The Accuracy of Zygomatic Implant Placement Assisted by Dynamic Computer-Aided Surgery: A Systematic Review and Meta-Analysis

Shengchi Fan, Gustavo Sáenz-Ravello, Leonardo Diaz, Yiqun Wu, Rubén Davó, Feng Wang, Marko Magic, Bilal Al-Nawas, Peer W Kämmerer, Shengchi Fan, Gustavo Sáenz-Ravello, Leonardo Diaz, Yiqun Wu, Rubén Davó, Feng Wang, Marko Magic, Bilal Al-Nawas, Peer W Kämmerer

Abstract

Purpose: The present systematic review aimed to investigate the accuracy of zygomatic implant (ZI) placement using dynamic computer-aided surgery (d-CAIS), static computer-aided surgery (s-CAIS), and a free-hand approach in patients with severe atrophic edentulous maxilla and/or deficient maxilla.

Methods: Electronic and manual literature searches until May 2023 were performed in the PubMed/Medline, Scopus, Cochrane Library, and Web of Science databases. Clinical trials and cadaver studies were selected. The primary outcome was planned/placed deviation. Secondary outcomes were to evaluate the survival of ZI and surgical complications. Random-effects meta-analyses were conducted and meta-regression was utilized to compare fiducial registration amounts for d-CAIS and the different designs of s-CAIS.

Results: A total of 14 studies with 511 ZIs were included (Nobel Biocare: 274, Southern Implant: 42, SIN Implant: 16, non-mentioned: 179). The pooled mean ZI deviations from the d-CAIS group were 1.81 mm (95% CI: 1.34-2.29) at the entry point and 2.95 mm (95% CI: 1.66-4.24) at the apex point, and angular deviations were 3.49 degrees (95% CI: 2.04-4.93). The pooled mean ZI deviations from the s-CAIS group were 1.19 mm (95% CI: 0.83-1.54) at the entry point and 1.80 mm (95% CI: 1.10-2.50) at the apex point, and angular deviations were 2.15 degrees (95% CI: 1.43-2.88). The pooled mean ZI deviations from the free-hand group were 2.04 mm (95% CI: 1.69-2.39) at the entry point and 3.23 mm (95% CI: 2.34-4.12) at the apex point, and angular deviations were 4.92 degrees (95% CI: 3.86-5.98). There was strong evidence of differences in the average entry, apex, and angular deviation between the navigation, surgical guide, and free-hand groups (p < 0.01). A significant inverse correlation was observed between the number of fiducial screws and the planned/placed deviation regarding entry, apex, and angular measurements.

Conclusion: Using d-CAIS and modified s-CAIS for ZI surgery has shown clinically acceptable outcomes regarding average entry, apex, and angular deviations. The maximal deviation values were predominantly observed in the conventional s-CAIS. Surgeons should be mindful of potential deviations and complications regardless of the decision making in different guide approaches.

Keywords: computer-aided surgery; edentulous; guided surgery; navigation; zygomatic implant.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study selection process.
Figure 2
Figure 2
Results of risk of bias [8,10,11,12,13,14,15,19,32,33,34,35,36,37].
Figure 3
Figure 3
Illustration of the parameters of 3D deviation.
Figure 4
Figure 4
Forest plot representing the pooled mean 3D entry deviation grouped by different ZI surgical protocol in (1) the navigation group, (2) the guide group, (3) and the free-hand group [10,11,12,13,14,19,19,32,35,36,37].
Figure 5
Figure 5
Forest plot representing the pooled mean 3D apex deviation grouped by different ZI surgical protocol in (1) the navigation group, (2) the guide group, (3) and the free-hand group [10,11,12,13,14,19,19,32,35,36,37].
Figure 6
Figure 6
Forest plot representing the pooled mean angular deviation grouped by different ZI surgical protocol in (1) the navigation group, (2) the guide group, (3) and the free-hand group [10,11,12,13,14,19,19,32,35,36,37].
Figure 7
Figure 7
The funnel plot was used for the visual inspection of asymmetry in the navigation and surgical guide groups for entry, apex and angular deviation. Entry deviation in blue. Apex deviation in green. Angular deviation in red.

References

    1. Brånemark P., Gröndahl K., Öhrnell L., Nilsson P., Petruson B., Svensson B., Engstrand P., Nannmark U. Zygoma fixture in the management of advanced atrophy of the maxilla: Technique and long-term results. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2004;38:70–85. doi: 10.1080/02844310310023918.
    1. Chrcanovic B.R., Albrektsson T., Wennerberg A. Survival and Complications of Zygomatic Implants: An Updated Systematic Review. J. Oral Maxillofac. Surg. 2016;74:1949–1964. doi: 10.1016/j.joms.2016.06.166.
    1. Davó R., Pons O. 5-year outcome of cross-arch prostheses supported by four immediately loaded zy-gomatic implants: A prospective case series. Eur. J. Oral. Implantol. 2015;8:169–174.
    1. Davó R., David L. Quad Zygoma: Technique and Realities. Oral. Maxillofac. Surg. Clin. N. Am. 2019;31:285–297. doi: 10.1016/j.coms.2018.12.006.
    1. Davo R., Malevez C., Rojas J. Immediate function in the atrophic maxilla using zygoma implants: A pre-liminary study. J. Prosthet. Dent. 2007;97((Suppl. 6)):S44–S51. doi: 10.1016/S0022-3913(07)60007-9.
    1. Kämmerer P.W., Fan S., Aparicio C., Bedrossian E., Davó R., Morton D., Raghoebar G.M., Zarrine S., Al-Nawas B. Evaluation of surgical techniques in survival rate and complications of zygomatic implants for the rehabilitation of the atrophic edentulous maxilla: A systematic review. Int. J. Implant. Dent. 2023;9:1–16. doi: 10.1186/s40729-023-00478-y.
    1. Vrielinck L., Moreno-Rabie C., Coucke W., Jacobs R., Politis C. Retrospective cohort assessment of survival and complications of zygomatic implants in atrophic maxillae. Clin. Oral Implant. Res. 2022;34:148–156. doi: 10.1111/clr.14027.
    1. Chrcanovic B.R., Oliveira D.R., Custódio A.L. Accuracy Evaluation of Computed Tomography–Derived Stereolithographic Surgical Guides in Zygomatic Implant Placement in Human Cadavers. J. Oral Implant. 2010;36:345–355. doi: 10.1563/AAID-JOI-D-09-00074.
    1. Chow J. A novel device for template-guided surgery of the zygomatic implants. Int. J. Oral Maxillofac. Surg. 2016;45:1253–1255. doi: 10.1016/j.ijom.2016.06.007.
    1. Grecchi E., Stefanelli L., Grecchi F., Grivetto F., Franchina A., Pranno N. A novel guided zygomatic implant surgery system compared to free hand: A human cadaver study on accuracy. J. Dent. 2022;119:103942. doi: 10.1016/j.jdent.2021.103942.
    1. Grecchi F., Stefanelli L.V., Grivetto F., Grecchi E., Siev R., Mazor Z., Del Fabbro M., Pranno N., Franchina A., Di Lucia V., et al. A Novel Guided Zygomatic and Pterygoid Implant Surgery System: A Human Cadaver Study on Accuracy. Int. J. Environ. Res. Public Health. 2021;18:6142. doi: 10.3390/ijerph18116142.
    1. Bolzoni A.R., Zingari F., Gallo F., Goker F., Beretta P., Del Fabbro M., Mortellaro C., Grecchi F., Giannì A.B. Zygomatic implant guided rehabilitation based on inverted support technique: A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2023;27:77–91. doi: 10.26355/eurrev_202304_31324.
    1. Vosselman N., Glas H.H., Merema B.J., Kraeima J., Reintsema H., Raghoebar G.M., Witjes M.J.H., de Visscher S.A.H.J. Three-Dimensional Guided Zygomatic Implant Placement after Maxillectomy. J. Pers. Med. 2022;12:588. doi: 10.3390/jpm12040588.
    1. Vosselman N., Glas H.H., de Visscher S.A.H.J., Kraeima J., Merema B.J., Reintsema H., Raghoebar G.M., Witjes M.J.H. Immediate implant-retained prosthetic obturation after maxillectomy based on zygomatic implant placement by 3D-guided surgery: A cadaver study. Int. J. Implant. Dent. 2021;7:1–8. doi: 10.1186/s40729-021-00335-w.
    1. Gallo F., Zingari F., Bolzoni A., Barone S., Giudice A. Accuracy of Zygomatic Implant Placement Using a Full Digital Planning and Custom-Made Bone-Supported Guide: A Retrospective Observational Cohort Study. Dent. J. 2023;11:123. doi: 10.3390/dj11050123.
    1. Wu Y., Wang F., Huang W., Fan S. Real-Time Navigation in Zygomatic Implant Placement. Oral Maxillofac. Surg. Clin. N. Am. 2019;31:357–367. doi: 10.1016/j.coms.2019.03.001.
    1. Watzinger F., Birkfellner W., Wanschitz F., Ziya F., Wagner A., Kremser J., Kainberger F., Huber K., Bergmann H., Ewers R. Placement of Endosteal Implants in the Zygoma after Maxillectomy: A Cadaver Study Using Surgical Navigation. Plast. Reconstr. Surg. 2001;107:659–667. doi: 10.1097/00006534-200103000-00003.
    1. Wu Y., Wang F. Guided and Navigation Techniques for Zygomatic Implants. Atlas Oral Maxillofac. Surg. Clin. 2021;29:253–269. doi: 10.1016/j.cxom.2021.04.004.
    1. Wu Y., Tao B., Lan K., Shen Y., Huang W., Wang F. Reliability and accuracy of dynamic navigation for zygomatic implant placement. Clin. Oral Implant. Res. 2022;33:362–376. doi: 10.1111/clr.13897.
    1. Lopes A., de Araújo Nobre M., Santos D. The Workflow of a New Dynamic Navigation System for the Insertion of Dental Implants in the Rehabilitation of Edentulous Jaws: Report of Two Cases. J. Clin. Med. 2020;9:421. doi: 10.3390/jcm9020421.
    1. Wang C.I., Cho S.-H., Ivey A., Reddy L.V., Sinada N. Combined bone- and mucosa-supported 3D-printed guide for sinus slot preparation and prosthetically driven zygomatic implant placement. J. Prosthet. Dent. 2022;128:1165–1170. doi: 10.1016/j.prosdent.2021.02.024.
    1. Schiroli G., Angiero F., Silvestrini-Biavati A., Benedicenti S. Zygomatic Implant Placement With Flapless Computer-Guided Surgery: A Proposed Clinical Protocol. J. Oral Maxillofac. Surg. 2011;69:2979–2989. doi: 10.1016/j.joms.2011.03.050.
    1. Pellegrino G., Lizio G., Basile F., Stefanelli L.V., Marchetti C., Felice P. Dynamic Navigation for Zygomatic Implants: A Case Report about a Protocol with Intraoral Anchored Reference Tool and an Up-To-Date Review of the Available Protocols. Methods Protoc. 2020;3:75. doi: 10.3390/mps3040075.
    1. Ramezanzade S., Keyhan S.O., Tuminelli F.J., Fallahi H.R., Yousefi P., Lopez-Lopez J. Dynamic-Assisted Navigational System in Zygomatic Implant Surgery: A Qualitative and Quantitative Systematic Review of Current Clinical and Cadaver Studies. J. Oral. Maxillofac. Surg. 2021;79:799–812. doi: 10.1016/j.joms.2020.10.009.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G., PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Sterne J.A.C., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.Y., Corbett M.S., Eldridge S.M., et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.
    1. Sterne J.A.C., Hernán M.A., Reeves B.C., Savović J., Berkman N.D., Viswanathan M., Henry D., Altman D.G., Ansari M.T., Boutron I., et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. Schünemann H.J., Cuello C., Akl E.A., Mustafa R.A., Meerpohl J.J., Thayer K., Morgan R.L., Gartlehner G., Kunz R., Katikireddi S.V., et al. GRADE guidelines: 18. How ROBINS-I and other tools to assess risk of bias in nonrandomized studies should be used to rate the certainty of a body of evidence. J. Clin. Epidemiol. 2019;111:105–114. doi: 10.1016/j.jclinepi.2018.01.012.
    1. Balduzzi S., Rücker G., Schwarzer G. How to perform a meta-analysis with R: A practical tutorial. Ėvid. Based Ment. Health. 2019;22:153–160. doi: 10.1136/ebmental-2019-300117.
    1. Egger M., Davey-Smith G., Schneider M., Minder C. Bias in metaanalysis detected by a single, graphical test. BMJ. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Bhalerao A., Marimuthu M., Wahab A., Ayoub A. Dynamic navigation for zygomatic implant placement: A randomized clinical study comparing the flapless versus the conventional approach. J. Dent. 2023;130:104436. doi: 10.1016/j.jdent.2023.104436.
    1. Guo H., Jiang X., Di P., Lin Y. A Novel Method to Achieve Preferable Bone-to-Implant Contact Area of Zygomatic Implants in Rehabilitation of Severely Atrophied Maxilla. Int. J. Oral Maxillofac. Implant. 2023;38:111–119. doi: 10.11607/jomi.9824.
    1. Rinaldi M., Ganz S.D. Computer-Guided Approach for Placement of Zygomatic Implants: Novel Protocol and Surgical Guide. Compend. Contin. Educ. Dent. 2019;40:e1–e4.
    1. Schiroli G., Angiero F., Zangerl A., Benedicenti S., Ferrante F., Widmann G. Accuracy of a flapless protocol for computer-guided zygomatic implant placement in human cadavers: Expectations and reality. Int. J. Med. Robot. Comput. Assist. Surg. 2016;12:102–108. doi: 10.1002/rcs.1646.
    1. Van Steenberghe D., Malevez C., Van Cleynenbreugel J., Serhal C.B., Dhoore E., Schutyser F., Suetens P., Jacobs R. Accuracy of drilling guides for transfer from three-dimensional CT-based planning to placement of zygoma implants in human cadavers. Clin. Oral Implant. Res. 2003;14:131–136. doi: 10.1034/j.1600-0501.2003.140118.x.
    1. Gao B.X., Iglesias-Velázquez O., Tresguerres F.G., Cortes A.R.G., Tresguerres I.F., Aranegui R.O., López-Pintor R.M., López-Quiles J., Torres J. Accuracy of digital planning in zygomatic implants. Int. J. Implant. Dent. 2021;7:1–8. doi: 10.1186/s40729-021-00350-x.
    1. Aparicio C. A proposed classification for zygomatic implant patient based on the zygoma anatomy guided approach (ZAGA): A cross-sectional survey. Eur. J. Oral Implant. 2011;4:269–275.
    1. Davó R., Bankauskas S., Laurincikas R., Koçyigit I.D., Mate Sanchez de Val J.E. Clinical Performance of Zygomatic Implants—Retrospective Multicenter Study. J. Clin. Med. 2020;9:480. doi: 10.3390/jcm9020480.
    1. Cassetta M., Stefanelli L.V., Pacifici A., Pacifici L., Barbato E. How Accurate Is CBCT in Measuring Bone Density? A Comparative CBCT-CT In Vitro Study. Clin. Implant. Dent. Relat. Res. 2014;16:471–478. doi: 10.1111/cid.12027.
    1. Wang F., Bornstein M.M., Hung K., Fan S., Chen X., Huang W., Wu Y. Application of Real-Time Surgical Navigation for Zygomatic Implant Insertion in Patients With Severely Atrophic Maxilla. J. Oral Maxillofac. Surg. 2018;76:80–87. doi: 10.1016/j.joms.2017.08.021.
    1. Enislidis G., Wagner A., Ploder O., Ewers R. Computed intraoperative navigation guidance—A preliminary report on a new technique. J. Oral Maxillofac. Surg. 1997;35:271–274. doi: 10.1016/S0266-4356(97)90046-2.
    1. Fitzpatrick J., West J., Maurer C.R., Jr. Predicting error in rigid-body point-based registration. IEEE Trans. Med. Imaging. 1998;17:694–702. doi: 10.1109/42.736021.
    1. Fan S., Hung K., Bornstein M., Huang W., Wang F., Wu Y. Effect of the Configurations of Fiducial Markers on the Accuracy of Surgical Navigation in Zygomatic Implant Placement: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2019;34:85–90. doi: 10.11607/jomi.6821.
    1. Pérez A.S., Pastorino D., Aparicio C., Neyra M.P., Khan R.S., Wright S., Ucer C. Success Rates of Zygomatic Implants for the Rehabilitation of Severely Atrophic Maxilla: A Systematic Review. Dent. J. 2022;10:151. doi: 10.3390/dj10080151.
    1. Ramezanzade S., Yates J., Tuminelli F.J., Keyhan S.O., Yousefi P., Lopez-Lopez J. Zygomatic implants placed in atrophic maxilla: An overview of current systematic reviews and meta-analysis. Maxillofac. Plast. Reconstr. Surg. 2021;43:1–15. doi: 10.1186/s40902-020-00286-z.
    1. Rueda J.R.G., Ávila I.G., Hermoso V.M.d.P., Deglow E.R., Zubizarreta-Macho Á., Mourelo J.P., Martín J.M., Montero S.H. Accuracy of a Computer-Aided Dynamic Navigation System in the Placement of Zygomatic Dental Implants: An In Vitro Study. J. Clin. Med. 2022;11:1436. doi: 10.3390/jcm11051436.
    1. Widmann G., Stoffner R., Bale R. Errors and error management in image-guided craniomaxillofacial surgery. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009;107:701–715. doi: 10.1016/j.tripleo.2009.02.011.
    1. Tao B., Shen Y., Sun Y., Huang W., Wang F., Wu Y. Comparative accuracy of cone-beam CT and conventional multislice computed tomography for real-time navigation in zygomatic implant surgery. Clin. Implant. Dent. Relat. Res. 2020;22:747–755. doi: 10.1111/cid.12958.
    1. Kunzendorf B., Naujokat H., Wiltfang J. Indications for 3-D diagnostics and navigation in dental implantology with the focus on radiation exposure: A systematic review. Int. J. Implant. Dent. 2021;7:52. doi: 10.1186/s40729-021-00328-9.
    1. Fan S., Gielisch M.W., Díaz L., Thiem D.G., Al-Nawas B., Kämmerer P.W. Minimally Invasive Navigation-Guided Quad Zygomatic Implant Placement: A Comparative In Vitro Study. Int. J. Oral Maxillofac. Implant. 2023;38:367–373. doi: 10.11607/jomi.10043.

Source: PubMed

3
Abonnieren