Vibration of the Whole Foot Soles Surface Using an Inexpensive Portable Device to Investigate Age-Related Alterations of Postural Control

Lydiane Lauzier, Mohamed Abdelhafid Kadri, Emilie Bouchard, Kevin Bouchard, Sébastien Gaboury, Jean-Michel Gagnon, Marie-Pier Girard, Andréanne Larouche, Roxane Robert, Patrick Lapointe, Rubens A da Silva, Louis-David Beaulieu, Lydiane Lauzier, Mohamed Abdelhafid Kadri, Emilie Bouchard, Kevin Bouchard, Sébastien Gaboury, Jean-Michel Gagnon, Marie-Pier Girard, Andréanne Larouche, Roxane Robert, Patrick Lapointe, Rubens A da Silva, Louis-David Beaulieu

Abstract

Background: Standing on a foam surface is used to investigate how aging affect the ability to keep balance when somatosensory inputs from feet soles become unreliable. However, since standing on foam also affects the efficacy of postural adjustments, the respective contributions of sensory and motor components are impossible to separate. This study tested the hypothesis that these components can be untangled by comparing changes of center of pressure (CoP) parameters induced by standing on a foam pad vs. a novel vibration (VIB) platform developed by our team and targeting feet soles' mechanoreceptors. Methods: Bipedal postural control of young (n = 20) and healthy elders (n = 20) was assessed while standing barefoot on a force platform through 3 randomized conditions: (1) Baseline (BL); (2) VIB; and (3) Foam. CoP Amplitude and Velocity in the antero-posterior/medio-lateral (AP/ML) directions and COP Surface were compared between conditions and groups. Findings: Both VIB and Foam increased CoP parameters compared to BL, but Foam had a significantly greater impact than VIB for both groups. Young and Old participants significantly differed for all three Conditions. However, when correcting for BL levels of postural performance, VIB-related increase of COP parameters was no longer different between groups, conversely to Foam. Interpretation: Although both VIB and Foam highlighted age-related differences of postural control, their combined use revealed that "motor" and "sensory" components are differently affected by aging, the latter being relatively unaltered, at least in healthy/active elders. The combined used of these methods could provide relevant knowledge to better understand and manage postural impairments in the aging population.

Keywords: aging; cutaneous vibration; exteroception; foam surface; postural control; proprioception running title.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Lauzier, Kadri, Bouchard, Bouchard, Gaboury, Gagnon, Girard, Larouche, Robert, Lapointe, da Silva and Beaulieu.

References

    1. Aboutorabi A., Arazpour M., Bahramizadeh M., Farahmand F., Fadayevatan R. (2018). Effect of vibration on postural control and gait of elderly subjects: a systematic review. Aging Clin. Exp. Res. 30 713–726. 10.1007/s40520-017-0831-7
    1. Abrahamova D., Mancini M., Hlavacka F., Chiari L. (2009). The age-related changes of trunk responses to Achilles tendon vibration. Neurosci. Lett. 467 220–224. 10.1016/j.neulet.2009.10.041
    1. Atchison D. A., Markwell E. L., Kasthurirangan S., Pope J. M., Smith G., Swann P. G. (2008). Age-related changes in optical and biometric characteristics of emmetropic eyes. J. Vis. 8:29. 10.1167/8.4.29
    1. Baltich J., von Tscharner V., Nigg B. M. (2015). Degradation of postural control with aging. Proc. Inst. Mech. Eng. H 229 638–644.
    1. Bull F. C., Maslin T. S., Armstrong T. (2009). Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J. Phys. Act. Health 6 790–804. 10.1123/jpah.6.6.790
    1. Chiang J. H., Wu G. (1997). The influence of foam surfaces on biomechanical variables contributing to postural control. Gait Posture 13 35–40.
    1. Cohen H., Blatchly C. A., Gombash L. L. (1993). A study of the clinical test of sensory interaction and balance. Phys. Ther. 73 346–351. discussion 51-4., 10.1093/ptj/73.6.346
    1. Fransson P. A., Gomez S., Patel M., Johansson L. (2007). Changes in multi-segmented body movements and EMG activity while standing on firm and foam support surfaces. Eur. J. Appl. Physiol. 101 81–89. 10.1007/s00421-007-0476-x
    1. Goble D. J., Coxon J. P., Wenderoth N., Van Impe A., Swinnen S. P. (2009). Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neurosci. Biobehav. Rev. 33 271–278. 10.1016/j.neubiorev.2008.08.012
    1. Hay L., Bard C., Fleury M., Teasdale N. (1996). Availability of visual and proprioceptive afferent messages and postural control in elderly adults. Exp. Brain Res. 108 129–139.
    1. Kadri M. A., Chevalier G., Mecheri H., Ngomo S., Lavalliere M., da Silva R. A., et al. (2020). Time course and variability of tendinous vibration-induced postural reactions in forward and backward directions. J. Electromyogr. Kinesiol. 51:102386. 10.1016/j.jelekin.2020.102386
    1. Kavounoudias A., Roll R., Roll J. P. (1998). The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 9 3247–3252. 10.1097/00001756-199810050-00021
    1. Kavounoudias A., Roll R., Roll J. P. (1999). Specific whole-body shifts induced by frequency-modulated vibrations of human plantar soles. Neurosci. Lett. 266 181–184. 10.1016/s0304-3940(99)00302-x
    1. Kavounoudias A., Roll R., Roll J. P. (2001). Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J. Physiol. 532(Pt 3) 869–878. 10.1111/j.1469-7793.2001.0869e.x
    1. Khattar V. S., Hathiram B. T. (2012). The clinical test for the sensory interaction of balance. Int. J. Otorhinolaryngol. Clin. 4 41–45. 10.5005/jp-journals-10003-1086
    1. Kristinsdottir E. K., Fransson P. A., Magnusson M. (2001). Changes in postural control in healthy elderly subjects are related to vibration sensation, vision and vestibular asymmetry. Acta Otolaryngol. 121 700–706. 10.1080/00016480152583647
    1. Kwan R. L., Zheng Y. P., Cheing G. L. (2010). The effect of aging on the biomechanical properties of plantar soft tissues. Clin. Biomech. (Bristol, Avon) 25 601–605. 10.1016/j.clinbiomech.2010.04.003
    1. Lafontaine V., Bouchard K., Lapointe P., Gagnon J. M., Dallaire M., Gaboury S., et al. (2020). An open vibration and pressure platform for falls prevention with a reinforcement learning agent. Pers. Ubiquit. Comput. 25, 7–19. 10.1007/s00779-020-1416-0
    1. Lin D., Seol H., Nussbaum M. A., Madigan M. L. (2008). Reliability of COP-based postural sway measures and age-related differences. Gait Posture. 28 337–342. 10.1016/j.gaitpost.2008.01.005
    1. Lord S. R., Delbaere K., Sturnieks D. L. (2018). Aging. Handb. Clin. Neurol. 159 157–171.
    1. Machado A. S., da Silva C. B., da Rocha E. S., Carpes F. P. (2017). Effects of plantar foot sensitivity manipulation on postural control of young adult and elderly. Rev. Bras. Reumatol. Engl. Ed. 57 30–36. 10.1016/j.rbre.2016.03.007
    1. Magnusson M., Enbom H., Johansson R., Pyykko I. (1990). Significance of pressor input from the human feet in anterior-posterior postural control. The effect of hypothermia on vibration-induced body-sway. Acta Otolaryngol. 110 182–188. 10.3109/00016489009122535
    1. Mahboobin A., Loughlin P., Atkeson C., Redfern M. (2009). A mechanism for sensory re-weighting in postural control. Med. Biol. Eng. Comput. 47 921–929. 10.1007/s11517-009-0477-5
    1. Maurer C., Mergner T., Bolha B., Hlavacka F. (2001). Human balance control during cutaneous stimulation of the plantar soles. Neurosci. Lett. 302 45–48. 10.1016/s0304-3940(01)01655-x
    1. Meyer P. F., Oddsson L. I., De Luca C. J. (2004). The role of plantar cutaneous sensation in unperturbed stance. Exp. Brain Res. 156 505–512.
    1. Mildren R. L., Strzalkowski N. D., Bent L. R. (2016). Foot sole skin vibration perceptual thresholds are elevated in a standing posture compared to sitting. Gait Posture 43 87–92. 10.1016/j.gaitpost.2015.10.027
    1. Owsley C. (2011). Aging and vision. Vision Res. 51 1610–1622. 10.1016/j.visres.2010.10.020
    1. Paillard T., Noe F. (2015). Techniques and methods for testing the postural function in healthy and pathological subjects. Biomed. Res. Int. 2015:891390.
    1. Parreira R. B., Boer M. C., Rabello L., Costa Vde S., de Oliveira E., Jr., da Silva R. A., Jr. (2013). Age-related differences in center of pressure measures during one-leg stance are time dependent. J. Appl. Biomech. 29 312–316. 10.1123/jab.29.3.312
    1. Patel M., Fransson P. A., Johansson R., Magnusson M. (2011). Foam posturography: standing on foam is not equivalent to standing with decreased rapidly adapting mechanoreceptive sensation. Exp. Brain Res. 208 519–527. 10.1007/s00221-010-2498-6
    1. Patel M., Fransson P. A., Lush D., Petersen H., Magnusson M., Johansson R., et al. (2008). The effects of foam surface properties on standing body movement. Acta Otolaryngol. 128 952–960. 10.1080/00016480701827517
    1. Perry S. D. (2006). Evaluation of age-related plantar-surface insensitivity and onset age of advanced insensitivity in older adults using vibratory and touch sensation tests. Neurosci. Lett. 392 62–67. 10.1016/j.neulet.2005.08.060
    1. Roberts K. L., Allen H. A. (2016). Perception and cognition in the ageing brain: a brief review of the short- and long-term links between perceptual and cognitive decline. Front. Aging Neurosci. 8:39. 10.3389/fnagi.2016.00039
    1. Roll R., Kavounoudias A., Roll J. P. (2002). Cutaneous afferents from human plantar sole contribute to body posture awareness. Neuroreport 13 1957–1961. 10.1097/00001756-200210280-00025
    1. Sacco I. C., Suda E. Y., Vigneron V., Sartor C. D. (2015). An ‘importance’ map of signs and symptoms to classify diabetic polyneuropathy: an exploratory data analysis. PLoS One 10:e0129763. 10.1371/journal.pone.0129763
    1. Seidler R. D., Bernard J. A., Burutolu T. B., Fling B. W., Gordon M. T., Gwin J. T., et al. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34 721–733. 10.1016/j.neubiorev.2009.10.005
    1. Shaffer S. W., Harrison A. L. (2007). Aging of the somatosensory system: a translational perspective. Phys. Ther. 87 193–207. 10.2522/ptj.20060083
    1. Teasdale N., Simoneau M. (2001). Attentional demands for postural control: the effects of aging and sensory reintegration. Gait Posture 14 203–210. 10.1016/s0966-6362(01)00134-5
    1. Thompson C., Belanger M., Fung J. (2011). Effects of plantar cutaneo-muscular and tendon vibration on posture and balance during quiet and perturbed stance. Hum. Mov. Sci. 30 153–171. 10.1016/j.humov.2010.04.002
    1. Vellas B. J., Wayne S. J., Romero L., Baumgartner R. N., Rubenstein L. Z., Garry P. J. (1997). One-leg balance is an important predictor of injurious falls in older persons. J. Am. Geriatr. Soc. 45 735–738. 10.1111/j.1532-5415.1997.tb01479.x
    1. Viseux F., Lemaire A., Barbier F., Charpentier P., Leteneur S., Villeneuve P. (2019). How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary. Neurophysiol. Clin. 49 263–268. 10.1016/j.neucli.2018.12.006
    1. Viseux F. J. F. (2020). The sensory role of the sole of the foot: review and update on clinical perspectives. Neurophysiol. Clin. 50 55–68. 10.1016/j.neucli.2019.12.003
    1. Zhou J., Lipsitz L., Habtemariam D., Manor B. (2016). Sub-sensory vibratory noise augments the physiologic complexity of postural control in older adults. J. Neuroeng. Rehabil. 13:44.

Source: PubMed

3
Abonnieren