Role of Indocyanine Green in Fluorescence Imaging with Near-Infrared Light to Identify Sentinel Lymph Nodes, Lymphatic Vessels and Pathways Prior to Surgery - A Critical Evaluation of Options

Andreas Hackethal, Markus Hirschburger, Sven Oliver Eicker, Thomas Mücke, Christoph Lindner, Olaf Buchweitz, Andreas Hackethal, Markus Hirschburger, Sven Oliver Eicker, Thomas Mücke, Christoph Lindner, Olaf Buchweitz

Abstract

Modern surgical strategies aim to reduce trauma by using functional imaging to improve surgical outcomes. This reviews considers and evaluates the importance of the fluorescent dye indocyanine green (ICG) to visualize lymph nodes, lymphatic pathways and vessels and tissue borders in an interdisciplinary setting. The work is based on a selective search of the literature in PubMed, Scopus, and Google Scholar and the authors' own clinical experience. Because of its simple, radiation-free and uncomplicated application, ICG has become an important clinical indicator in recent years. In oncologic surgery ICG is used extensively to identify sentinel lymph nodes with promising results. In some studies, the detection rates with ICG have been better than the rates obtained with established procedures. When ICG is used for visualization and the quantification of tissue perfusion, it can lead to fewer cases of anastomotic insufficiency or transplant necrosis. The use of ICG for the imaging of organ borders, flap plasty borders and postoperative vascularization has also been scientifically evaluated. Combining the easily applied ICG dye with technical options for intraoperative and interventional visualization has the potential to create new functional imaging procedures which, in future, could expand or even replace existing established surgical techniques, particularly the techniques used for sentinel lymph node and anastomosis imaging.

Keywords: ICG; indocyanine green; sentinel.

Conflict of interest statement

Conflict of Interest/Interessenkonflikt AH: Perform live surgery and participation in expert meetings for Olympus. AH: Durchführung von Live-Operationen, Teilnahme an Expertenmeetings für Olympus.

Figures

Fig. 1
Fig. 1
Number of “Indocyanine Green” publications in PubMed over various periods.
Fig. 2
Fig. 2
Intraoperative screen shot of fluorescence ICG sentinel lymph node biopsy in the right pelvis.a HD white light image of the site,b near-infrared image at the same site with pale-stained ICG-containing tissue.c Combined HD image with fluorescent green color.d Quantitative ICG image of fluorescence-containing tissue indicating the presence of a lymph node in the obturator fossa.
Fig. 3
Fig. 3
Applications in neurosurgery.ashows reduced flow at the cortical surface with circulatory insufficiency (white arrow). At maximum flow this is particularly visible in the color-coded image (b, blue areas).cshows how ROIs (regions of interest) can be measured. Physicians can select an artery (green), vein (blue) or cortex (red). Areas of infarction or tumor areas can be highlighted.dshows the quantitative images for these regions.eImage of the spinal cord of a patient with a spinal arteriovenous fistula. Under white light illumination (black arrow), the suspicious vessel fills too quickly during ICG video angiography (f, white arrow), allowing it to be identified as a fistula vessel.
Fig. 4
Fig. 4
Color-coded imaging (FLOW ® 800) of the afferent (yellow-orange) artery and the efferent vein (green) of a microvascular, latissimus dorsi tissue flap after successful anastomosis.
Abb. 1
Abb. 1
Publikationsanzahl „Indocyanine Green“ in PubMed in jeweiligen Zeiträumen.
Abb. 2
Abb. 2
Intraoperativer Screenshot einer ICG-Sentinelbiopsie im Bereich des rechten Beckens.azeigt das HD-Weißlichtbild des Situs,bdas Nah-Infrarotbild mit weißlich angefärbtem ICG-haltigen Gewebe.czeigt das Kombinationsbild in HD mit Fluoreszenzgrün-Färbung.dzeigt die quantitative ICG-Darstellung des fluoreszenzhaltigen Gewebes, als Ausdruck eines Lymphknotens im Bereich der Fossa obturatoria.
Abb. 3
Abb. 3
Anwendungsbeispiele aus der Neurochirurgie. Inazeigt sich auf der kortikalen Oberfläche eine Flussverzögerung mit Minderdurchblutung (weißer Pfeil). Im maximalen Fluss zeigt sich dies besonders im farbkodierten Bild (b, blau dargestellte Areale). Exemplarisch ist incdie Möglichkeit der Messung von ROIs (Region of Interest) dargestellt. Je eine Arterie (grün), Vene (blau) und Kortex (rot) können ausgewählt werden. Ebenso könnten Infarktareale oder Tumorareale markiert werden. Indsind diese Regionen entsprechend quantitativ dargestellt.eist die Aufsicht auf das Rückenmark bei einem Patienten mit spinaler arteriovenöser Fistel. Das suspekte Gefäß in der Weißlicht-Aufsicht (schwarzer Pfeil) füllt sich in der ICG-Videoangiografie entsprechend zu früh (f, weißer Pfeil) und kann als Fistelgefäß identifiziert werden.
Abb. 4
Abb. 4
Farbkodierte Darstellung (FLOW ® 800) der zuführenden (gelb-orange) Arterie und der abführenden Vene (grün) eines mikrovaskulären Latissimus-dorsi-Gewebetransplantats nach erfolgreicher Anastomosierung.

References

    1. Sugie T, Ikeda T, Kawaguchi A. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: a meta-analysis. Int J Clin Oncol. 2017;22:11–17.
    1. Buda A, Papadia A, Zapardiel I. From conventional radiotracer Tc-99(m) with blue dye to indocyanine green fluorescence: a comparison of methods towards optimization of sentinel lymph node mapping in early stage cervical cancer for a laparoscopic approach. Ann Surg Oncol. 2016;23:2959–2965.
    1. Lin H, Ding Z, Kota V G. Sentinel lymph node mapping in endometrial cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:46601–46610.
    1. Rocha A, Domínguez A M, Lécuru F. Indocyanine green and infrared fluorescence in detection of sentinel lymph nodes in endometrial and cervical cancer staging – a systematic review. Eur J Obstet Gynecol Reprod Biol. 2016;206:213–219.
    1. Handgraaf H JM, Boogerd L SF, Höppener D J. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43:1463–1471.
    1. Tanaka K, Mori R, Kawamura A. Comparison of OCT angiography and indocyanine green angiographic findings with subtypes of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2017;101:51–55.
    1. Senders J T, Muskens I S, Schnoor R. Agents for fluorescence-guided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir. 2017;159:151–167.
    1. Burnier P, Niddam J, Bosc R. Indocyanine green applications in plastic surgery: a review of the literature. Plast Reconstr Aesthet Surg. 2017;70:814–827.
    1. Wheeler H O, Cranston W I, Meltzer J I. Hepatic uptake and biliary excretion of indocyanine green in the dog. Proc Soc Exp Biol Med. 1958;99:11–14.
    1. Choi H J, Kim T J, Lee Y Y. Time-lapse imaging of sentinel lymph node using indocyanine green with near-infrared fluorescence imaging in early endometrial cancer. J Gynecol Oncol. 2016;27:e27.
    1. Cherrick G R, Stein S W, Leevy C M. Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest. 1960;39:592–600.
    1. Darin M C, Gomez-Hidalgo N R, Westin S N. Role of indocyanine green in sentinel node mapping in gynecologic cancer: is fluorescence imaging the new standard? J Minim Invasive Gynecol. 2016;23:186–193.
    1. Levinson K, Mahdi H, Escobar P. Feasibility and optimal dosage of indocyanine green fluorescence for sentinel lymph node detections using robotic single site instrumentation: preclinical study. J Minim Invasive Gynecol. 2013;12:211–215.
    1. Martinelli F, Ditto A, Signorelli M. Sentinel node mapping in endometrial cancer following hysteroscopic injection of tracers: a single center evaluation over 200 cases. Gynecol Oncol. 2017;146:525–530.
    1. Ris F, Hompes R, Cunningham C. Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc. 2014;28:2221–2226.
    1. Zhang Y M, Shi R, Hou J C. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–58.
    1. Boogerd L SF, Handgraaf H JM, Huurman V AL. The best approach for laparoscopic fluorescence cholangiography: overview of the literature and optimization of dose and dosing time. Surg Innov. 2017;24:386–396.
    1. Zhu B, Sevick-Muraca E M. A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br J Radiol. 2015;88:2.0140547E7.
    1. Janni W, Kühn T, Schwentner L. Sentinel node biopsy and axillary dissection in breast cancer–the evidence and its limits. Dtsch Arztebl Int. 2014;111:244–249.
    1. AWMF AWMF Leitlinie MammakarzinomOnline:last access: 20.05.2017
    1. Krag D N, Anderson S J, Julian T B. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11:927–933.
    1. AWMF AWMF Leitlinien ZervixkarzinomOnline:last access: 30.01.2017
    1. AWMF AWMF Leitlinien VulvakarzinomOnline:last access: 30.01.2017
    1. NCCN NCCN guidelineOnline:last access: 18.08.2017
    1. van der Zee A GJ, Oonk M H, De Hullu J A. Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J Clin Oncol. 2008;26:884–889.
    1. Schrenk P, Shamiyeh A, Wayand W. Sentinel lymph-node biopsy compared to axillary lymph-node dissection for axillary staging in breast cancer patients. Eur J Surg Oncol. 2001;27:378–382.
    1. van de Lande J. Sentinel lymph node detection in early stage uterine cervix carcinoma: a systematic review. Gynecol Oncol. 2007;106:604–613.
    1. Krag D N, Meijer S J, Weaver D L. Minimal-access surgery for staging of malignant melanoma. Arch Surg. 1995;130:654–658.
    1. Tafra L, Lannin D R, Swanson M S. Multicenter trial of sentinel node biopsy for breast cancer using both technetium sulphur colloid and isosulfan blue dye. Ann Surg. 2001;233:51–59.
    1. Lee J H, Ryu K W, Kook M C. Feasibility of laparoscopic sentinel basin dissection for limited resection in early gastric cancer. J Surg Oncol. 2008;98:331–335.
    1. Buda A, Crivellaro C, Elisei F. Impact of indocyanine green for sentinel lymph node mapping in early stage endometrial and cervical cancer: comparison with conventional radiotracer (99m)Tc and/or blue dye. Ann Surg Oncol. 2016;23:2183–2191.
    1. Wuntakal R, Papadopoulos A J, Montalto S A. Location of sentinel lymph node in cervical carcinoma and factors associated with unilateral detection. Int J Gynecol Cancer. 2015;25:1663–1668.
    1. Haid A, Köberle-Wührer R, Offner F. Klinische Wertigkeit und zukünftige Aspekte der „Sentinel Node Biopsy“ beim Mammakarzinom. Chirurg. 2003;74:657–664.
    1. Kümmel S, Holtschmidt J, Gerber B. Randomized surgical multicenter trial to evaluate the usefulness of lymphoscintigraphy (LSG) prior to sentinel node biopsy (SLNB) in early breast cancer: SenSzi (GBG80) trial. J Clin Oncol. 2017;35 (15 Suppl.):555.
    1. Motomura K, Inaji H, Komoike Y. Sentinel node biopsy guided by indocyanine green dye in breast cancer patients. Jpn J Clin Oncol. 1999;29:604–607.
    1. Hojo T, Nagao T, Kikuyama M. Evaluation of sentinel node biopsy by combined fluorescent and dye method and lymph flow for breast cancer. Breast. 2010;19:210–213.
    1. Sugie T, Sawada T, Tagaya N. Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann Surg Oncol. 2013;20:2213–2218.
    1. Kitai T, Inomoto T, Miwa M. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–215.
    1. Pitsinis V, Provenzano E, Kaklamis L. Indocyanine green fluorescence mapping for sentinel lymph node biopsy in early breast cancer. Surg Oncol. 2015;24:375–379.
    1. Liu J, Huang L, Wang N. Indocyanine green detects sentinel lymph nodes in early breast cancer. J Intern Med Res. 2017;45:514–524.
    1. Ji Y, Luo N, Jiang Y. Clinical utility of the additional use of blue dye for indocyanine green for sentinel biopsy in breast cancer. J Surg Res. 2017;215:88–92.
    1. Grischke E M, Röhm C, Hahn M. ICG fluorescence technique for the detection of sentinel lymph nodes in breast cancer: results of a prospective open-label clinical trial. Geburtsh Frauenheilk. 2015;75:935–940.
    1. Paik H J, Yi H W, Park S. Optimal concentration of indocyanine green in near-infrared fluorescence guided sentinel lymph node biopsy in breast cancer. Cancer Res. 2016:Abstr. P3-01-03.
    1. Zhang X, Li Y, Zhou Y. Diagnostic performance of indocyanine green-guided sentinel lymph node biopsy in breast cancer: a meta-analysis. PLoS. 2016;11:e0155597.
    1. Ruscito I, Gasparri M L, Braicu E I. Sentinel node mapping in cervical and endometrial cancer: indocyanine green versus other conventional dyes – a meta-analysis. Ann Surg Oncol. 2016;23:3749–3756.
    1. Eriksson A G, Beavis A, Soslow R A. A comparison of the detection of sentinel lymph nodes using indocyanine green and near-infrared fluorescence imaging versus blue dye during robotic surgery in uterine cancer. Int J Gynecol Cancer. 2017;27:743–747.
    1. Beavis A L, Salazar-Marioni S, Sinno A K. Sentinel lymph node detection rates using indocyanine green in women with early-stage cervical cancer. Gynecol Oncol. 2016;143:302–306.
    1. Rossi E C, Kowalski L D, Scalici J. A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging (FIRES trial): a multicentre, prospective, cohort study. Lancet Oncol. 2017;18:384–392.
    1. Filippello A, Porcheron J, Klein J P. Affinity of indocyanine green in the detection of colorectal peritoneal carcinomatosis. Surg Innov. 2017;24:103–108.
    1. Liberale G, Vankerckhove S, Caldon M G. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg. 2016;264:1110–1115.
    1. Wessex Colorectal Cancer Audit Working Group . Branagan G, Finnis D. Prognosis after anastomotic leakage in colorectal surgery. Dis Colon Rectum. 2005;48:1021–1026.
    1. Kingham T P, Pachter H L. Colonic anastomotic leak: risk factors, diagnosis and treatment. J Am Coll Surg. 2009;208:269–278.
    1. Vignali A, Gianotti L, Braga M. Altered microperfusion at the rectal stump is predictive for rectal anastomotic leak. Dis Colon Rectum. 2000;43:76–82.
    1. Karliczek A, Harlaar N J, Zeebregts C J. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis. 2009;24:569–576.
    1. Kudszus S, Roesel C, Schachtrupp A. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395:1025–1030.
    1. Jafari M D, Lee K H, Halabi W J. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27:3003–3008.
    1. Kawada K, Hasegawa S, Wada T. Evaluation of intestinal perfusion by ICG fluorescence imaging in laparoscopic colorectal surgery with DST anastomosis. Surg Endosc. 2017;31:1061–1069.
    1. Jafari M D, Wexner S D, Martz J E. Perfusion assessment in laparoscopic left sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220:82–92.
    1. Degett T H, Andersen H S, Gögenur I. Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion: a systematic review of clinical trials. Langenbecks Arch Surg. 2016;401:767–775.
    1. Mizrahi I, Wexner S D. Clinical role of fluorescence imaging in colorectal surgery – a review. Expert Rev Med Devices. 2017;14:75–82.
    1. Ishizawa T, Bandai Y, Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg. 2009;144:381–382.
    1. Ishizawa T, Fukushima N, Shibahara J. Real-time identification of liver cancers by using indocyanin green fluorescent imaging. Cancer. 2009;115:2491–2504.
    1. Ishizawa T, Masuda K, Urano Y. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014;21:440–448.
    1. Inoue Y, Arita J, Sakamoto T. Anatomical liver resections guided by 3-dimensional parenchymal staining using fusion indocyanine green fluorescence imaging. Ann Surg. 2015;262:105–111.
    1. Miyata A, Ishizawa T, Tani K. Reappraisal of a dye-staining technique for anatomic hepatectomy by the concomitant use of indocyanine green fluorescence imaging. J Am Coll Surg. 2015;221:e27–e36.
    1. Majlesara A, Golriz M, Hafezi M. Indocyanine green fluorescence imaging in hepatobiliary surgery. . Photodiagnosis Photodyn Ther. 2017;17:208–215.
    1. Daskalaki D, Fernandes E, Wang X. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution. Surg Innov. 2014;21:615–621.
    1. Gangemi A, Danilkowicz R, Elli F E. Could ICG-aided robotic cholecystectomy reduce the rate of open conversion reported with laparoscopic approach? A head to head comparison of the largest single institution studies. J Robot Surg. 2017;11:77–82.
    1. Abdel-Galil K, Mitchell D. Postoperative monitoring of microsurgical free-tissue transfers for head and neck reconstruction: a systematic review of current techniques–part II. Invasive techniques. Br J Oral Maxillofac Surg. 2009;47:438–442.
    1. Abdel-Galil K, Mitchell D. Postoperative monitoring of microsurgical free-tissue transfers for head and neck reconstruction: a systematic review of current techniques–part I. Non-invasive techniques. Br J Oral Maxillofac Surg. 2009;47:351–355.
    1. Holm C, Mayr M, Hofter E. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study. Microsurgery. 2009;29:509–514.
    1. Mücke T, Wolff K D, Wagenpfeil S. Reliability of near-infrared angiography and micro-Doppler sonography for evaluating microvascular anastomoses. Plast Reconstr Surg. 2010;126:1506–1514.
    1. Holzbach T, Taskov C, Henke J. [Evaluation of perfusion in skin flaps by laser-induced indocyanine green fluorescence] Handchir Mikrochir Plast Chir. 2005;37:396–402.
    1. Mücke T, Fichter A M, Schmidt L H. Indocyanine green videoangiography-assisted prediction of flap necrosis in the rat epigastric flap using the flow ® 800 tool . Microsurgery. 2017;37:235–242.
    1. Mücke T, Reeps C, Wolff K D. Objective qualitative and quantitative assessment of blood flow with near-infrared angiography in microvascular anastomoses in the rat model. Microsurgery. 2013;33:287–296.
    1. Mücke T, Wolff K D, Wagenpfeil S. Reliability of near-infrared angiography and micro-Doppler sonography for evaluating microvascular anastomoses. Plast Reconstr Surg. 2010;126:1506–1514.
    1. Detter C, Wipper S, Russ D. Fluorescent cardiac imaging: a novel intraoperative method for quantitative assessment of myocardial perfusion during graded coronary artery stenosis. Circulation. 2007;116:1007–1014.
    1. Kamp M A, Slotty P, Turowski B. Microscope-integrated quantitative analysis of intraoperative indocyanine green fluorescence angiography for blood flow assessment: first experience in 30 patients. Neurosurgery. 2012 doi: 10.1227/NEU.0b013e31822f7d7c.
    1. Holm C, Dornseifer U, Sturtz G. The intrinsic transit time of free microvascular flaps: clinical and prognostic implications. Microsurgery. 2010;30:91–96.
    1. Holm C, Mayr M, Hofter E. Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography: a preliminary study. Microsurgery. 2009;29:509–514.
    1. Waseda K, Ako J, Hasegawa T. Intraoperative fluorescence imaging system for on-site assessment of off-pump coronary artery bypass graft. JACC Cardiovasc Imaging. 2009;2:604–612.
    1. Holm C, Dornseifer U, Sturtz G. Sensitivity and specificity of ICG angiography in free flap reexploration. J Reconstr Microsurg. 2010;26:311–316.
    1. Holzbach T, Artunian N, Spanholtz T A. [Microscope-integrated intraoperative indocyanine green angiography in plastic surgery] Handchir Mikrochir Plast Chir. 2012;44:84–88.
    1. Zimmermann A, Roenneberg C, Wendorff H. Early postoperative detection of tissue necrosis in amputation stumps with indocyanine green fluorescence angiography. Vasc Endovascular Surg. 2010;44:269–273.
    1. Chiang V L, Gailloud P, Murphy K J. Routine intraoperative angiography during aneurysm surgery. J Neurosurg. 2002;96:988–992.
    1. Raabe A, Beck J, Gerlach R. Near-infrared indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery. 2003;52:132–139.
    1. Hänggi D, Etminan N, Steiger H J. The impact of microscope-integrated intraoperative near-infrared indocyanine green videoangiography on surgery of arteriovenous malformations and dural arteriovenous fistulae. Neurosurgery. 2003;67:1094–1103.
    1. Raabe A, Nakaji P, Beck J. Prospective evaluation of surgical microscope–integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103:982–989.
    1. Takai K, Kurita H, Hara T. Influence of indocyanine green angiography on microsurgical treatment of spinal perimedullary arteriovenous fistulas. Neurosurg Focus. 2016;40:E10.
    1. Murai Y, Adachi K, Matano F. Indocyanin green videoangiography study of hemangioblastomas. Can J Neurol Sci. 2011;38:41–47.
    1. Kamp M A, Sarikaya-Seiwert S, Petridis A K. Intraoperative indocyanine green-based cortical perfusion assessment in patients suffering from severe traumatic brain injury. World Neurosurg. 2017;101:431–443.
    1. Garski T R, Staller B J, Hepner G. Adverse reactions after administration of indocyanine green. JAMA. 1978;240:635.

Source: PubMed

3
Abonnieren