Dual-Task-Based Drum Playing with Rhythmic Cueing on Motor and Attention Control in Patients with Parkinson's Disease: A Preliminary Randomized Study

Jin-Kyoung Park, Soo Ji Kim, Jin-Kyoung Park, Soo Ji Kim

Abstract

Although there have been increasing reports regarding the effectiveness of dual-task interventions in rehabilitation, the scope of this research is limited to gross motor movement, such as gait among patients with Parkinson's disease (PD). To expand the dual-task paradigm to upper extremity motor and attention control in PD, drum playing with modulation of musical elements was attempted. The objective of this study was to evaluate the effects of a drum playing intervention with rhythmic cueing on upper extremity motor control and attention control in patients with PD. Twelve participants were randomly assigned to the drum playing intervention with rhythmic cueing group or the control group. The results showed that the drum playing with rhythmic cueing (DPRC) group significantly increased their sustained time of entrainment (45 BPM) and their latency time until entrainment from pretest to posttest. For the DPRC group, the latency time until entrainment was significantly improved, and improvements in cognitive measures were also found. This study shows that DPRC has great potential to improve upper extremity motor control and attention control and supports the development of new interventions that include this technique for rehabilitation in patients with PD.

Keywords: Parkinson’s disease; drum playing; dual-task; rehabilitation; rhythmic cueing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart for group allocation.
Figure 2
Figure 2
The measurement paradigm of the MIDI drum tapping task. The latency time until the entrainment refers to time from cueing until each participant’s tapping interval started synchronizing. The sustained time of entrainment refers to time until each participant’s tapping became regular without rhythmic cueing.
Figure 3
Figure 3
Changes in motor control measures for the DPRC and control groups. Panel (A) shows change in latency time until entrainment for 105 BPM, panel (B) shows change in sustained time of entrainment for 45 BPM, and panel (C) shows change in execution time of left hand for NHPT.

References

    1. Crowley E., Nolan Y., Sullivan A. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson’s disease: Evidence from rodent models. Prog. Neurobiol. 2019;172:2–22. doi: 10.1016/j.pneurobio.2018.11.003.
    1. Braak H., Del Tredici K., Rüb U., De Vos R.A., Steur E.N.J., Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 2003;24:197–211. doi: 10.1016/S0197-4580(02)00065-9.
    1. Remz M., Salinas M. Psychosis in Parkinson’s Disease. Psychiatr. Ann. 2020;50:113–120. doi: 10.3928/00485713-20200210-02.
    1. Rodriguez-Oroz M.C., Jahanshahi M., Krack P., Litvan I., Macias R., Bezard E., Obeso J.A. Initial clinical manifestations of Parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol. 2009;8:1128–1139. doi: 10.1016/S1474-4422(09)70293-5.
    1. Robbins T.W., Cools R. Cognitive deficits in Parkinson’s disease: A cognitive neuroscience perspective. Mov. Disord. 2014;29:597–607. doi: 10.1002/mds.25853.
    1. Venderova K., Park D.S. Programmed cell death in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012;2:a009365. doi: 10.1101/cshperspect.a009365.
    1. Lin K.-C., Hsieh Y.-W., Wu C.-Y., Chen C.-L., Jang Y., Liu J.-S. Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabilit. Neural Repair. 2009;23:429–434. doi: 10.1177/1545968308331144.
    1. Moustafa A.A., Chakravarthy S., Phillips J.R., Gupta A., Keri S., Polner B., Frank M.J., Jahanshahi M. Motor symptoms in Parkinson’s disease: A unified framework. Neurosci. Biobehav. Rev. 2016;68:727–740. doi: 10.1016/j.neubiorev.2016.07.010.
    1. Almeida Q.J., Wishart L.R., Lee T.D. Disruptive influences of a cued voluntary shift on coordinated movement in Parkinson’s disease. Neuropsychologia. 2003;41:442–452. doi: 10.1016/S0028-3932(02)00155-0.
    1. Yarnall A.J., Breen D.P., Duncan G.W., Khoo T.K., Coleman S.Y., Firbank M.J., Nombela C., Winder-Rhodes S., Evans J.R., Rowe J.B. Characterizing mild cognitive impairment in incident Parkinson disease: The ICICLE-PD study. Neurology. 2014;82:308–316. doi: 10.1212/WNL.0000000000000066.
    1. Amboni M., Barone P., Hausdorff J.M. Cognitive contributions to gait and falls: Evidence and implications. Mov. Disord. 2013;28:1520–1533. doi: 10.1002/mds.25674.
    1. Derejko M., Slawek J., Wieczorek D., Brockhuis B., Dubaniewicz M., Lass P. Regional cerebral blood flow in Parkinson’s disease as an indicator of cognitive impairment. Nucl. Med. Commun. 2006;27:945–951. doi: 10.1097/01.mnm.0000243370.18883.62.
    1. Lawson R.A., Yarnall A.J., Duncan G.W., Breen D.P., Khoo T.K., Williams-Gray C.H., Barker R.A., Collerton D., Taylor J.-P., ICICLE-PD Study Group Cognitive decline and quality of life in incident Parkinson’s disease: The role of attention. Parkinsonism Relat. Disord. 2016;27:47–53. doi: 10.1016/j.parkreldis.2016.04.009.
    1. Shipley B.A., Der G., Taylor M.D., Deary I.J. Cognition and mortality from the major causes of death: The Health and Lifestyle Survey. J. Psychosom. Res. 2008;65:143–152. doi: 10.1016/j.jpsychores.2008.02.017.
    1. Zhou S., Chen X., Wang C., Yin C., Hu P., Wang K. Selective attention deficits in early and moderate stage Parkinson’s disease. Neurosci. Lett. 2012;509:50–55. doi: 10.1016/j.neulet.2011.12.049.
    1. Willis A.W., Schootman M., Kung N., Evanoff B.A., Perlmutter J.S., Racette B.A. Predictors of survival in patients with Parkinson disease. Arch. Neurol. 2012;69:601–607.
    1. Yogev G., Giladi N., Peretz C., Springer S., Simon E.S., Hausdorff J.M. Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur. J. Neurosci. 2005;22:1248–1256. doi: 10.1111/j.1460-9568.2005.04298.x.
    1. Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry. 2008;79:368–376. doi: 10.1136/jnnp.2007.131045.
    1. Wu T., Hallett M. A functional MRI study of automatic movements in patients with Parkinson’s disease. Brain. 2005;128:2250–2259. doi: 10.1093/brain/awh569.
    1. Plummer-D’Amato P., Altmann L.J., Behrman A.L., Marsiske M. Interference between cognition, double-limb support, and swing during gait in community-dwelling individuals poststroke. Neurorehabilit. Neural Repair. 2010;24:542–549. doi: 10.1177/1545968309357926.
    1. Silsupadol P., Siu K.-C., Shumway-Cook A., Woollacott M.H. Training of balance under single-and dual-task conditions in older adults with balance impairment. Phys. Ther. 2006;86:269–281. doi: 10.1093/ptj/86.2.269.
    1. Yogev-Seligmann G., Hausdorff J.M., Giladi N. The role of executive function and attention in gait. Mov. Disord. Off. J. Mov. Disord. Soc. 2008;23:329–342. doi: 10.1002/mds.21720.
    1. Wu T., Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709. doi: 10.1093/brain/aws360.
    1. Fritz N.E., Cheek F.M., Nichols-Larsen D.S. Motor-cognitive dual-task training in neurologic disorders: A systematic review. J. Neurol. Phys. Ther. 2015;39:142. doi: 10.1097/NPT.0000000000000090.
    1. Kim S.J., Cho S.-R., Yoo G.E. The applicability of rhythm-motor tasks to a new dual task paradigm for older adults. Front. Neurol. 2017;8:671. doi: 10.3389/fneur.2017.00671.
    1. Terrier P., Reynard F. Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture. 2015;41:170–174. doi: 10.1016/j.gaitpost.2014.09.024.
    1. Herman T., Mirelman A., Giladi N., Schweiger A., Hausdorff J.M. Executive control deficits as a prodrome to falls in healthy older adults: A prospective study linking thinking, walking, and falling. Biomed. Sci. Med. Sci. 2010;65:1086–1092. doi: 10.1093/gerona/glq077.
    1. Chen J.L., Zatorre R.J., Penhune V.B. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage. 2006;32:1771–1781. doi: 10.1016/j.neuroimage.2006.04.207.
    1. Haslinger B., Erhard P., Altenmüller E., Schroeder U., Boecker H., Ceballos-Baumann A.O. Transmodal sensorimotor networks during action observation in professional pianists. J. Cogn. Neurosci. 2005;17:282–293. doi: 10.1162/0898929053124893.
    1. LaGasse A.B., Knight A. Rhythm and music in rehabilitation: A critical review of current research. Crit. Rev. Phys. Rehabil. Med. 2011;23:49–67. doi: 10.1615/CritRevPhysRehabilMed.v23.i1-4.40.
    1. Thaut M.H., Stephan K.M., Wunderlich G., Schicks W., Tellmann L., Herzog H., McIntosh G.C., Seitz R.J., Hömberg V. Distinct cortico-cerebellar activations in rhythmic auditory motor synchronization. Cortex. 2009;45:44–53. doi: 10.1016/j.cortex.2007.09.009.
    1. Molinari M., Leggio M.G., De Martin M., Cerasa A., Thaut M. Neurobiology of rhythmic motor entrainment. Ann. N. Y. Acad. Sci. 2003;999:313–321. doi: 10.1196/annals.1284.042.
    1. Alexander J.S., Fachner J., Magee W.L. Upper limb rehabilitation in chronic stroke using neurologic music therapy: Two contrasting case studies to inform on treatment delivery and patient suitability. Nord. J. Music Ther. 2019;28:382–404.
    1. Malcolm M.P., Massie C., Thaut M. Rhythmic auditory-motor entrainment improves hemiparetic arm kinematics during reaching movements: A pilot study. Top. Stroke Rehabil. 2009;16:69–79. doi: 10.1310/tsr1601-69.
    1. Vervoort G., Heremans E., Bengevoord A., Strouwen C., Nackaerts E., Vandenberghe W., Nieuwboer A. Dual-task-related neural connectivity changes in patients with Parkinson’s disease. Neuroscience. 2016;317:36–46. doi: 10.1016/j.neuroscience.2015.12.056.
    1. Schroeder C.E., Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends Neurosci. 2009;32:9–18. doi: 10.1016/j.tins.2008.09.012.
    1. Bella S.D., Benoit C.E., Farrugia N., Schwartze M., Kotz S.A. Effects of musically cued gait training in Parkinson’s disease: Beyond a motor benefit. Ann. N. Y. Acad. Sci. 2015;1337:77–85. doi: 10.1111/nyas.12651.
    1. Galletly R., Brauer S.G. Does the type of concurrent task affect perferred and cued gait in people with Parkinson’s disease? Aust. J. Physiother. 2005;51:175–180. doi: 10.1016/S0004-9514(05)70024-6.
    1. Braunlich K., Seger C.A., Jentink K.G., Buard I., Kluger B.M., Thaut M.H. Rhythmic auditory cues shape neural network recruitment in Parkinson’s disease during repetitive motor behavior. Eur. J. Neurosci. 2019;49:849–858. doi: 10.1111/ejn.14227.
    1. Alberts J.L., Saling M., Adler C.H., Stelmach G.E. Disruptions in the reach-to-grasp actions of Parkinson’s patients. Exp. Brain Res. 2000;134:353–362. doi: 10.1007/s002210000468.
    1. Pelton T., van Vliet P., Hollands K. Interventions for improving coordination of reach to grasp following stroke: A systematic review. Int. J. Evid. Based Healthc. 2012;10:89–102. doi: 10.1111/j.1744-1609.2012.00261.x.
    1. Ma H.I., Hwang W.J., Lin K.C. The effects of two different auditory stimuli on functional arm movement in persons with Parkinson’s disease: A dual-task paradigm. Clin. Rehabil. 2009;23:229–237. doi: 10.1177/0269215508098896.
    1. Wu T., Hallett M., Chan P. Motor automaticity in Parkinson’s disease. Neurobiol. Aging. 2015;82:226–234. doi: 10.1016/j.nbd.2015.06.014.
    1. Hoehn M.M., Yahr M.D. Parkinsonism: Onset, progression, and mortality. Neurology. 1998;50:318. doi: 10.1212/WNL.50.2.318.
    1. Shin M.H., Lee Y.M., Park J.M., Kang C.J., Lee B.D., Moon E., Chung Y.I. A combination of the Korean version of the mini-mental state examination and Korean dementia screening questionnaire is a good screening tool for dementia in the elderly. Psychiatry Investig. 2011;8:348. doi: 10.4306/pi.2011.8.4.348.
    1. Kim S.J., Cho S.R., Yoo G.E. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing. Front. Psychol. 2017;8:1569. doi: 10.3389/fpsyg.2017.01569.
    1. Mathiowetz V., Weber K., Kashman N., Volland G. Adult norms for the nine hole peg test of finger dexterity. Occup. Ther. J. Res. 1985;5:24–38. doi: 10.1177/153944928500500102.
    1. Jang J.W., Kim K., Baek M.J., Kim S.Y. A comparison of five types of trail making test in Korean elderly. Dement. Neurocognitive Disord. 2016;15:135–141. doi: 10.12779/dnd.2016.15.4.135.
    1. Seo E.H., Lee D.Y., Choo I.H., Kim S.G., Kim K.W., Youn J.C., Jhoo J.H., Woo J.I. Normative study of the stroop color and word test in an educationally diverse elderly population. Int. J. Geriatr. Psychiatry. 2008;23:1020–1027. doi: 10.1002/gps.2027.
    1. Ludwig C., Borella E., Tettamanti M., De Ribaupierre A. Adult age differences in the Color Stroop Test: A comparison between an Item-by-item and a Blocked version. Arch. Gerontol. Geriatr. 2010;51:135–142. doi: 10.1016/j.archger.2009.09.040.
    1. Jones C.R., Jahanshahi M. Neurobiology of Interval Timing. Springer; New York, NY, USA: 2014. Motor and Perceptual Timing in Parkinson’s Disease; pp. 265–290.
    1. Rohenkohl G., Coull J.T., Nobre A.C. Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS ONE. 2011;6:e14620. doi: 10.1371/journal.pone.0014620.
    1. Bangert A.S., Balota D.A. Keep up the pace: Declines in simple repetitive timing differentiate healthy aging from the earliest stages of Alzheimer’s disease. J. Int. Neuropsychol. Soc. JINS. 2012;18:1052. doi: 10.1017/S1355617712000860.
    1. McAuley J.D., Jones M.R., Holub S., Johnston H.M., Miller N.S. The time of our lives: Life span development of timing and event tracking. J. Exp. Psychol. Gen. 2006;135:348. doi: 10.1037/0096-3445.135.3.348.
    1. McAuley J.D., Henry M.J., Tkach J. Tempo mediates the involvement of motor areas in beat perception. Ann. N. Y. Acad. Sci. 2012;1252:77–84. doi: 10.1111/j.1749-6632.2011.06433.x.
    1. Loehrer P.A., Nettersheim F.S., Jung F., Weber I., Huber C., Dembek T.A., Pelzer E.A., Fink G.R., Tittgemeyer M., Timmermann L. Ageing changes effective connectivity of motor networks during bimanual finger coordination. NeuroImage. 2016;143:325–342. doi: 10.1016/j.neuroimage.2016.09.014.
    1. Thaut M.H., Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: A review of current research. Music Percept. 2010;27:263–269. doi: 10.1525/mp.2010.27.4.263.
    1. Trapp S., Lepsien J., Sehm B., Villringer A., Ragert P. Changes of hand switching costs during bimanual sequential learning. PLoS ONE. 2012;7:e45857. doi: 10.1371/journal.pone.0045857.
    1. Serrien D.J., Swinnen S.P., Stelmach G.E. Age-related deterioration of coordinated interlimb behavior. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2000;55:P295–P303. doi: 10.1093/geronb/55.5.P295.
    1. Shetty A.K., Vinutha Shankar M., Annamalai N. Bimanual coordination: Influence of age and gender. J. Clin. Diagn. Res. JCDR. 2014;8:15. doi: 10.7860/JCDR/2014/7333.3994.
    1. Morillon B., Hackett T.A., Kajikawa Y., Schroeder C.E. Predictive motor control of sensory dynamics in auditory active sensing. Curr. Opin. Neurobiol. 2015;31:230–238. doi: 10.1016/j.conb.2014.12.005.
    1. Alonso C.C., de Freitas P.B., Pires R.S., de Oliveira D.L., Freitas S.M.F. Accuracy, sensitivity and specificity of different tests to detect impaired hand function in Parkinsons disease. medRxiv. 2020 doi: 10.1101/2020.04.25.20079392.
    1. Galvan A., Devergnas A., Wichmann T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front. Neuroanat. 2015;9:5. doi: 10.3389/fnana.2015.00005.
    1. Clark D.J. Automaticity of walking: Functional significance, mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci. 2015;9:246. doi: 10.3389/fnhum.2015.00246.

Source: PubMed

3
Abonnieren