Device-based Therapy for Hypertension

Fu L Ng, Manish Saxena, Felix Mahfoud, Atul Pathak, Melvin D Lobo, Fu L Ng, Manish Saxena, Felix Mahfoud, Atul Pathak, Melvin D Lobo

Abstract

Hypertension continues to be a major contributor to global morbidity and mortality, fuelled by an abundance of patients with uncontrolled blood pressure despite the multitude of pharmacological options available. This may occur as a consequence of true resistant hypertension, through an inability to tolerate current pharmacological therapies, or non-adherence to antihypertensive medication. In recent years, there has been a rapid expansion of device-based therapies proposed as novel non-pharmacological approaches to treating resistant hypertension. In this review, we discuss seven novel devices-renal nerve denervation, baroreflex activation therapy, carotid body ablation, central iliac arteriovenous anastomosis, deep brain stimulation, median nerve stimulation, and vagal nerve stimulation. We highlight how the devices differ, the varying degrees of evidence available to date and upcoming trials. This review also considers the possible factors that may enable appropriate device selection for different hypertension phenotypes.

Keywords: Arteriovenous anastomosis; Baroreflex activation; Carotid sinus stimulation; Coupler; Hypertension; Interventional devices; Renal denervation.

References

    1. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117(25):e510–26. doi: 10.1161/CIRCULATIONAHA.108.189141.
    1. Vega J, Bisognano JD. The prevalence, incidence, prognosis, and associated conditions of resistant hypertension. Semin Nephrol. 2014;34(3):247–56. doi: 10.1016/j.semnephrol.2014.04.002.
    1. Mahfoud F, Böhm M, Azizi M, Pathak A, Durand Zaleski I, Ewen S, et al. Proceedings from the European clinical consensus conference for renal denervation: considerations on future clinical trial design. Eur Heart J. 2015;36(33):2219–27. doi: 10.1093/eurheartj/ehv192.
    1. Hameed MA, Tebbit L, Jacques N, Thomas M, Dasgupta I. Non-adherence to antihypertensive medication is very common among resistant hypertensives: results of a directly observed therapy clinic. J Hum Hypertens. 2016;30(2):83–9. doi: 10.1038/jhh.2015.38.
    1. Jones JK, Gorkin L, Lian JF, Staffa JA, Fletcher AP. Discontinuation of and changes in treatment after start of new courses of antihypertensive drugs: a study of a United Kingdom population. BMJ. 1995;311(7000):293–5. doi: 10.1136/bmj.311.7000.293.
    1. Strauch B, Petrák O, Zelinka T, Rosa J, Somlóová Z, Indra T, et al. Precise assessment of noncompliance with the antihypertensive therapy in patients with resistant hypertension using toxicological serum analysis. J Hypertens. 2013;31(12):2455–61. doi: 10.1097/HJH.0b013e3283652c61.
    1. Patel HC, Hayward C, Vassiliou V, Patel K, Howard JP, Di Mario C. Renal denervation for the management of resistant hypertension. Integr Blood Press Control. 2015;8:57–69. doi: 10.2147/IBPC.S65632.
    1. Kapil V, Jain AK, Lobo MD. Renal sympathetic denervation—a review of applications in current practice. Interv Cardiol Rev. 2014;9(1):54–61.
    1. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(6 Pt 2):99S–105S. doi: 10.1016/S0895-7061(00)00225-9.
    1. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71(3):659–82.
    1. Steigerwald K, Titova A, Malle C, Kennerknecht E, Jilek C, Hausleiter J, et al. Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens. 2012;30(11):2230–9. doi: 10.1097/HJH.0b013e32835821e5.
    1. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. doi: 10.1016/S0140-6736(09)60566-3.
    1. Symplicity HTN-2 Investigators. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. doi: 10.1016/S0140-6736(10)62039-9.
    1. Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9. doi: 10.1093/eurheartj/ehu209.
    1. Persu A, Jin Y, Fadl Elmula FE, Renkin J, Høieggen A, Kjeldsen SE, et al. Renal denervation in treatment-resistant hypertension: a reappraisal. Curr Opin Pharmacol. 2015;21:48–52. doi: 10.1016/j.coph.2014.12.013.
    1. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. SYMPLICITY HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. doi: 10.1056/NEJMoa1402670.
    1. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(4):219–27. doi: 10.1093/eurheartj/ehu441.
    1. Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385(9981):1957–65. doi: 10.1016/S0140-6736(14)61942-5.
    1. Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, et al. First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension. 2015;65(4):766–74. doi: 10.1161/HYPERTENSIONAHA.114.05010.
    1. Kaiser L, Beister T, Wiese A, von Wedel J, Meincke F, Kreidel F, et al. Results of the ALSTER BP real-world registry on renal denervation employing the Symplicity system. EuroIntervention. 2014;10(1):157–65. doi: 10.4244/EIJV10I1A24.
    1. Vogel B, Kirchberger M, Zeier M, Stoll F, Meder B, Saure D, et al. Renal sympathetic denervation therapy in the real world: results from the Heidelberg registry. Clin Res Cardiol. 2014;103(2):117–24. doi: 10.1007/s00392-013-0627-5.
    1. Sharp AS, Davies JE, Lobo MD, Bent CL, Mark PB, Burchell AE, et al. Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol. 2016;22.
    1. Templin C, Jaguszewski M, Ghadri JR, Sudano I, Gaehwiler R, Hellermann JP, et al. Vascular lesions induced by renal nerve ablation as assessed by optical coherence tomography: pre- and post-procedural comparison with the Simplicity catheter system and the EnligHTN multi-electrode renal denervation catheter. Eur Heart J. 2013;34(28):2141–8. doi: 10.1093/eurheartj/eht141.
    1. Karanasos A, Van Mieghem N, Bergmann MW, Hartman E, Ligthart J, van der Heide E, et al. Multimodality intra-arterial imaging assessment of the vasculart induced by balloon-based and nonballoon-based renal denervation systems. Circ Cardiovasc Interv. 2015;8(7) doi: 10.1161/CIRCINTERVENTIONS.115.002474.
    1. Lobo MD, de Belder MA, Cleveland T, Collier D, Dasgupta I, Deanfield J, et al. Joint UK societies’ 2014 consensus statement on renal denervation for resistant hypertension. Heart. 2015;101(1):10–6. doi: 10.1136/heartjnl-2014-307029.
    1. White WB, Galis ZS, Henegar J, Kandzari DE, Victor R, Sica D, et al. Renal denervation therapy for hypertension: pathways for moving development forward. J Am Soc Hypertens. 2015;9(5):341–50. doi: 10.1016/j.jash.2015.02.012.
    1. Fischell TA, Ebner A, Gallo S, Ikeno F, Minarsch L, Vega F, et al. Transcatheter alcohol-mediated perivascular renal denervation with the peregrine system: first-in-human experience. JACC Cardiovasc Interv. 2016;9(6):589–98. doi: 10.1016/j.jcin.2015.11.041.
    1. Heuser RR, Mhatre AU, Buelna TJ, Berci WL, Hubbard BS. A novel non-vascular system to treat resistant hypertension. EuroIntervention. 2013;9(1):135–9. doi: 10.4244/EIJV9I1A19.
    1. Victor RG. Carotid baroreflex activation therapy for resistant hypertension. Nat Rev Cardiol. 2015;12(8):451–63. doi: 10.1038/nrcardio.2015.96.
    1. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–14. doi: 10.1161/CIRCRESAHA.114.302524.
    1. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8. doi: 10.1016/j.jacc.2010.03.089.
    1. Wustmann K, Kucera JP, Scheffers I, Mohaupt M, Kroon AA, de Leeuw PW, et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension. 2009;54(3):530–6. doi: 10.1161/HYPERTENSIONAHA.109.134023.
    1. Bisognano JD, Bakris G, Nadim MK, Sanchez L, Kroon AA, Schafer J, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol. 2011;58(7):765–73. doi: 10.1016/j.jacc.2011.06.008.
    1. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8. doi: 10.1016/j.jash.2012.01.003.
    1. de Leeuw PW, Alnima T, Lovett E, Sica D, Bisognano J, Haller H, et al. Bilateral or unilateral stimulation for baroreflex activation therapy. Hypertension. 2015;65(1):187–92. doi: 10.1161/HYPERTENSIONAHA.114.04492.
    1. Gassler JP, Bisognano JD. Baroreflex activation therapy in hypertension. J Hum Hypertens. 2014;28(8):469–74. doi: 10.1038/jhh.2013.139.
    1. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6. doi: 10.1016/j.jash.2012.04.004.
    1. Wallbach M, Lehnig LY, Schroer C, Hasenfuss G, Müller GA, Wachter R, et al. Impact of baroreflex activation therapy on renal function—a pilot study. Am J Nephrol. 2014;40(4):371–80. doi: 10.1159/000368723.
    1. Abraham WT, Zile MR, Weaver FA, Butter C, Ducharme A, Halbach M, et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015;3(6):487–96. doi: 10.1016/j.jchf.2015.02.006.
    1. Paton JF, Sobotka PA, Fudim M, Engelman ZJ, Hart EC, McBryde FD, et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension. 2013;61(1):5–13. doi: 10.1161/HYPERTENSIONAHA.111.00064.
    1. Winter B, Whipp BJ. Immediate effects of bilateral carotid body resection on total respiratory resistance and compliance in humans. Adv Exp Med Biol. 2004;551:15–21. doi: 10.1007/0-387-27023-X_3.
    1. Ratcliffe L, Hart E, Patel NK, Szydler A, Chrostowska M, Wolf J, et al. Unilateral carotid body resection as an anti-hypertensive strategy: a proof of principle study in resistant hypertensive patients. J Hum Hypertens. 2015;29(10):625.
    1. Foran JP, Jain AK, Casserly IP, Kandzari DE, Rocha-Singh KJ, Witkowski A, et al. The ROX coupler: creation of a fixed iliac arteriovenous anastomosis for the treatment of uncontrolled systemic arterial hypertension, exploiting the physical properties of the arterial vasculature. Catheter Cardiovasc Interv. 2015;85(5):880–6. doi: 10.1002/ccd.25707.
    1. Burchell AE, Lobo MD, Sulke N, Sobotka PA, Paton JF. Arteriovenous anastomosis: is this the way to control hypertension? Hypertension. 2014;64(1):6–12. doi: 10.1161/HYPERTENSIONAHA.114.02925.
    1. Kapil V, Sobotka PA, Saxena M, Mathur A, Knight C, Dolan E, et al. Central iliac arteriovenous anastomosis for hypertension: targeting mechanical aspects of the circulation. Curr Hypertens Rep. 2015;17(9):585. doi: 10.1007/s11906-015-0585-6.
    1. Faul JL, Galindo J, Posadas-Valay R, Elizondo-Riojas G, Martinez A, Cooper CB. An arteriovenous fistula increases exercise capacity in patients with COPD. Chest. 2010;138(1):52–58. doi: 10.1378/chest.09-2381.
    1. Faul J, et al. Creation of an iliac arteriovenous shunt lowers blood pressure in chronic obstructive pulmonary disease patients with hypertension. J Vasc Surg. 2014;59(4):1078–83. doi: 10.1016/j.jvs.2013.10.069.
    1. Lobo MD, Sobotka PA, Stanton A, Cockcroft JR, Sulke N, Dolan E, et al. Central arteriovenous anastomosis for the treatment of patients with uncontrolled hypertension (the ROX CONTROL HTN study): a randomised controlled trial. Lancet. 2015;385(9978):1634–41. doi: 10.1016/S0140-6736(14)62053-5.
    1. Brier TJ, Jain AK, Lobo MD. Central arteriovenous anastomosis for hypertension: it is not all about sympathomodulation. Future Cardiol. 2015;11(5):503–6. doi: 10.2217/fca.15.34.
    1. Lovick TA. Ventrolateral medullary lesions block the antinociceptive and cardiovascular responses elicited by stimulating the dorsal periaqueductal grey matter in rats. Pain. 1985;21(3):241–52. doi: 10.1016/0304-3959(85)90088-0.
    1. Carrive P, Bandler R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res. 1991;541(2):206–15. doi: 10.1016/0006-8993(91)91020-2.
    1. Patel NK, Javed S, Khan S, Papouchado M, Malizia AL, Pickering AE, et al. Deep brain stimulation relieves refractory hypertension. Neurology. 2011;76(4):405–7. doi: 10.1212/WNL.0b013e3182088108.
    1. Carter HH, Dawson EA, Cable NT, Basnayake S, Aziz TZ, Green AL, et al. Deep brain stimulation of the periaqueductal grey induces vasodilation in humans. Hypertension. 2011;57(5):e24–5. doi: 10.1161/HYPERTENSIONAHA.111.170183.
    1. Sverrisdóttir YB, Green AL, Aziz TZ, Bahuri NF, Hyam J, Basnayake SD, et al. Differentiated baroreflex modulation of sympathetic nerve activity during deep brain stimulation in humans. Hypertension. 2014;63(5):1000–10. doi: 10.1161/HYPERTENSIONAHA.113.02970.
    1. Li M, Tjen-A-Looi SC, Guo ZL, Longhurst JC. Electroacupuncture modulation of reflex hypertension in rats: role of cholecystokinin octapeptide. Am J Physiol Regul Integr Comp Physiol. 2013;305(4):R404–13. doi: 10.1152/ajpregu.00196.2013.
    1. Li P, Tjen-A-Looi SC, Cheng L, Liu D, Painovich J, Vinjamury S, et al. Long-lasting reduction of blood pressure by electroacupuncture in patients with hypertension: randomized controlled trial. Med Acupunct. 2015;27(4):253–266. doi: 10.1089/acu.2015.1106.
    1. Annoni EM, Xie X, Lee SW, Libbus I, KenKnight BH, Osborn JW, et al. Intermittent electrical stimulation of the right cervical vagus nerve in salt-sensitive hypertensive rats: effects on blood pressure, arrhythmias, and ventricular electrophysiology. Physiol Rep. 2015;3(8) doi: 10.14814/phy2.12476.
    1. Plachta DT, Gierthmuehlen M, Cota O, Espinosa N, Boeser F, Herrera TC, et al. Blood pressure control with selective vagal nerve stimulation and minimal side effects. J Neural Eng. 2014;11(3):036011. doi: 10.1088/1741-2560/11/3/036011.
    1. Gierthmuehlen M, Plachta DT. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication. Hypertens Res. 2016;39(2):79–87. doi: 10.1038/hr.2015.122.
    1. Gierthmuehlen M, Stieglitz T, Zentner J, Plachta DT. Haemodynamic responses to selective vagal nerve stimulation under enalapril medication in rats. PLoS One. 2016;11(1) doi: 10.1371/journal.pone.0147045.
    1. Mirkovic T, Knezevic I, Radan I, Rozman J, Gersak B, Podbregar M. Frequency dependent effect of selective biphasic left vagus nerve stimulation on heart rate and arterial pressure. Signa Vitae. 2012;7(2):63–68.
    1. Esler M, Jennings G, Korner P, Willett I, Dudley F, Hasking G, et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension. 1988;11(1):3–20. doi: 10.1161/01.HYP.11.1.3.
    1. Persu A, Jin Y, Azizi M, Baelen M, Völz S, Elvan A, et al. Blood pressure changes after renal denervation at 10 European expert centers. J Hum Hypertens. 2014;28(3):150–6. doi: 10.1038/jhh.2013.88.
    1. Ewen S, Ukena C, Linz D, Kindermann I, Cremers B, Laufs U, et al. Reduced effect of percutaneous renal denervation on blood pressure in patients with isolated systolic hypertension. Hypertension. 2015;65(1):193–9. doi: 10.1161/HYPERTENSIONAHA.114.04336.

Source: PubMed

3
Abonnieren