Effects of an asymmetrical high flow nasal cannula interface in hypoxemic patients

Douglas Slobod, Elena Spinelli, Stefania Crotti, Alfredo Lissoni, Alessandro Galazzi, Giacomo Grasselli, Tommaso Mauri, Douglas Slobod, Elena Spinelli, Stefania Crotti, Alfredo Lissoni, Alessandro Galazzi, Giacomo Grasselli, Tommaso Mauri

Abstract

Background: Optimal noninvasive respiratory support for patients with hypoxemic respiratory failure should minimize work of breathing without increasing the transpulmonary pressure. Recently, an asymmetrical high flow nasal cannula (HFNC) interface (Duet, Fisher & Paykel Healthcare Ltd), in which the caliber of each nasal prong is different, was approved for clinical use. This system might reduce work of breathing by lowering minute ventilation and improving respiratory mechanics.

Methods: We enrolled 10 patients ≥ 18 years of age who were admitted to the Ospedale Maggiore Policlinico ICU in Milan, Italy, and had a PaO2/FiO2 < 300 mmHg during HFNC support with a conventional cannula. We investigated whether the asymmetrical interface, compared to a conventional high flow nasal cannula, reduces minute ventilation and work of breathing. Each patient underwent support with the asymmetrical interface and the conventional interface, applied in a randomized sequence. Each interface was provided at a flow rate of 40 l/min followed by 60 l/min. Patients were continuously monitored with esophageal manometry and electrical impedance tomography.

Results: Application of the asymmetrical interface resulted in a -13.5 [-19.4 to (-4.5)] % change in minute ventilation at a flow rate of 40 l/min, p = 0.006 and a -19.6 [-28.0 to (-7.5)] % change at 60 l/min, p = 0.002, that occurred despite no change in PaCO2 (35 [33-42] versus 35 [33-43] mmHg at 40 l/min and 35 [32-41] versus 36 [32-43] mmHg at 60 l/min). Correspondingly, the asymmetrical interface lowered the inspiratory esophageal pressure-time product from 163 [118-210] to 140 [84-159] (cmH2O*s)/min at a flow rate of 40 l/min, p = 0.02 and from 142 [123-178] to 117 [90-137] (cmH2O*s)/min at a flow rate of 60 l/min, p = 0.04. The asymmetrical cannula did not have any impact on oxygenation, the dorsal fraction of ventilation, dynamic lung compliance, or end-expiratory lung impedance, suggesting no major effect on PEEP, lung mechanics, or alveolar recruitment.

Conclusions: An asymmetrical HFNC interface reduces minute ventilation and work of breathing in patients with mild-to-moderate hypoxemic respiratory failure supported with a conventional interface. This appears to be primarily driven by increased ventilatory efficiency due to enhanced CO2 clearance from the upper airway.

Keywords: Asymmetrical interface; Electrical impedance tomography; Esophageal pressure monitoring; High flow nasal cannula; Hypoxemic respiratory failure; Ventilatory efficiency.

Conflict of interest statement

DS, ES, SC, AL, and AG report no conflicts of interest. GG reports receiving personal fees from Getinge, Biotest, Pfizer, Dräger, and Fisher and Paykel. TM reports receiving personal fees from Fisher and Paykel, Dräger, Mindray, and B. Braun.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
At a flow rate of 40 l/min, the asymmetrical cannula lowered minute ventilation, tidal volume, and the inspiratory esophageal pressure–time product (an indicator of the metabolic work of breathing over 1 min) despite no change in the arterial carbon dioxide tension. PTP = pressure–time product. Horizontal bars represent median and interquartile range
Fig. 2
Fig. 2
Findings at a flow rate of 60 l/min: the asymmetrical cannula lowered minute ventilation, tidal volume, and the inspiratory esophageal pressure–time product despite no change in the arterial carbon dioxide tension. PTP = pressure–time product. Horizontal bars represent median and interquartile range
Fig. 3
Fig. 3
Impact of the asymmetrical cannula interface on lung mechanics at both delivered flow rates. Au = arbitrary units. Horizontal bars represent median and interquartile range
Fig. 4
Fig. 4
Correlations between SAPS II and mean inspiratory flow and the change in minute ventilation following application of the asymmetrical interface at each flow rate

References

    1. Rochwerg B, Einav S, Chaudhuri D, Mancebo J, Mauri T, Helviz Y, et al. The role for high flow nasal cannula as a respiratory support strategy in adults: a clinical practice guideline. Intensive Care Med. 2020;46(12):2226–2237. doi: 10.1007/s00134-020-06312-y.
    1. Grieco DL, Maggiore SM, Roca O, Spinelli E, Patel BK, Thille AW, et al. Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med. 2021;47(8):851–866. doi: 10.1007/s00134-021-06459-2.
    1. Mauri T, Wang YM, Dalla Corte F, Corcione N, Spinelli E, Pesenti A. Nasal high flow: physiology, efficacy and safety in the acute care setting, a narrative review. Open Access Emerg Med. 2019;11:109–120. doi: 10.2147/OAEM.S180197.
    1. Rochwerg B, Granton D, Wang DX, Helviz Y, Einav S, Frat JP, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019;45(5):563–572.
    1. Mauri T, Turrini C, Eronia N, Grasselli G, Volta CA, Bellani G, et al. Physiologic effects of high-flow nasal cannula in acute hypoxemic respiratory failure. Am J Respir Crit Care Med. 2017;195(9):1207–1215. doi: 10.1164/rccm.201605-0916OC.
    1. Pinkham M, Tatkov S. Effect of flow and cannula size on generated pressure during nasal high flow. Crit Care. 2020;24(1):248. doi: 10.1186/s13054-020-02980-w.
    1. Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, et al. Lung- and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202(7):950–961. doi: 10.1164/rccm.202003-0655CP.
    1. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–442. doi: 10.1164/rccm.201605-1081CP.
    1. Roca O, Messika J, Caralt B, Garcia-de-Acilu M, Sztrymf B, Ricard JD, et al. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: the utility of the ROX index. J Crit Care. 2016;35:200–205. doi: 10.1016/j.jcrc.2016.05.022.
    1. Roca O, Caralt B, Messika J, Samper M, Sztrymf B, Hernandez G, et al. An index combining respiratory rate and oxygenation to predict outcome of nasal high-flow therapy. Am J Respir Crit Care Med. 2019;199(11):1368–1376. doi: 10.1164/rccm.201803-0589OC.
    1. Ait Hamou Z, Levy N, Charpentier J, Mira JP, Jamme M, Jozwiak M. Use of high-flow nasal cannula oxygen and risk factors for high-flow nasal cannula oxygen failure in critically-ill patients with COVID-19. Respir Res. 2022;23(1):329. doi: 10.1186/s12931-022-02231-2.
    1. Basile MC, Mauri T, Spinelli E, Dalla Corte F, Montanari G, Marongiu I, et al. Nasal high flow higher than 60 L/min in patients with acute hypoxemic respiratory failure: a physiological study. Crit Care. 2020;24(1):654. doi: 10.1186/s13054-020-03344-0.
    1. Tu GW, Liao YX, Li QY, Dong H, Yang LY, Zhang XY, et al. Prone positioning in high-flow nasal cannula for COVID-19 patients with severe hypoxemia: a pilot study. Ann Transl Med. 2020;8(9):598. doi: 10.21037/atm-20-3005.
    1. Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care. 2020;24(1):28. doi: 10.1186/s13054-020-2738-5.
    1. Despres C, Brunin Y, Berthier F, Pili-Floury S, Besch G. Prone positioning combined with high-flow nasal or conventional oxygen therapy in severe Covid-19 patients. Crit Care. 2020;24(1):256. doi: 10.1186/s13054-020-03001-6.
    1. Riera J, Perez P, Cortes J, Roca O, Masclans JR, Rello J. Effect of high-flow nasal cannula and body position on end-expiratory lung volume: a cohort study using electrical impedance tomography. Respir Care. 2013;58(4):589–596. doi: 10.4187/respcare.02086.
    1. Chiumello D, Chiodaroli E, Coppola S, Cappio Borlino S, Granata C, Pitimada M, et al. Awake prone position reduces work of breathing in patients with COVID-19 ARDS supported by CPAP. Ann Intensive Care. 2021;11(1):179. doi: 10.1186/s13613-021-00967-6.
    1. Tatkov S, Rees M, Gulley A, van den Heuij LG, Nilius G. Asymmetrical nasal high flow ventilation improves clearance of CO2 from the anatomical dead space and increases positive airway pressure. J Appl Physiol. 2023;134(2):365–377. doi: 10.1152/japplphysiol.00692.2022.
    1. Vieira F, Rodrigues A, Schreiber A, Brault C, Subira C, Brochard L, editors. Comparing physiological effects of standard vs asymmetrical high-flow nasal cannula: a bench study. Canadian Critical Care Forum; 2022 2022; Toronto, Canada.
    1. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520–531. doi: 10.1164/rccm.201312-2193CI.
    1. Mauri T, Alban L, Turrini C, Cambiaghi B, Carlesso E, Taccone P, et al. Optimum support by high-flow nasal cannula in acute hypoxemic respiratory failure: effects of increasing flow rates. Intensive Care Med. 2017;43(10):1453–1463. doi: 10.1007/s00134-017-4890-1.
    1. Johnson MJ, Close L, Gillon SC, Molassiotis A, Lee PH, Farquhar MC, et al. Use of the modified Borg scale and numerical rating scale to measure chronic breathlessness: a pooled data analysis. Eur Respir J. 2016;47(6):1861–1864. doi: 10.1183/13993003.02089-2015.
    1. Pinkham MI, Domanski U, Franke KJ, Hartmann J, Schroeder M, Williams T, et al. Effect of respiratory rate and size of cannula on pressure and dead-space clearance during nasal high flow in patients with COPD and acute respiratory failure. J Appl Physiol. 2022;132(2):553–63. doi: 10.1152/japplphysiol.00769.2021.
    1. Vieira F, Bezerra FS, Coudroy R, Schreiber A, Telias I, Dubo S, et al. High-flow nasal cannula compared with continuous positive airway pressure: a bench and physiological study. J Appl Physiol. 2022;132:1580–1590. doi: 10.1152/japplphysiol.00416.2021.
    1. Mauri T, Spinelli E, Pavlovsky B, Grieco DL, Ottaviani I, Basile MC, et al. Respiratory drive in patients with sepsis and septic shock: modulation by high-flow nasal cannula. Anesthesiology. 2021;135(6):1066–1075. doi: 10.1097/ALN.0000000000004010.
    1. Saillard C, Lambert J, Tramier M, Chow-Chine L, Bisbal M, Servan L, et al. High-flow nasal cannula failure in critically ill cancer patients with acute respiratory failure: moving from avoiding intubation to avoiding delayed intubation. PLoS ONE. 2022;17(6):e0270138. doi: 10.1371/journal.pone.0270138.
    1. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201(1):20–32. doi: 10.1164/rccm.201903-0596SO.
    1. Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46(4):606–618. doi: 10.1007/s00134-020-05942-6.

Source: PubMed

3
Abonnieren