Lifestyle habits and gastric cancer in an East Asian population: a Mendelian randomization study

Yuegui Tan, Zhao Wei, Kun Liu, Yuzhen Qin, Wenqi Hui, Yuegui Tan, Zhao Wei, Kun Liu, Yuzhen Qin, Wenqi Hui

Abstract

Background: Epidemiological evidence suggests an association between lifestyle habits (smoking, alcohol consumption, tea, coffee intake, etc.) and gastric cancer (GC). However, the causal relationship remains uncertain. Therefore, the purpose of this study was to ascertain whether there is a causal connection between them.

Methods: Two-sample Mendelian randomization (MR) analysis was performed using the publicly available Genome Wide Association Study summary datasets using six methods: inverse variance weighting (IVW), weighted median, MR using a Robust Adjusted Profile Score (MR.Raps), MR using a Robust Adjusted Profile Score (MR-PRESSO), Radial regression of MR, and Causal Analysis Using Summary Effect Estimates (CAUSE). A sensitivity analysis was conducted to assess the robustness of the results.

Results: In an East Asian population, we found that increased tea intake reduced the risk of GC [odds ratio (OR)= 0.90, 95% confidence interval (CI)= 0.82-0.99, P = 0.037] while there was a positive association between smoking and GC (OR = 1.58, 95% CI = 1.04-2.39, P = 0.032). No causal relationship between alcohol and coffee intake and GC. Sensitivity analyses demonstrated the robustness of these causal associations.

Conclusions: Our study suggests that tea intake may reduce the risk of GC, for which smoking is a potential risk factor. Nevertheless, a larger and more diverse sample size is needed for further validation.

Keywords: Mendelian randomization; alcohol consumption; coffee intake; gastric cancer; smoking; tea intake.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Tan, Wei, Liu, Qin and Hui.

Figures

Figure 1
Figure 1
Causal effect of Lifestyle Factors in European on GC. (A) Smoking and GC; (B) Alcohol intake and GC; (C) Tea intake and GC; (D) Coffee intake and GC; The green point means the effect (OR). GC, Gastric cancer.
Figure 2
Figure 2
Causal effect of Lifestyle Factors in Eastern Asia on GC. (A) Smoking and GC; (B) Alcohol intake and GC; (C) Tea intake and GC; (D) Coffee intake and GC; The green point means the effect (OR). GC, Gastric cancer.

References

    1. Pan C, Deng D, Wei T, Wu Z, Zhang B, Yuan Q, et al. . Metabolomics study identified bile acids as potential biomarkers for gastric cancer: A case control study. Front endocrinol (2022) 13:1039786. doi: 10.3389/fendo.2022.1039786
    1. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet (London England) (2020) 396(10251):635–48. doi: 10.1016/S0140-6736(20)31288-5
    1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660
    1. Balakrishnan M, George R, Sharma A, Graham DY. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep (2017) 19(8):36. doi: 10.1007/s11894-017-0575-8
    1. Park JY, Herrero R. Recent progress in gastric cancer prevention. Best Pract Res Clin Gastroenterol (2021) 50-51:101733. doi: 10.1016/j.bpg.2021.101733
    1. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad gastroenterol (2019) 14(1):26–38. doi: 10.5114/pg.2018.80001
    1. González CA, Sala N, Rokkas T. Gastric cancer: epidemiologic aspects. Helicobacter (2013) 18 Suppl 1:34–8. doi: 10.1111/hel.12082
    1. Yu S, Chen Z, Cheng J, Shi X, Liu J, Zhong P, et al. . Case-control study on CYP4B1 gene polymorphism and susceptibility to gastric cancer in the chinese Han population. BMC Med Genomics (2022) 15(1):223. doi: 10.1186/s12920-022-01367-w
    1. Clinton SK, Giovannucci EL, Hursting SD. The world cancer research fund/american institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr (2020) 150(4):663–71. doi: 10.1093/jn/nxz268
    1. Poorolajal J, Moradi L, Mohammadi Y, Cheraghi Z, Gohari-Ensaf F. Risk factors for stomach cancer: a systematic review and meta-analysis. Epidemiol Health (2020) 42:e2020004. doi: 10.4178/epih.e2020004
    1. Fang X, Wei J, He X, An P, Wang H, Jiang L, et al. . Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer (Oxford England: 1990) (2015) 51(18):2820–32. doi: 10.1016/j.ejca.2015.09.010
    1. Parra-Lara LG, Mendoza-Urbano DM, Bravo JC, Salamanca CH, Zambrano ÁR. Coffee consumption and its inverse relationship with gastric cancer: an ecological study. Nutrients (2020) 12(10):3028. doi: 10.3390/nu12103028
    1. Karagulle M, Fidan E, Kavgaci H, Ozdemir F. The effects of environmental and dietary factors on the development of gastric cancer. J BUON (2014) 19(4):1076–82.
    1. Martimianaki G, Alicandro G, Pelucchi C, Bonzi R, Rota M, Hu J, et al. . Tea consumption and gastric cancer: a pooled analysis from the Stomach cancer Pooling (StoP) Project consortium. Br J cancer (2022) 127(4):726–34. doi: 10.1038/s41416-022-01856-w
    1. Sheerah H, Keyang L, Eshak ES, Cui R, Shirai K, Muraki I, et al. . Association of tea consumption and the risk of gastric cancer in Japanese adults: the Japan Collaborative Cohort Study. BMJ Open (2020) 10(10):e038243. doi: 10.1136/bmjopen-2020-038243
    1. Alicandro G, Tavani A, La Vecchia C. Coffee and cancer risk: a summary overview. Eur J Cancer Prev (2017) 26(5):424–32. doi: 10.1097/CEJ.0000000000000341
    1. Smith GD, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol (2003) 32(1):1–22. doi: 10.1093/ije/dyg070
    1. Fu L, Wang Y, Hu YQ. Causal effects of B vitamins and homocysteine on obesity and musculoskeletal diseases: A Mendelian randomization study. Front Nutr (2022) 9:1048122. doi: 10.3389/fnut.2022.1048122
    1. Birney E. Mendelian randomization. Cold Spring Harbor Perspect Med (2022) 12(4):a041302. doi: 10.1101/cshperspect.a041302
    1. Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, et al. . Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat Genet (2020) 52(7):669–79. doi: 10.1038/s41588-020-0640-3
    1. Chen S, Luo X, Zhao J, Liang Z, Gu J. Exploring the causality between ankylosing spondylitis and atrial fibrillation: A two-sample Mendelian randomization study. Front Genet (2022) 13:951893. doi: 10.3389/fgene.2022.951893
    1. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. . PhenoScanner: a database of human genotype-phenotype associations. Bioinf (Oxford England) (2016) 32(20):3207–9. doi: 10.1093/bioinformatics/btw373
    1. Wang W, Zhang L, Cao W, Xia K, Huo J, Huang T, et al. . Systematic screening of associations between medication use and risk of neurodegenerative diseases using a mendelian randomization approach. Biomedicines (2023) 11(7):1930. doi: 10.3390/biomedicines11071930
    1. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PloS Genet (2017) 13(11):e1007081. doi: 10.1371/journal.pgen.1007081
    1. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol (2016) 40(4):304–14. doi: 10.1002/gepi.21965
    1. Freuer D, Meisinger C, Linseisen J. Causal relationship between dietary macronutrient composition and anthropometric measures: A bidirectional two-sample Mendelian randomization analysis. Clin Nutr (Edinburgh Scotland) (2021) 40(6):4120–31. doi: 10.1016/j.clnu.2021.01.047
    1. Wang Q, Wang R, Chen C, Feng Y, Ye Z, Zhan M, et al. . Educational attainment and endometrial cancer: A Mendelian randomization study. Front Genet (2022) 13:993731. doi: 10.3389/fgene.2022.993731
    1. Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. . Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. Int J Epidemiol (2018) 47(4):1264–78. doi: 10.1093/ije/dyy101
    1. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol (2015) 44(2):512–25. doi: 10.1093/ije/dyv080
    1. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. . Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet (2016) 48(5):481–7. doi: 10.1038/ng.3538
    1. Xu Q, Chen C, You R, Ni L, Chen S, Peng B. Causal association between major depressive disorder and coronary heart disease: a two-sample bidirectional mendelian randomization study. BMC Med Genomics (2023) 16(1):183. doi: 10.1186/s12920-023-01625-5
    1. Wang Q, Liu F, Tuo Y, Ma L, Feng X. Associations between obesity, smoking behaviors, reproductive traits and spontaneous abortion: a univariable and multivariable Mendelian randomization study. Front endocrinol (2023) 14:1193995. doi: 10.3389/fendo.2023.1193995
    1. Zhao Q, Chen Y, Wang J, Small DS. Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization. Int J Epidemiol (2019) 48(5):1478–92. doi: 10.1093/ije/dyz142
    1. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol (2017) 32(5):377–89. doi: 10.1007/s10654-017-0255-x
    1. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. . The MR-Base platform supports systematic causal inference across the human phenome. eLife (2018) 7:e34408. doi: 10.7554/eLife.34408
    1. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet (2018) 50(5):693–8. doi: 10.1038/s41588-018-0099-7
    1. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet (2020) 52(7):740–7. doi: 10.1038/s41588-020-0631-4
    1. Pan KF, Zhang L, Gerhard M, Ma JL, Liu WD, Ulm K, et al. . A large randomised controlled intervention trial to prevent gastric cancer by eradication of Helicobacter pylori in Linqu County, China: baseline results and factors affecting the eradication. Gut (2016) 65(1):9–18. doi: 10.1136/gutjnl-2015-309197
    1. Moy KA, Fan Y, Wang R, Gao YT, Yu MC, Yuan JM. Alcohol and tobacco use in relation to gastric cancer: a prospective study of men in Shanghai, China. Cancer epidemiol Biomarkers prevention: Publ Am Assoc Cancer Res cosponsored by Am Soc Prev Oncol (2010) 19(9):2287–97. doi: 10.1158/1055-9965.EPI-10-0362
    1. Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg Oncol Clinics North America (2002) 11(2):235–56. doi: 10.1016/S1055-3207(02)00002-9
    1. Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, et al. . A review of human carcinogens–Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol (2009) 10(11):1033–4. doi: 10.1016/S1470-2045(09)70326-2
    1. Dyke GW, Craven JL, Hall R, Garner RC. Smoking-related DNA adducts in human gastric cancers. Int J cancer (1992) 52(6):847–50. doi: 10.1002/ijc.2910520602
    1. Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene (2002) 21(48):7435–51. doi: 10.1038/sj.onc.1205803
    1. Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, et al. . Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. Jama (2004) 291(2):187–94. doi: 10.1001/jama.291.2.187
    1. Jarosz M, Dzieniszewski J, Dabrowska-Ufniarz E, Wartanowicz M, Ziemlanski S. Tobacco smoking and vitamin C concentration in gastric juice in healthy subjects and patients with Helicobacter pylori infection. Eur J Cancer Prev (2000) 9(6):423–8. doi: 10.1097/00008469-200012000-00008
    1. Ma JJ, Hou DQ, Zhang QB, Korsten MA. Reversal of the gastric effects of nicotine by nitric oxide donor treatment. Digestion (2001) 63(2):102–7. doi: 10.1159/000051877
    1. Müller-Lissner SA. Bile reflux is increased in cigarette smokers. Gastroenterology (1986) 90(5 Pt 1):1205–9. doi: 10.1016/0016-5085(86)90386-0
    1. Nakamura M, Haruma K, Kamada T, Mihara M, Yoshihara M, Sumioka M, et al. . Cigarette smoking promotes atrophic gastritis in Helicobacter pylori-positive subjects. Digest Dis Sci (2002) 47(3):675–81. doi: 10.1023/A:1017901110580
    1. Bag A, Bag N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J Natural sci biol Med (2018) 9(1):2–5. doi: 10.4103/jnsbm.JNSBM_46_17
    1. Sasazuki S, Inoue M, Miura T, Iwasaki M, Tsugane S. Plasma tea polyphenols and gastric cancer risk: a case-control study nested in a large population-based prospective study in Japan. Cancer epidemiol Biomarkers prevention: Publ Am Assoc Cancer Res cosponsored by Am Soc Prev Oncol (2008) 17(2):343–51. doi: 10.1158/1055-9965.EPI-07-0428
    1. Lambert JD. Does tea prevent cancer? Evidence from laboratory and human intervention studies. Am J Clin Nutr (2013) 98(6 Suppl):1667s–75s. doi: 10.3945/ajcn.113.059352
    1. Neveu V, Perez-Jiménez J, Vos F, Crespy V, du Chaffaut L, Mennen L, et al. . Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database: J Biol Database curation (2010) 2010:bap024. doi: 10.1093/database/bap024
    1. Wang PL, Xiao FT, Gong BC, Liu FN. Alcohol drinking and gastric cancer risk: a meta-analysis of observational studies. Oncotarget (2017) 8(58):99013–23. doi: 10.18632/oncotarget.20918
    1. Rota M, Pelucchi C, Bertuccio P, Matsuo K, Zhang ZF, Ito H, et al. . Alcohol consumption and gastric cancer risk-A pooled analysis within the StoP project consortium. Int J cancer (2017) 141(10):1950–62. doi: 10.1002/ijc.30891
    1. Li Y, Eshak ES, Shirai K, Liu K, Dong JY, Iso H, et al. . Alcohol consumption and risk of gastric cancer: the Japan collaborative cohort study. J Epidemiol (2021) 31(1):30–6. doi: 10.2188/jea.JE20190304
    1. Xie F, Wang D, Huang Z, Guo Y. Coffee consumption and risk of gastric cancer: a large updated meta-analysis of prospective studies. Nutrients (2014) 6(9):3734–46. doi: 10.3390/nu6093734

Source: PubMed

3
Abonnieren