1990;60:86–90. doi: 10.1007/BF00846026.
    1. Folland J., Williams A. The adaptations to strength training: Morphological and neurological contributions to increased strength. Sports Med. 2007;37:145–168. doi: 10.2165/00007256-200737020-00004.
    1. Jones E.J., Bishop P.A., Woods A.K., Green J.M. Cross-Sectional Area and Muscular Strength. Sports Med. 2008;38:987–994. doi: 10.2165/00007256-200838120-00003.
    1. DeFreitas J.M., Beck T.W., Stock M.S., Dillon M.A., Kasishke P.R. An examination of the time course of training-induced skeletal muscle hypertrophy. Eur. J. Appl. Physiol. Occup. Physiol. 2011;111:2785–2790. doi: 10.1007/s00421-011-1905-4.
    1. Fry A.C., Kraemer W.J., Stone M.H., Koziris L.P., Thrush J.T., Fleck S.J. Relationships Between Serum Testosterone, Cortisol, and Weightlifting Performance. J. Strength Cond. Res. 2000;14:338. doi: 10.1519/1533-4287(2000)014<0338:RBSTCA>;2.
    1. Hakkinen A., Pakarinen A., Alen M., Kauhanen H., Komi P. Relationships between Training Volume, Physical Performance Capacity, and Serum Hormone Concentrations during Prolonged Training in Elite Weight Lifters. Int. J. Sports Med. 1987;8:61–65. doi: 10.1055/s-2008-1025705.
    1. Diver M.J., Imtiaz K.E., Ahmad A.M., Vora J.P., Fraser W.D. Diurnal rhythms of serum total, free and bioavailable testosterone and of SHBG in middle-aged men compared with those in young men. Clin. Endocrinol. 2003;58:710–717. doi: 10.1046/j.1365-2265.2003.01772.x.
    1. Axelsson J., Ingre M., Åkerstedt T., Holmbäck U. Effects of Acutely Displaced Sleep on Testosterone. J. Clin. Endocrinol. Metab. 2005;90:4530–4535. doi: 10.1210/jc.2005-0520.
    1. Penev P.D. Association between sleep and morning testosterone levels in older men. Sleep. 2007;30:427–432. doi: 10.1093/sleep/30.4.427.
    1. Tomiyama A.J., Mann T., Vinas D., Hunger J.M., Dejager J., Taylor S.E. Low Calorie Dieting Increases Cortisol. Psychosom. Med. 2010;72:357–364. doi: 10.1097/PSY.0b013e3181d9523c.
    1. Galvão-Teles A., Graves L., Burke C.W., Fotherby K., Fraser R. Free cortisol in obesity; effect of fasting. Eur. J. Endocrinol. 1976;81:321–329. doi: 10.1530/acta.0.0810321.
    1. Rideout C.A., Linden W., Barr S.I. High cognitive dietary restraint is associated with increased cortisol excretion in postmenopausal women. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2006;61:628–633. doi: 10.1093/gerona/61.6.628.
    1. Degoutte F., Jouanel P., Bègue R.J., Colombier M., Lac G., Pequignot J.M., Filaire E. Food Restriction, Performance, Biochemical, Psychological, and Endocrine Changes in Judo Athletes. Int. J. Sports Med. 2006;27:9–18. doi: 10.1055/s-2005-837505.
    1. Anderson D.A., Shapiro J.R., Lundgren J.D., Spataro L.E., Frye C.A. Self-reported dietary restraint is associated with elevated levels of salivary cortisol. Appetite. 2002;38:13–17. doi: 10.1006/appe.2001.0459.
    1. Vance M.L., Thorner M.O. Fasting Alters Pulsatile and Rhythmic Cortisol Release in Normal Man. J. Clin. Endocrinol. Metab. 1989;68:1013–1018. doi: 10.1210/jcem-68-6-1013.
    1. Stalder T., Kirschbaum C., Kudielka B.M., Adam E.K., Pruessner J.C., Wüst S., Dockray S., Smyth N., Evans P., Hellhammer D.H., et al. Assessment of the cortisol awakening response: Expert consensus guidelines. Psychoneuroendocrinology. 2016;63:414–432. doi: 10.1016/j.psyneuen.2015.10.010.

Source: PubMed

3
Abonnieren