Cognitive and structural cerebral changes in amnestic mild cognitive impairment due to Alzheimer's disease after multicomponent training

Camila Vieira Ligo Teixeira, Thiago Junqueira Ribeiro de Rezende, Marina Weiler, Thamires Naela Cardoso Magalhães, Ana Flávia Mac Knight Carletti-Cassani, Thiago Quinaglia Araújo Costa Silva, Helena Passarelli Giroud Joaquim, Leda Leme Talib, Orestes Vicente Forlenza, Mariana Pires Franco, Pedro Eduardo Nechio, Paula Teixeira Fernandes, Fernando Cendes, Marcio Luis Balthazar, Camila Vieira Ligo Teixeira, Thiago Junqueira Ribeiro de Rezende, Marina Weiler, Thamires Naela Cardoso Magalhães, Ana Flávia Mac Knight Carletti-Cassani, Thiago Quinaglia Araújo Costa Silva, Helena Passarelli Giroud Joaquim, Leda Leme Talib, Orestes Vicente Forlenza, Mariana Pires Franco, Pedro Eduardo Nechio, Paula Teixeira Fernandes, Fernando Cendes, Marcio Luis Balthazar

Abstract

Introduction: Information about how physical exercise affects patients with amnestic mild cognitive impairment (aMCI) due to Alzheimer's disease (AD) is still missing. This study evaluated the impact of multicomponent exercise training on cognition and brain structure in aMCI subjects with cerebral spinal fluid positive AD biomarkers.

Methods: Forty aMCI subjects were divided in training (multicomponent exercise thrice a week for 6 months) and nontraining groups. Assessments included cardiorespiratory fitness, neurocognitive tests, and a structural magnetic resonance imaging using 3.0 T scanner. FreeSurfer software analyzed hippocampal volume and cortical thickness.

Results: The training group showed increased volume in both hippocampi and better performance in episodic memory test after 6 months. In contrast, the nontraining group declined in functional activities, recognition, and cardiorespiratory fitness for the same period.

Discussion: Multicomponent exercise seems to improve hippocampal volume and episodic memory, and maintains VO2max in aMCI due to AD.

Keywords: Cognition; Cortical thickness; Hippocampus; Multicomponent exercise; aMCI due to AD.

Figures

Fig. 1
Fig. 1
The flow chart of recruitment and exclusion of participants. Abbreviations: aMCI, amnestic mild cognitive impairment; MRI, magnetic resonance imaging.
Fig. 2
Fig. 2
Differences in VO2max after 6 months in training and nontraining groups. ∗Significant interaction between-groups; †significant interaction within-groups.

References

    1. Teixeira C.V., Gobbi S., Pereira J.R., Vital T.M., Hernandez S.S., Shigematsu R. Effects of square-stepping exercise on cognitive functions of older people. Psychogeriatrics. 2013;13:148–156.
    1. Liu-Ambrose T., Nagamatsu L.S., Voss M.W., Khan K.M., Handy T.C. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging. 2012;33:1690–1698.
    1. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108:3017–3022.
    1. Maass A., Duzel S., Brigadski T., Goerke M., Becke A., Sobieray U. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage. 2015;131:142–154.
    1. Maass A., Duzel S., Goerke M., Becke A., Sobieray U., Neumann K. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2014;20:585–593.
    1. Smith J.C., Nielson K.A., Woodard J.L., Seidenberg M., Durgerian S., Hazlett K.E. Physical activity reduces hippocampal atrophy in elders at genetic risk for Alzheimer's disease. Front Aging Neurosci. 2014;6:61.
    1. Greblo J.Z., Krizanic V., Sarabon N., Markovic G. Effects of feedback-based balance and core resistance training vs. Pilates training on cognitive functions in older women with mild cognitive impairment: a pilot randomized controlled trial. Aging Clin Exp Res. 2017;29:1295–1298.
    1. Nagamatsu L.S., Chan A., Davis J.C., Beattie B.L., Graf P., Voss M.W. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013;2013:861–893.
    1. Nagamatsu L.S., Handy T.C., Hsu C.L., Voss M., Liu-Ambrose T. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 2012;172:666–668.
    1. ten Brinke L.F., Bolandzadeh N., Nagamatsu L.S., Hsu C.L., Davis J.C., Miran-Khan K. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 2015;49:248–254.
    1. Kirk-Sanchez N.J., McGough E.L. Physical exercise and cognitive performance in the elderly: current perspectives. Clin Interv Aging. 2014;9:51–62.
    1. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Tsutsumimoto K. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12:128.
    1. Sampaio A., Marques E.A., Mota J., Carvalho J. Effects of a multicomponent exercise program in institutionalized elders with Alzheimer's disease. Dementia (London) 2016 doi: 10.1177/1471301216674558.
    1. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013;8:e61483.
    1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–279. United States: 2011 The Alzheimer's Association.
    1. Raj A., Kuceyeski A., Weiner M. A network diffusion model of disease progression in dementia. Neuron. 2012;73:1204–1215.
    1. Morris J.C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–2414.
    1. Forlenza O.V., Radanovic M., Talib L.L., Aprahamian I., Diniz B.S., Zetterberg H. Cerebrospinal fluid biomarkers in Alzheimer's disease: diagnostic accuracy and prediction of dementia. Alzheimers Dement (Amst) 2015;1:455–463.
    1. Malloy-Diniz L.F., Lasmar V.A., Gazinelli Lde S., Fuentes D., Salgado J.V. The Rey Auditory-Verbal Learning Test: applicability for the Brazilian elderly. Rev Bras Psiquiatr. 2007;29:324–329.
    1. Hachinski V., Iadecola C., Petersen R.C., Breteler M.M., Nyenhuis D.L., Black S.E. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network. Stroke. 2006;37:2220–2241.
    1. Fazekas F., Chawluk J., Alavi A., Hurtig H., Zimmerman R. MRI signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJNR Am J Neuroradiol. 1987;149:351–356.
    1. McArdle W.D., Katch F.I., Katch V.L. Wolters Kluwer Health/Lippincott Williams & Wilkins; Philadelphia, PA: 2010. Exercise physiology energy, nutrition, and human performance. 7th ed.
    1. Ghosh A.K. Anaerobic threshold: its concept and role in endurance sport. Malays J Med Sci. 2004;11:24–36.
    1. Craig C.L., Marshall A.L., Sjostrom M., Bauman A.E., Booth M.L., Ainsworth B.E. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381–1395.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. England.
    1. Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571.
    1. Pfeffer R.I., Kurosaki T.T., Harrah C.H., Jr., Chance J.M., Filos S. Measurement of functional activities in older adults in the community. J Gerontol. 1982;37:323–329.
    1. Fischl B., Dale A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A. 2000;97:11050–11055.
    1. Talairach J.T.P. Thieme; New York: 1988. Co-planar Stereotaxic Atlas of the Human Brain.
    1. Desikan R.S., Segonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–980.
    1. Park E., Cho M., Ki C.S. Correct use of repeated measures analysis of variance. Korean J Lab Med. 2009;29:1–9.
    1. Tabatabaei-Jafari H., Shaw M.E., Cherbuin N. Cerebral atrophy in mild cognitive impairment: a systematic review with meta-analysis. Alzheimers Dement (Amst) 2015;1:487–504.
    1. Aribisala B.S., Gow A.J., Bastin M.E., del Carmen Valdes Hernandez M., Murray C., Royle N.A. Associations between level and change in physical function and brain volumes. PLoS One. 2013;8:e80386.
    1. Fleg J.L., Morrell C.H., Bos A.G., Brant L.J., Talbot L.A., Wright J.G. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112:674–682.
    1. Paterson D.H., Govindasamy D., Vidmar M., Cunningham D.A., Koval J.J. Longitudinal study of determinants of dependence in an elderly population. J Am Geriatr Soc. 2004;52:1632–1638.
    1. Porto F.H., Coutinho A.M., Pinto A.L., Gualano B., Duran F.L., Prando S. Effects of aerobic training on cognition and brain glucose metabolism in subjects with mild cognitive impairment. J Alzheimers Dis. 2015;46:747–760.
    1. Teixeira C.V., Gobbi L.T., Corazza D.I., Stella F., Costa J.L., Gobbi S. Non-pharmacological interventions on cognitive functions in older people with mild cognitive impairment (MCI) Arch Gerontol Geriatr. 2012;54:175–180.
    1. Strohle A., Schmidt D.K., Schultz F., Fricke N., Staden T., Hellweg R. Drug and exercise treatment of Alzheimer disease and mild cognitive impairment: a systematic review and meta-analysis of effects on cognition in randomized controlled trials. Am J Geriatr Psychiatry. 2015;23:1234–1249.
    1. Nascimento C.M., Pereira J.R., de Andrade L.P., Garuffi M., Talib L.L., Forlenza O.V. Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF peripheral levels. Curr Alzheimer Res. 2014;11:799–805.
    1. Defrancesco M., Marksteiner J., Kemmler G., Fleischhacker W.W., Blasko I., Deisenhammer E.A. Severity of depression impacts imminent conversion from mild cognitive impairment to Alzheimer's disease. J Alzheimers Dis. 2017;59:1439–1448.
    1. Deslandes H.S., Helena M., Natacha O., Evandro Silva Freire C., Jerson L., Andrea Patients: a systematic review and meta-analysis. Neuropsychobiology. 2017;67:61–68.
    1. Zhang H.Y., Wang S.J., Xing J., Liu B., Ma Z.L., Yang M. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behav Brain Res. 2009;197:103–108. Netherlands.
    1. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–682.
    1. Becker J.A., Hedden T., Carmasin J., Maye J., Rentz D.M., Putcha D. Amyloid-beta associated cortical thinning in clinically normal elderly. Ann Neurol. 2011;69:1032–1042.
    1. Burock M.A., Dale A.M. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach. Hum Brain Mapp. 2000;11:249–260.
    1. Cassilhas R.C., Lee K.S., Fernandes J., Oliveira M.G., Tufik S., Meeusen R. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 2012;202:309–317.
    1. Middleton L.E., Corbett D., Brooks D., Sage M.D., Macintosh B.J., McIlroy W.E. Physical activity in the prevention of ischemic stroke and improvement of outcomes: a narrative review. Neurosci Biobehav Rev. 2012;37:133–137.
    1. Honjo K., Black S.E., Verhoeff N.P. Alzheimer's disease, cerebrovascular disease, and the beta-amyloid cascade. Can J Neurol Sci. 2012;39:712–728.
    1. Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67:71–79.
    1. Magaki S., Mueller C., Dickson C., Kirsch W. Increased production of inflammatory cytokines in mild cognitive impairment. Exp Gerontol. 2007;42:233–240.
    1. Trollor J.N., Smith E., Agars E., Kuan S.A., Baune B.T., Campbell L. The association between systemic inflammation and cognitive performance in the elderly: the Sydney Memory and Ageing Study. Age (Dordr) 2012;34:1295–1308.
    1. Freeman S.H., Kandel R., Cruz L., Rozkalne A., Newell K., Frosch M.P. Preservation of neuronal number despite age-related cortical brain atrophy in elderly subjects without Alzheimer disease. J Neuropathol Exp Neurol. 2008;67:1205–1212.
    1. Daviglus M.L., Bell C.C., Berrettini W., Bowen P.E., Connolly E.S., Jr., Cox N.J. NIH state-of-the-science conference statement: preventing Alzheimer's disease and cognitive decline. NIH consens State Sci Statements. 2010;27:1–30.
    1. Roberts R., Knopman D.S. Classification and epidemiology of MCI. Clin Geriatr Med. 2013;29:753–772.

Source: PubMed

3
Abonnieren