Mechanistic investigations of diabetic ocular surface diseases

Qingjun Zhou, Lingling Yang, Qun Wang, Ya Li, Chao Wei, Lixin Xie, Qingjun Zhou, Lingling Yang, Qun Wang, Ya Li, Chao Wei, Lixin Xie

Abstract

With the global prevalence of diabetes mellitus over recent decades, more patients suffered from various diabetic complications, including diabetic ocular surface diseases that may seriously affect the quality of life and even vision sight. The major diabetic ocular surface diseases include diabetic keratopathy and dry eye. Diabetic keratopathy is characterized with the delayed corneal epithelial wound healing, reduced corneal nerve density, decreased corneal sensation and feeling of burning or dryness. Diabetic dry eye is manifested as the reduction of tear secretion accompanied with the ocular discomfort. The early clinical symptoms include dry eye and corneal nerve degeneration, suggesting the early diagnosis should be focused on the examination of confocal microscopy and dry eye symptoms. The pathogenesis of diabetic keratopathy involves the accumulation of advanced glycation end-products, impaired neurotrophic innervations and limbal stem cell function, and dysregulated growth factor signaling, and inflammation alterations. Diabetic dry eye may be associated with the abnormal mitochondrial metabolism of lacrimal gland caused by the overactivation of sympathetic nervous system. Considering the important roles of the dense innervations in the homeostatic maintenance of cornea and lacrimal gland, further studies on the neuroepithelial and neuroimmune interactions will reveal the predominant pathogenic mechanisms and develop the targeting intervention strategies of diabetic ocular surface complications.

Keywords: diabetic keratopathy; dry eye; epitheliopathy; lacrimal gland; neuropathy; pathogenesis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Zhou, Yang, Wang, Li, Wei and Xie.

Figures

Figure 1
Figure 1
The working model for the low-grade chronic inflammation contributing to diabetic keratopathy. In diabetic mellitus, numerous diabetes-associated danger molecules (such as hyperglycemia, AGEs and NETs), persistently activate NF-κB signaling and NLRP3 inflammasome, resulting in chronic inflammation and pyroptosis, which ultimately postpones corneal epithelial wound healing and impairs re-generation.
Figure 2
Figure 2
SP-NK-1R signaling regulates diabetic corneal epithelial wound healing. (A) In the unwounded corneal epithelium, the elevation of p-Akt, p-EGFR, and Sirt1 level by SP application was attenuated in NK-1 receptor antagonist L-733,060-injected SP-treated diabetic mice. (B) L-733,060 injection reversed the promotion of SP on diabetic corneal epithelial wound healing. (C) L-733,060 treatment reversed the promotion of SP on p-Akt activation and proliferation in the regenerated corneal epithelium. ns, no significance; *p< 0.05. (ref 126).
Figure 3
Figure 3
CNTF promotes corneal epithelial wound healing in diabetic mice. (A) CNTF is decreased in diabetic corneas both in mRNA and in protein level. (B, C) Subconjunctival injection of 50 ng CNTF significantly promotes the corneal epithelial wound healign in diabetic mice. (D) The expression of ΔNp63 and Ki-67 in the regenerating corneal epithelium is upregulated after CNTF treatment. (E) CNTF activated Stat3 signaling in diabetic wounded corneas. "*p< 0.05. (ref 215).
Figure 4
Figure 4
Proposed mechanism of endothelium dysfunction in the diabetic cornea. Endothelial cells from diabetic mice exhibit high levels of ER stress and ER stress appears before morphological changes of the endothelium. Activation of ER stress can promote corneal endothelial dysfunction by triggering mitochondrial dysfunction. Acute injuries, such as glaucoma, can lead to corneal edema and endothelial cell loss.
Figure 5
Figure 5
Mitochondrial dysfunction in diabetic lacrimal gland. Lacrimal gland cells from the diabetic mice after 16 weeks were evaluated with the seahorse XFp analyzer (ref. 267).

References

    1. Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of type 2 diabetes - global burden of disease and forecasted trends. J Epidemiol Glob Health (2020) 10(1):107–11. doi: 10.2991/jegh.k.191028.001
    1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. . Idf diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract (2018) 138:271–81. doi: 10.1016/j.diabres.2018.02.023
    1. Purushothaman I, Zagon IS, Sassani JW, McLaughlin PJ. Ocular surface complications in diabetes: The interrelationship between insulin and enkephalin. Biochem Pharmacol (2021) 192:114712. doi: 10.1016/j.bcp.2021.114712
    1. Yu FX, Lee PSY, Yang L, Gao N, Zhang Y, Ljubimov AV, et al. . The impact of sensory neuropathy and inflammation on epithelial wound healing in diabetic corneas. Prog Retin Eye Res (2022) 89:101039. doi: 10.1016/j.preteyeres.2021.101039
    1. Han SB, Yang HK, Hyon JY. Influence of diabetes mellitus on anterior segment of the eye. Clin Interv Aging (2019) 14:53–63. doi: 10.2147/CIA.S190713
    1. Sayin N, Kara N, Pekel G. Ocular complications of diabetes mellitus. World J Diabetes (2015) 6(1):92–108. doi: 10.4239/wjd.v6.i1.92
    1. Meek KM, Knupp C. Corneal structure and transparency. Prog Retin Eye Res (2015) 49:1–16. doi: 10.1016/j.preteyeres.2015.07.001
    1. Wilson SE, Mohan RR, Mohan RR, Ambrósio R, Jr., Hong J, Lee J. The corneal wound healing response: Cytokine-mediated interaction of the epithelium, stroma, and inflammatory cells. Prog Retin Eye Res (2001) 20(5):625–37. doi: 10.1016/s1350-9462(01)00008-8
    1. Veernala I, Jaffet J, Fried J, Mertsch S, Schrader S, Basu S, et al. . Lacrimal gland regeneration: The unmet challenges and promise for dry eye therapy. Ocular Surface (2022) 25:129–41. doi: 10.1016/j.jtos.2022.06.005
    1. Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: The role of gland dysfunction in dry eye disease. Ophthalmology (2017) 124(11s):S20–s6. doi: 10.1016/j.ophtha.2017.05.031
    1. Misra SL, Patel DV, McGhee CN, Pradhan M, Kilfoyle D, Braatvedt GD, et al. . Peripheral neuropathy and tear film dysfunction in type 1 diabetes mellitus. J Diabetes Res (2014) 2014:848659. doi: 10.1155/2014/848659
    1. Asiedu K, Dhanapalaratnam R, Krishnan AV, Kwai N, Poynten A, Markoulli M. Impact of peripheral and corneal neuropathy on markers of ocular surface discomfort in diabetic chronic kidney disease. Optom Vis Sci (2022) 99(11):807–16. doi: 10.1097/opx.0000000000001955
    1. Zhang X, Zhao L, Deng S, Sun X, Wang N. Dry eye syndrome in patients with diabetes mellitus: Prevalence, etiology, and clinical characteristics. J Ophthalmol (2016) 2016:8201053. doi: 10.1155/2016/8201053
    1. Priyadarsini S, Whelchel A, Nicholas S, Sharif R, Riaz K, Karamichos D. Diabetic keratopathy: Insights and challenges. Surv Ophthalmol (2020) 65(5):513–29. doi: 10.1016/j.survophthal.2020.02.005
    1. Lane JD, Krumholz DM, Sack RA, Morris C. Tear glucose dynamics in diabetes mellitus. Curr Eye Res (2006) 31(11):895–901. doi: 10.1080/02713680600976552
    1. Sen DK, Sarin GS. Tear glucose levels in normal people and in diabetic patients. Br J Ophthalmol (1980) 64(9):693–5. doi: 10.1136/bjo.64.9.693
    1. Zhu L, Titone R, Robertson DM. The impact of hyperglycemia on the corneal epithelium: Molecular mechanisms and insight. Ocular Surface (2019) 17(4):644–54. doi: 10.1016/j.jtos.2019.06.007
    1. Sady C, Khosrof S, Nagaraj R. Advanced maillard reaction and crosslinking of corneal collagen in diabetes. Biochem Biophys Res Commun (1995) 214(3):793–7. doi: 10.1006/bbrc.1995.2356
    1. Rehany U, Ishii Y, Lahav M, Rumelt S. Ultrastructural changes in corneas of diabetic patients: An electron-microscopy study. Cornea (2000) 19(4):534–8. doi: 10.1097/00003226-200007000-00026
    1. Saini JS, Khandalavla B. Corneal epithelial fragility in diabetes mellitus. Can J Ophthalmol (1995) 30(3):142–6.
    1. Quadrado MJ, Popper M, Morgado AM, Murta JN, Van Best JA. Diabetes and corneal cell densities in humans by in vivo confocal microscopy. Cornea (2006) 25(7):761–8. doi: 10.1097/01.ico.0000224635.49439.d1
    1. Yusufoğlu E, Güngör Kobat S, Keser S. Evaluation of central corneal epithelial thickness with anterior segment Oct in patients with type 2 diabetes mellitus. Int Ophthalmol (2022). doi: 10.1007/s10792-022-02384-5
    1. Meller D, Augustin AJ, Koch FH. A modified technique of impression cytology to study the fine structure of corneal epithelium. Ophthalmic Res (1996) 28(2):71–9. doi: 10.1159/000267877
    1. Wang F, Gao N, Yin J, Yu FS. Reduced innervation and delayed re-innervation after epithelial wounding in type 2 diabetic goto-kakizaki rats. Am J Pathol (2012) 181(6):2058–66. doi: 10.1016/j.ajpath.2012.08.029
    1. Frueh BE, Körner U, Böhnke M. Confocal microscopy of the cornea in patients with diabetes. Klin Monbl Augenheilkd (1995) 206(5):317–9. doi: 10.1055/s-2008-1035450
    1. Deák EA, Szalai E, Tóth N, Malik RA, Berta A, Csutak A. Longitudinal changes in corneal cell and nerve fiber morphology in young patients with type 1 diabetes with and without diabetic retinopathy: A 2-year follow-up study. Invest Ophthalmol Vis Sci (2019) 60(2):830–7. doi: 10.1167/iovs.18-24516
    1. Liu T, Sun DP, Li DF, Bi WJ, Xie LX. Observation and quantification of diabetic keratopathy in type 2 diabetes patients using in vivo laser confocal microscopy. Zhonghua Yan Ke Za Zhi (2020) 56(10):754–60. doi: 10.3760/cma.j.cn112142-20200108-00012
    1. Chang PY, Carrel H, Huang JS, Wang IJ, Hou YC, Chen WL, et al. . Decreased density of corneal basal epithelium and subbasal corneal nerve bundle changes in patients with diabetic retinopathy. Am J Ophthalmol (2006) 142(3):488–90. doi: 10.1016/j.ajo.2006.04.033
    1. Ishibashi F, Kawasaki A, Yamanaka E, Kosaka A, Uetake H. Morphometric features of corneal epithelial basal cells, and their relationship with corneal nerve pathology and clinical factors in patients with type 2 diabetes. J Diabetes Investig (2013) 4(5):492–501. doi: 10.1111/jdi.12083
    1. Rosenberg ME, Tervo TMT, Immonen IJ, Müller LJ, Grönhagen–Riska C, Vesaluoma MH. Corneal structure and sensitivity in type 1 diabetes mellitus. Invest Ophthalmol Vis Sci (2000) 41:2915–21. doi: 10.1016/s0002-9394(00)00839-4
    1. Cai D, Zhu M, Petroll WM, Koppaka V, Robertson DM. The impact of type 1 diabetes mellitus on corneal epithelial nerve morphology and the corneal epithelium. Am J Pathol (2014) 184(10):2662–70. doi: 10.1016/j.ajpath.2014.06.016
    1. Göbbels M, Spitznas M, Oldendoerp J. Impairment of corneal epithelial barrier function in diabetics. Graefes Arch Clin Exp Ophthalmol (1989) 227(2):142–4. doi: 10.1007/bf02169787
    1. Chang SW, Hsu HC, Hu FR, Chen MS. Corneal autofluorescence and epithelial barrier function in diabetic patients. Ophthalmic Res (1995) 27(2):74–9. doi: 10.1159/000267600
    1. Gekka M, Miyata K, Nagai Y, Nemoto S, Sameshima T, Tanabe T, et al. . Corneal epithelial barrier function in diabetic patients. Cornea (2004) 23(1):35–7. doi: 10.1097/00003226-200401000-00006
    1. Dan J, Zhou Q, Zhai H, Cheng J, Wan L, Ge C, et al. . Clinical analysis of fungal keratitis in patients with and without diabetes. PloS One (2018) 13(5):e0196741. doi: 10.1371/journal.pone.0196741
    1. Keay L, Edwards K, Stapleton F. Signs, symptoms, and comorbidities in contact lens-related microbial keratitis. Optom Vis Sci (2009) 86(7):803–9. doi: 10.1097/OPX.0b013e3181ae1b69
    1. Stapleton F, Carnt N. Contact lens-related microbial keratitis: How have epidemiology and genetics helped us with pathogenesis and prophylaxis. Eye (Lond) (2012) 26(2):185–93. doi: 10.1038/eye.2011.288
    1. Ting DSJ, Ho CS, Deshmukh R, Said DG, Dua HS. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye (Lond) (2021) 35(4):1084–101. doi: 10.1038/s41433-020-01339-3
    1. Wang B, Yang S, Zhai HL, Zhang YY, Cui CX, Wang JY, et al. . A comparative study of risk factors for corneal infection in diabetic and non-diabetic patients. Int J Ophthalmol (2018) 11(1):43–7. doi: 10.18240/ijo.2018.01.08
    1. Alfuraih S, Barbarino A, Ross C, Shamloo K, Jhanji V, Zhang M, et al. . Effect of high glucose on ocular surface epithelial cell barrier and tight junction proteins. Invest Ophthalmol Vis Sci (2020) 61(11):3. doi: 10.1167/iovs.61.11.3
    1. Semeraro F, Forbice E, Romano V, Angi M, Romano MR, Filippelli ME, et al. . Neurotrophic keratitis. Ophthalmologica (2014) 231(4):191–7. doi: 10.1159/000354380
    1. Skarbez K, Priestley Y, Hoepf M, Koevary SB. Comprehensive review of the effects of diabetes on ocular health. Expert Rev Ophthalmol (2010) 5(4):557–77. doi: 10.1586/eop.10.44
    1. Fraunfelder FW, Rich LF. Laser-assisted in situ keratomileusis complications in diabetes mellitus. Cornea (2002) 21(3):246–8. doi: 10.1097/00003226-200204000-00002
    1. Jabbur NS, Chicani CF, Kuo IC, O’Brien TP. Risk factors in interface epithelialization after laser in situ keratomileusis. J Refract Surg (2004) 20(4):343–8. doi: 10.3928/1081-597x-20040701-07
    1. Cobo-Soriano R, Beltrán J, Baviera J. Lasik outcomes in patients with underlying systemic contraindications: A preliminary study. Ophthalmology (2006) 113(7):1118. doi: 10.1016/j.ophtha.2006.02.023
    1. Halkiadakis I, Belfair N, Gimbel HV. Laser in situ keratomileusis in patients with diabetes. J Cataract Refract Surg (2005) 31(10):1895–8. doi: 10.1016/j.jcrs.2005.03.075
    1. Mohammadpour M. Lasik and systemic contraindications. Ophthalmology (2007) 114(5):1032–3. doi: 10.1016/j.ophtha.2007.02.009
    1. Sarici K, Petkovsek D, Martin A, Yuan A, Goshe JM, Srivastava SK, et al. . Corneal epithelial defects following vitreoretinal surgery: Incidence and outcomes from the discover study. Int J Ophthalmol (2022) 15(1):83–8. doi: 10.18240/ijo.2022.01.13
    1. Wang Y, Li D, Su W, Dai Y. Clinical features, risk factors, and therapy of epithelial keratitis after cataract surgery. J Ophthalmol (2021) 2021:6636228. doi: 10.1155/2021/6636228
    1. Yeung A, Dwarakanathan S. Diabetic keratopathy. Dis Mon (2021) 67(5):101135. doi: 10.1016/j.disamonth.2021.101135
    1. Patel DV, McGhee CN. Mapping of the normal human corneal Sub-basal nerve plexus by in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci (2005) 46(12):4485–8. doi: 10.1167/iovs.05-0794
    1. Müller LJ, Marfurt CF, Kruse F, Tervo TM. Corneal nerves: Structure, contents and function. Exp Eye Res (2003) 76(5):521–42. doi: 10.1016/s0014-4835(03)00050-2
    1. Bikbova G, Oshitari T, Baba T, Bikbov M, Yamamoto S. Diabetic corneal neuropathy: Clinical perspectives. Clin Ophthalmol (2018) 12:981–7. doi: 10.2147/opth.S145266
    1. Lewis EJH, Lovblom LE, Ferdousi M, Halpern EM, Jeziorska M, Pacaud D, et al. . Rapid corneal nerve fiber loss: A marker of diabetic neuropathy onset and progression. Diabetes Care (2020) 43(8):1829–35. doi: 10.2337/dc19-0951
    1. Bu Y, Shih KC, Tong L. The ocular surface and diabetes, the other 21st century epidemic. Exp Eye Res (2022) 220:109099. doi: 10.1016/j.exer.2022.109099
    1. Snyder MJ, Gibbs LM, Lindsay TJ. Treating painful diabetic peripheral neuropathy: An update. Am Fam Physician (2016) 94(3):227–34.
    1. Ziegler D, Papanas N, Zhivov A, Allgeier S, Winter K, Ziegler I, et al. . Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes (2014) 63(7):2454–63. doi: 10.2337/db13-1819
    1. Petropoulos IN, Alam U, Fadavi H, Asghar O, Green P, Ponirakis G, et al. . Corneal nerve loss detected with corneal confocal microscopy is symmetrical and related to the severity of diabetic polyneuropathy. Diabetes Care (2013) 36(11):3646–51. doi: 10.2337/dc13-0193
    1. Davidson EP, Coppey LJ, Kardon RH, Yorek MA. Differences and similarities in development of corneal nerve damage and peripheral neuropathy and in diet-induced obesity and type 2 diabetic rats. Invest Ophthalmol Vis Sci (2014) 55(3):1222–30. doi: 10.1167/iovs.13-13794
    1. De Cillà S, Ranno S, Carini E, Fogagnolo P, Ceresara G, Orzalesi N, et al. . Corneal subbasal nerves changes in patients with diabetic retinopathy: An in vivo confocal study. Invest Ophthalmol Vis Sci (2009) 50(11):5155–8. doi: 10.1167/iovs.09-3384
    1. He J, Bazan HE. Mapping the nerve architecture of diabetic human corneas. Ophthalmology (2012) 119(5):956–64. doi: 10.1016/j.ophtha.2011.10.036
    1. Stem MS, Hussain M, Lentz SI, Raval N, Gardner TW, Pop-Busui R, et al. . Differential reduction in corneal nerve fiber length in patients with type 1 or type 2 diabetes mellitus. J Diabetes Complications (2014) 28(5):658–61. doi: 10.1016/j.jdiacomp.2014.06.007
    1. Zhivov A, Winter K, Hovakimyan M, Peschel S, Harder V, Schober HC, et al. . Imaging and quantification of subbasal nerve plexus in healthy volunteers and diabetic patients with or without retinopathy. PloS One (2013) 8(1):e52157. doi: 10.1371/journal.pone.0052157
    1. Kallinikos P, Berhanu M, O’Donnell C, Boulton AJ, Efron N, Malik RA. Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci (2004) 45(2):418–22. doi: 10.1167/iovs.03-0637
    1. Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, et al. . Corneal confocal microscopy: A non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia (2003) 46(5):683–8. doi: 10.1007/s00125-003-1086-8
    1. Mocan MC, Durukan I, Irkec M, Orhan M. Morphologic alterations of both the stromal and subbasal nerves in the corneas of patients with diabetes. Cornea (2006) 25(7):769–73. doi: 10.1097/01.ico.0000224640.58848.54
    1. Roszkowska AM, Licitra C, Tumminello G, Postorino El, Colonna MR, Aragona P. Corneal nerves in diabetes-The role of the in vivo corneal confocal microscopy of the subbasal nerve plexus in the assessment of peripheral small fiber neuropathy. Surv Ophthalmol (2021) 66(3):493–513. doi: 10.1016/j.survophthal.2020.09.003
    1. Szalai E, Deák E, Módis L, Jr., Németh G, Berta A, Nagy A, et al. . Early corneal cellular and nerve fiber pathology in young patients with type 1 diabetes mellitus identified using corneal confocal microscopy. Invest Ophthalmol Vis Sci (2016) 57(3):853–8. doi: 10.1167/iovs.15-18735
    1. Cousen P, Cackett P, Bennett H, Swa K, Dhillon B. Tear production and corneal sensitivity in diabetes. J Diabetes Complications (2007) 21(6):371–3. doi: 10.1016/j.jdiacomp.2006.05.008
    1. Saito J, Enoki M, Hara M, Morishige N, Chikama T, Nishida T. Correlation of corneal sensation, but not of basal or reflex tear secretion, with the stage of diabetic retinopathy. Cornea (2003) 22(1):15–8. doi: 10.1097/00003226-200301000-00004
    1. Tavakoli M, Kallinikos PA, Efron N, Boulton AJ, Malik RA. Corneal sensitivity is reduced and relates to the severity of neuropathy in patients with diabetes. Diabetes Care (2007) 30(7):1895–7. doi: 10.2337/dc07-0175
    1. Pritchard N, Edwards K, Dehghani C, Fadavi H, Jeziorska M, Marshall A, et al. . Longitudinal assessment of neuropathy in type 1 diabetes using novel ophthalmic markers (Landmark): Study design and baseline characteristics. Diabetes Res Clin Pract (2014) 104(2):248–56. doi: 10.1016/j.diabres.2014.02.011
    1. Sitompul R. Corneal sensitivity as a potential marker of diabetic neuropathy. Acta Med Indones (2017) 49(2):166–72.
    1. Gao N, Yan C, Lee P, Sun H, Yu FS. Dendritic cell dysfunction and diabetic sensory neuropathy in the cornea. J Clin Invest (2016) 126(5):1998–2011. doi: 10.1172/jci85097
    1. Edwards K, Pritchard N, Vagenas D, Russell A, Malik RA, Efron N. Utility of corneal confocal microscopy for assessing mild diabetic neuropathy: Baseline findings of the landmark study. Clin Exp Optom (2012) 95(3):348–54. doi: 10.1111/j.1444-0938.2012.00740.x
    1. So WZ, Qi Wong NS, Tan HC, Yu Lin MT, Yu Lee IX, Mehta JS, et al. . Diabetic corneal neuropathy as a surrogate marker for diabetic peripheral neuropathy. Neural Regener Res (2022) 17(10):2172–8. doi: 10.4103/1673-5374.327364
    1. Pesavento F, Lovato A, Cappello S, Postiglione M. Acupuncture in the treatment of dry eye syndrome with anxiety symptoms. a case report. Eur J Transl Myol (2022) 32(2):10482. doi: 10.4081/ejtm.2022.10482
    1. Ljubimov AV. Diabetic complications in the cornea. Vision Res (2017) 139:138–52. doi: 10.1016/j.visres.2017.03.002
    1. Bu Y, Shih KC, Kwok SS, Chan YK, Lo AC, Chan TCY, et al. . Experimental modeling of cornea wound healing in diabetes: Clinical applications and beyond. BMJ Open Diabetes Res Care (2019) 7(1):e000779. doi: 10.1136/bmjdrc-2019-000779
    1. Chen K, Li Y, Zhang X, Ullah R, Tong J, Shen Y. The role of the Pi3k/Akt signalling pathway in the corneal epithelium: Recent updates. Cell Death Dis (2022) 13(5):513. doi: 10.1038/s41419-022-04963-x
    1. Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol (2019) 19(12):734–46. doi: 10.1038/s41577-019-0213-9
    1. Tang SCW, Yiu WH. Innate immunity in diabetic kidney disease. Nat Rev Nephrol (2020) 16(4):206–22. doi: 10.1038/s41581-019-0234-4
    1. Wada J, Makino H. Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol (2016) 12(1):13–26. doi: 10.1038/nrneph.2015.175
    1. Swanson KV, Deng M, Ting JP. The Nlrp3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol (2019) 19(8):477–89. doi: 10.1038/s41577-019-0165-0
    1. Sharma BR, Kanneganti TD. Nlrp3 inflammasome in cancer and metabolic diseases. Nat Immunol (2021) 22(5):550–9. doi: 10.1038/s41590-021-00886-5
    1. Chen H, Zhang X, Liao N, Mi L, Peng Y, Liu B, et al. . Enhanced expression of Nlrp3 inflammasome-related inflammation in diabetic retinopathy. Invest Ophthalmol Vis Sci (2018) 59(2):978–85. doi: 10.1167/iovs.17-22816
    1. Raman KS, Matsubara JA. Dysregulation of the Nlrp3 inflammasome in diabetic retinopathy and potential therapeutic targets. Ocul Immunol Inflammation (2022) 30(2):470–8. doi: 10.1080/09273948.2020.1811350
    1. Yang F, Qin Y, Wang Y, Meng S, Xian H, Che H, et al. . Metformin inhibits the Nlrp3 inflammasome Via Ampk/Mtor-dependent effects in diabetic cardiomyopathy. Int J Biol Sci (2019) 15(5):1010–9. doi: 10.7150/ijbs.29680
    1. Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, et al. . The advanced glycation end-products (Ages)/Ros/Nlrp3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci (2022) 18(2):809–25. doi: 10.7150/ijbs.63219
    1. Wang Y, Wan L, Zhang Z, Li J, Qu M, Zhou Q. Topical calcitriol application promotes diabetic corneal wound healing and reinnervation through inhibiting Nlrp3 inflammasome activation. Exp Eye Res (2021) 209:108668. doi: 10.1016/j.exer.2021.108668
    1. Mirza RE, Fang MM, Weinheimer-Haus EM, Ennis WJ, Koh TJ. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice. Diabetes (2014) 63(3):1103–14. doi: 10.2337/db13-0927
    1. Liu D, Yang P, Gao M, Yu T, Shi Y, Zhang M, et al. . Nlrp3 activation induced by neutrophil extracellular traps sustains inflammatory response in the diabetic wound. Clin Sci (Lond) (2019) 133(4):565–82. doi: 10.1042/cs20180600
    1. Huang W, Jiao J, Liu J, Huang M, Hu Y, Ran W, et al. . Mfg-E8 accelerates wound healing in diabetes by regulating “Nlrp3 inflammasome-neutrophil extracellular traps” axis. Cell Death Discovery (2020) 6:84. doi: 10.1038/s41420-020-00318-7
    1. Kaji Y, Usui T, Oshika T, Matsubara M, Yamashita H, Araie M, et al. . Advanced glycation end products in diabetic corneas. Invest Ophthalmol Vis Sci (2000) 41(2):362–8.
    1. Zou C, Wang S, Huang F, Zhang YA. Advanced glycation end products and ultrastructural changes in corneas of long-term streptozotocin-induced diabetic monkeys. Cornea (2012) 31(12):1455–9. doi: 10.1097/ICO.0b013e3182490907
    1. Kaji Y, Amano S, Usui T, Suzuki K, Tanaka S, Oshika T, et al. . Advanced glycation end products in descemet’s membrane and their effect on corneal endothelial cell. Curr Eye Res (2001) 23(6):469–77. doi: 10.1076/ceyr.23.6.469.6968
    1. Newton K, Dixit VM, Kayagaki N. Dying cells fan the flames of inflammation. Science (2021) 374(6571):1076–80. doi: 10.1126/science.abi5934
    1. Yan C, Gao N, Sun H, Yin J, Lee P, Zhou L, et al. . Targeting imbalance between il-1beta and il-1 receptor antagonist ameliorates delayed epithelium wound healing in diabetic mouse corneas. Am J Pathol (2016) 186(6):1466–80. doi: 10.1016/j.ajpath.2016.01.019
    1. Fadini GP, Menegazzo L, Rigato M, Scattolini V, Poncina N, Bruttocao A, et al. . Netosis delays diabetic wound healing in mice and humans. Diabetes (2016) 65(4):1061–71. doi: 10.2337/db15-0863
    1. Wang Y, Luo W, Han J, Khan ZA, Fang Q, Jin Y, et al. . Md2 activation by direct age interaction drives inflammatory diabetic cardiomyopathy. Nat Commun (2020) 11(1):2148. doi: 10.1038/s41467-020-15978-3
    1. Ramke M, Zhou X, Materne EC, Rajaiya J, Chodosh J. Resident corneal c-fms(+) macrophages and dendritic cells mediate early cellular infiltration in adenovirus keratitis. Exp Eye Res (2016) 147:144–7. doi: 10.1016/j.exer.2016.05.016
    1. Hamrah P, Liu Y, Zhang Q, Dana MR. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci (2003) 44(2):581–9. doi: 10.1167/iovs.02-0838
    1. Wu M, Hill LJ, Downie LE, Chinnery HR. Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res (2022), 101105. doi: 10.1016/j.preteyeres.2022.101105
    1. Xue Y, He J, Xiao C, Guo Y, Fu T, Liu J, et al. . The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol (2018) 11(5):1496–511. doi: 10.1038/s41385-018-0031-6
    1. Liu J, Xue Y, Dong D, Xiao C, Lin C, Wang H, et al. . Ccr2(-) and Ccr2(+) corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol (2017) 10(5):1145–59. doi: 10.1038/mi.2016.139
    1. Gao N, Yin J, Yoon GS, Mi QS, Yu FS. Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair. Am J Pathol (2011) 179(5):2243–53. doi: 10.1016/j.ajpath.2011.07.050
    1. Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta (2016) 462:77–89. doi: 10.1016/j.cca.2016.08.015
    1. Maschalidi S, Mehrotra P, Keçeli BN, De Cleene HKL, Lecomte K, van der Cruyssen R, et al. . Targeting Slc7a11 improves efferocytosis by dendritic cells and wound healing in diabetes. Nature (2022) 606(7915):776–84. doi: 10.1038/s41586-022-04754-6
    1. Kraakman MJ, Murphy AJ, Jandeleit-Dahm K, Kammoun HL. Macrophage polarization in obesity and type 2 diabetes: Weighing down our understanding of macrophage function? Front Immunol (2014) 5:470. doi: 10.3389/fimmu.2014.00470
    1. Kim H, Kim M, Lee HY, Park HY, Jhun H, Kim S. Role of dendritic cell in diabetic nephropathy. Int J Mol Sci (2021) 22(14):7554. doi: 10.3390/ijms22147554
    1. Zhang Y, Gao N, Wu L, Lee PSY, Me R, Dai C, et al. . Role of vip and sonic hedgehog signaling pathways in mediating epithelial wound healing, sensory nerve regeneration, and their defects in diabetic corneas. Diabetes (2020) 69(7):1549–61. doi: 10.2337/db19-0870
    1. Wang J, Hossain M, Thanabalasuriar A, Gunzer M, Meininger C, Kubes P. Visualizing the function and fate of neutrophils in sterile injury and repair. Science (2017) 358(6359):111–6. doi: 10.1126/science.aam9690
    1. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. . Diabetes primes neutrophils to undergo netosis, which impairs wound healing. Nat Med (2015) 21(7):815–9. doi: 10.1038/nm.3887
    1. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol (2018) 18(2):134–47. doi: 10.1038/nri.2017.105
    1. Zhang J, Dai Y, Wei C, Zhao X, Zhou Q, Xie L. Dnase I improves corneal epithelial and nerve regeneration in diabetic mice. J Cell Mol Med (2020) 24(8):4547–56. doi: 10.1111/jcmm.15112
    1. Herre M, Cedervall J, Mackman N, Olsson AK. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol Rev (2023) 103(1):277–312. doi: 10.1152/physrev.00062.2021
    1. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, et al. . Targeting potential drivers of covid-19: Neutrophil extracellular traps. J Exp Med (2020) 217(6):e20200652. doi: 10.1084/jem.20200652
    1. Lambiase A, Rama P, Bonini S, Caprioglio G, Aloe L. Topical treatment with nerve growth factor for corneal neurotrophic ulcers. N Engl J Med (1998) 338(17):1174–80. doi: 10.1056/nejm199804233381702
    1. Lambiase A, Micera A, Sacchetti M, Cortes M, Mantelli F, Bonini S. Alterations of tear neuromediators in dry eye disease. Arch Ophthalmol (2011) 129(8):981–6. doi: 10.1001/archophthalmol.2011.200
    1. Nishida T, Nakamura M, Ofuji K, Reid TW, Mannis MJ, Murphy CJ. Synergistic effects of substance p with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol (1996) 169(1):159–66. doi: 10.1002/(SICI)1097-4652(199610)169:1<159::AID-JCP16>;2-8
    1. Nakamura M, Ofuji K, Chikama T, Nishida T. Combined effects of substance p and insulin-like growth factor-1 on corneal epithelial wound closure of rabbit in vivo. Curr Eye Res (1997) 16(3):275–8. doi: 10.1076/ceyr.16.3.275.15409
    1. Nakamura M, Chikama T, Nishida T. Up-regulation of integrin alpha 5 expression by combination of substance p and insulin-like growth factor-1 in rabbit corneal epithelial cells. Biochem Biophys Res Commun (1998) 246(3):777–82. doi: 10.1006/bbrc.1998.8704
    1. Reid TW, Murphy CJ, Iwahashi CK, Foster BA, Mannis MJ. Stimulation of epithelial cell growth by the neuropeptide substance p. J Cell Biochem (1993) 52(4):476–85. doi: 10.1002/jcb.240520411
    1. Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C. Neurotrophic influences on corneal epithelial cells. Exp Eye Res (1994) 59(5):597–605. doi: 10.1006/exer.1994.1145
    1. Mikulec AA, Tanelian DL. Cgrp increases the rate of corneal re-epithelialization in an in vitro whole mount preparation. J Ocul Pharmacol Ther (1996) 12(4):417–23. doi: 10.1089/jop.1996.12.417
    1. Yang L, Di G, Qi X, Qu M, Wang Y, Duan H, et al. . Substance p promotes diabetic corneal epithelial wound healing through molecular mechanisms mediated Via the neurokinin-1 receptor. Diabetes (2014) 63(12):4262–74. doi: 10.2337/db14-0163
    1. Markoulli M, Flanagan J, Tummanapalli SS, Wu J, Willcox M. The impact of diabetes on corneal nerve morphology and ocular surface integrity. Ocular Surface (2018) 16(1):45–57. doi: 10.1016/j.jtos.2017.10.006
    1. Jones MA, Marfurt CF. Peptidergic innervation of the rat cornea. Exp Eye Res (1998) 66(4):421–35. doi: 10.1006/exer.1997.0446
    1. Tran MT, Lausch RN, Oakes JE. Substance p differentially stimulates il-8 synthesis in human corneal epithelial cells. Invest Ophthalmol Vis Sci (2000) 41(12):3871–7.
    1. Słoniecka M, Le Roux S, Zhou Q, Danielson P. Substance p enhances keratocyte migration and neutrophil recruitment through interleukin-8. Mol Pharmacol (2016) 89(2):215–25. doi: 10.1124/mol.115.101014
    1. Watanabe M, Nakayasu K, Iwatsu M, Kanai A. Endogenous substance p in corneal epithelial cells and keratocytes. Jpn J Ophthalmol (2002) 46(6):616–20. doi: 10.1016/s0021-5155(02)00617-2
    1. Nakamura M, Ofuji K, Chikama T, Nishida T. The Nk1 receptor and its participation in the synergistic enhancement of corneal epithelial migration by substance p and insulin-like growth factor-1. Br J Pharmacol (1997) 120(4):547–52. doi: 10.1038/sj.bjp.0700923
    1. Ofuji K, Nakamura M, Nishida T. Signaling regulation for synergistic effects of substance p and insulin-like growth factor-1 or epidermal growth factor on corneal epithelial migration. Jpn J Ophthalmol (2000) 44(1):1–8. doi: 10.1016/s0021-5155(99)00168-9
    1. Nakamura M, Chikama T, Nishida T. Participation of P38 map kinase, but not P44/42 map kinase, in stimulation of corneal epithelial migration by substance p and igf-1. Curr Eye Res (2005) 30(10):825–34. doi: 10.1080/02713680591006129
    1. Nakamura M, Nagano T, Chikama T, Nishida T. Up-regulation of phosphorylation of focal adhesion kinase and paxillin by combination of substance p and igf-1 in sv-40 transformed human corneal epithelial cells. Biochem Biophys Res Commun (1998) 242(1):16–20. doi: 10.1006/bbrc.1997.7899
    1. Nagano T, Nakamura M, Nakata K, Yamaguchi T, Takase K, Okahara A, et al. . Effects of substance p and igf-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest Ophthalmol Vis Sci (2003) 44(9):3810–5. doi: 10.1167/iovs.03-0189
    1. Nakamura M, Kawahara M, Nakata K, Nishida T. Restoration of corneal epithelial barrier function and wound healing by substance p and igf-1 in rats with capsaicin-induced neurotrophic keratopathy. Invest Ophthalmol Vis Sci (2003) 44(7):2937–40. doi: 10.1167/iovs.02-0868
    1. Chikama T, Fukuda K, Morishige N, Nishida T. Treatment of neurotrophic keratopathy with substance-P-Derived peptide (Fglm) and insulin-like growth factor I. Lancet (1998) 351(9118):1783–4. doi: 10.1016/s0140-6736(98)24024-4
    1. Nakamura M, Chikama T, Nishida T. Synergistic effect with phe-Gly-Leu-Met-Nh2 of the c-terminal of substance p and insulin-like growth factor-1 on epithelial wound healing of rabbit cornea. Br J Pharmacol (1999) 127(2):489–97. doi: 10.1038/sj.bjp.0702550
    1. Yamada N, Yanai R, Kawamoto K, Nagano T, Nakamura M, Inui M, et al. . Promotion of corneal epithelial wound healing by a tetrapeptide (Sssr) derived from igf-1. Invest Ophthalmol Vis Sci (2006) 47(8):3286–92. doi: 10.1167/iovs.05-1205
    1. Yamada N, Matsuda R, Morishige N, Yanai R, Chikama TI, Nishida T, et al. . Open clinical study of eye-drops containing tetrapeptides derived from substance p and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. Br J Ophthalmol (2008) 92(7):896–900. doi: 10.1136/bjo.2007.130013
    1. Di G, Qi X, Zhao X, Zhang S, Danielson P, Zhou Q. Corneal epithelium-derived neurotrophic factors promote nerve regeneration. Invest Ophthalmol Vis Sci (2017) 58(11):4695–702. doi: 10.1167/iovs.16-21372
    1. Zhou Q, Chen P, Di G, Zhang Y, Wang Y, Qi X, et al. . Ciliary neurotrophic factor promotes the activation of corneal epithelial Stem/Progenitor cells and accelerates corneal epithelial wound healing. Stem Cells (2015) 33(5):1566–76. doi: 10.1002/stem.1942
    1. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, et al. . Manf: A new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci (2003) 20(2):173–88. doi: 10.1385/jmn:20:2:173
    1. Lindholm P, Peränen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, et al. . Manf is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci (2008) 39(3):356–71. doi: 10.1016/j.mcn.2008.07.016
    1. Danilova T, Galli E, Pakarinen E, Palm E, Lindholm P, Saarma M, et al. . Mesencephalic astrocyte-derived neurotrophic factor (Manf) is highly expressed in mouse tissues with metabolic function. Front Endocrinol (Lausanne) (2019) 10:765. doi: 10.3389/fendo.2019.00765
    1. Lindahl M, Danilova T, Palm E, Lindholm P, Võikar V, Hakonen E, et al. . Manf is indispensable for the proliferation and survival of pancreatic β cells. Cell Rep (2014) 7(2):366–75. doi: 10.1016/j.celrep.2014.03.023
    1. Hakonen E, Chandra V, Fogarty CL, Yu NY, Ustinov J, Katayama S, et al. . Manf protects human pancreatic beta cells against stress-induced cell death. Diabetologia (2018) 61(10):2202–14. doi: 10.1007/s00125-018-4687-y
    1. Wang X, Li W, Zhou Q, Li J, Wang X, Zhang J, et al. . Manf promotes diabetic corneal epithelial wound healing and nerve regeneration by attenuating hyperglycemia-induced endoplasmic reticulum stress. Diabetes (2020) 69(6):1264–78. doi: 10.2337/db19-0835
    1. Dun XP, Parkinson DB. Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration. Neural Regener Res (2020) 15(1):6–9. doi: 10.4103/1673-5374.264441
    1. Zhang Y, Chen P, Di G, Qi X, Zhou Q, Gao H. Netrin-1 promotes diabetic corneal wound healing through molecular mechanisms mediated Via the adenosine 2b receptor. Sci Rep (2018) 8(1):5994. doi: 10.1038/s41598-018-24506-9
    1. Bettahi I, Sun H, Gao N, Wang F, Mi X, Chen W, et al. . Genome-wide transcriptional analysis of differentially expressed genes in diabetic, healing corneal epithelial cells: Hyperglycemia-suppressed Tgfβ3 expression contributes to the delay of epithelial wound healing in diabetic corneas. Diabetes (2014) 63(2):715–27. doi: 10.2337/db13-1260
    1. Lee PS, Gao N, Dike M, Shkilnyy O, Me R, Zhang Y, et al. . Opposing effects of neuropilin-1 and -2 on sensory nerve regeneration in wounded corneas: Role of Sema3c in ameliorating diabetic neurotrophic keratopathy. Diabetes (2019) 68(4):807–18. doi: 10.2337/db18-1172
    1. Di G, Zhao X, Qi X, Zhang S, Feng L, Shi W, et al. . Vegf-b promotes recovery of corneal innervations and trophic functions in diabetic mice. Sci Rep (2017) 7:40582. doi: 10.1038/srep40582
    1. He J, Pham TL, Kakazu A, Bazan HEP. Recovery of corneal sensitivity and increase in nerve density and wound healing in diabetic mice after pedf plus dha treatment. Diabetes (2017) 66(9):2511–20. doi: 10.2337/db17-0249
    1. Katsyuba E, Auwerx J. Modulating nad(+) metabolism, from bench to bedside. EMBO J (2017) 36(18):2670–83. doi: 10.15252/embj.201797135
    1. Li Y, Ma X, Li J, Yang L, Zhao X, Qi X, et al. . Corneal denervation causes epithelial apoptosis through inhibiting nad+ biosynthesis. Invest Ophthalmol Vis Sci (2019) 60(10):3538–46. doi: 10.1167/iovs.19-26909
    1. Li Y, Li J, Zhao C, Yang L, Qi X, Wang X, et al. . Hyperglycemia-reduced nad(+) biosynthesis impairs corneal epithelial wound healing in diabetic mice. Metabolism (2021) 114:154402. doi: 10.1016/j.metabol.2020.154402
    1. Pu Q, Guo XX, Hu JJ, Li AL, Li GG, Li XY. Nicotinamide mononucleotide increases cell viability and restores tight junctions in high-Glucose-Treated human corneal epithelial cells Via the Sirt1/Nrf2/Ho-1 pathway. BioMed Pharmacother (2022) 147:112659. doi: 10.1016/j.biopha.2022.112659
    1. Belmonte C, Acosta MC, Gallar J. Neural basis of sensation in intact and injured corneas. Exp Eye Res (2004) 78(3):513–25. doi: 10.1016/j.exer.2003.09.023
    1. Mansoor H, Tan HC, Lin MT, Mehta JS, Liu YC. Diabetic corneal neuropathy. J Clin Med (2020) 9(12):3956. doi: 10.3390/jcm9123956
    1. Alamri A, Bron R, Brock JA, Ivanusic JJ. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations. Front Neuroanat (2015) 9:71. doi: 10.3389/fnana.2015.00071
    1. Asiedu K. Role of ocular surface neurobiology in neuronal-mediated inflammation in dry eye disease. Neuropeptides (2022) 95:102266. doi: 10.1016/j.npep.2022.102266
    1. Kamei J, Zushida K, Morita K, Sasaki M, Tanaka S. Role of vanilloid Vr1 receptor in thermal allodynia and hyperalgesia in diabetic mice. Eur J Pharmacol (2001) 422(1-3):83–6. doi: 10.1016/s0014-2999(01)01059-7
    1. Backonja M, Wallace MS, Blonsky ER, Cutler BJ, Malan P, Jr., Rauck R, et al. . Ngx-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia: A randomised, double-blind study. Lancet Neurol (2008) 7(12):1106–12. doi: 10.1016/s1474-4422(08)70228-x
    1. Irving GA, Backonja MM, Dunteman E, Blonsky ER, Vanhove GF, Lu SP, et al. . A multicenter, randomized, double-blind, controlled study of ngx-4010, a high-concentration capsaicin patch, for the treatment of postherpetic neuralgia. Pain Med (2011) 12(1):99–109. doi: 10.1111/j.1526-4637.2010.01004.x
    1. Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful hiv neuropathy. Neurology (2008) 70(24):2305–13. doi: 10.1212/01.wnl.0000314647.35825.9c
    1. Haanpää M, Cruccu G, Nurmikko TJ, McBride WT, Docu Axelarad A, Bosilkov A, et al. . Capsaicin 8% patch versus oral pregabalin in patients with peripheral neuropathic pain. Eur J Pain (2016) 20(2):316–28. doi: 10.1002/ejp.731
    1. Simpson DM, Robinson-Papp J, Van J, Stoker M, Jacobs H, Snijder RJ, et al. . Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebo-controlled study. J Pain (2017) 18(1):42–53. doi: 10.1016/j.jpain.2016.09.008
    1. Okada Y, Reinach PS, Shirai K, Kitano-Izutani A, Miyajima M, Yamanaka O, et al. . Transient receptor potential channels and corneal stromal inflammation. Cornea (2015) 34 Suppl 11:S136–41. doi: 10.1097/ico.0000000000000602
    1. Acosta CM, Luna C, Quirce S, Belmonte C, Gallar J. Changes in sensory activity of ocular surface sensory nerves during allergic keratoconjunctivitis. Pain (2013) 154(11):2353–62. doi: 10.1016/j.pain.2013.07.012
    1. Liu J, Huang S, Yu R, Chen X, Li F, Sun X, et al. . Trpv1(+) sensory nerves modulate corneal inflammation after epithelial abrasion Via Ramp1 and Sstr5 signaling. Mucosal Immunol (2022) 15(5):867–81. doi: 10.1038/s41385-022-00533-8
    1. Zhang B, Yang Y, Yi J, Zhao Z, Ye R. Ablation of transient receptor potential vanilloid subtype 1-expressing neurons in rat trigeminal ganglia aggravated bone resorption in periodontitis with diabetes. Arch Oral Biol (2022) 133:105293. doi: 10.1016/j.archoralbio.2021.105293
    1. Andersson DA, Chase HW, Bevan S. Trpm8 activation by menthol, icilin, and cold is differentially modulated by intracellular ph. J Neurosci (2004) 24(23):5364–9. doi: 10.1523/jneurosci.0890-04.2004
    1. Liu B, Qin F. Functional control of cold- and menthol-sensitive Trpm8 ion channels by phosphatidylinositol 4,5-bisphosphate. J Neurosci (2005) 25(7):1674–81. doi: 10.1523/jneurosci.3632-04.2005
    1. Premkumar LS, Raisinghani M, Pingle SC, Long C, Pimentel F. Downregulation of transient receptor potential melastatin 8 by protein kinase c-mediated dephosphorylation. J Neurosci (2005) 25(49):11322–9. doi: 10.1523/jneurosci.3006-05.2005
    1. Li F, Yang W, Jiang H, Guo C, Huang AJW, Hu H, et al. . Trpv1 activity and substance p release are required for corneal cold nociception. Nat Commun (2019) 10(1):5678. doi: 10.1038/s41467-019-13536-0
    1. Situ P, Begley CG, Simpson TL. Effects of tear film instability on sensory responses to corneal cold, mechanical, and chemical stimuli. Invest Ophthalmol Vis Sci (2019) 60(8):2935–41. doi: 10.1167/iovs.19-27298
    1. Pabbidi MR, Premkumar LS. Role of transient receptor potential channels Trpv1 and Trpm8 in diabetic peripheral neuropathy. J Diabetes Treat (2017) 2017(4):029.
    1. Alamri AS, Brock JA, Herath CB, Rajapaksha IG, Angus PW, Ivanusic JJ. The effects of diabetes and high-fat diet on polymodal nociceptor and cold thermoreceptor nerve terminal endings in the corneal epithelium. Invest Ophthalmol Vis Sci (2019) 60(1):209–17. doi: 10.1167/iovs.18-25788
    1. Greene DA, Lattimer SA. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J Clin Invest (1983) 72(3):1058–63. doi: 10.1172/jci111030
    1. Greene DA, Lattimer SA, Sima AA. Are disturbances of sorbitol, phosphoinositide, and na+-K+-Atpase regulation involved in pathogenesis of diabetic neuropathy? Diabetes (1988) 37(6):688–93. doi: 10.2337/diab.37.6.688
    1. Veves A, King GL. Can vegf reverse diabetic neuropathy in human subjects? J Clin Invest (2001) 107(10):1215–8. doi: 10.1172/jci13038
    1. Hoeldtke RD, Bryner KD, McNeill DR, Hobbs GR, Riggs JE, Warehime SS, et al. . Nitrosative stress, uric acid, and peripheral nerve function in early type 1 diabetes. Diabetes (2002) 51(9):2817–25. doi: 10.2337/diabetes.51.9.2817
    1. Vinik AI, Erbas T, Park TS, Stansberry KB, Scanelli JA, Pittenger GL. Dermal neurovascular dysfunction in type 2 diabetes. Diabetes Care (2001) 24(8):1468–75. doi: 10.2337/diacare.24.8.1468
    1. Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care (1992) 15(12):1835–43. doi: 10.2337/diacare.15.12.1835
    1. Vinik AI. Diagnosis and management of diabetic neuropathy. Clin Geriatr Med (1999) 15(2):293–320. doi: 10.1016/S0749-0690(18)30061-2
    1. Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes (1997) 46 Suppl 2:S31–7. doi: 10.2337/diab.46.2.s31
    1. Vinik AI, Erbas T. Recognizing and treating diabetic autonomic neuropathy. Cleve Clin J Med (2001) 68(11):928–30. doi: 10.3949/ccjm.68.11.928
    1. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care (2003) 26(5):1553–79. doi: 10.2337/diacare.26.5.1553
    1. Marfurt CF, Ellis LC. Immunohistochemical localization of tyrosine hydroxylase in corneal nerves. J Comp Neurol (1993) 336(4):517–31. doi: 10.1002/cne.903360405
    1. Marfurt CF, Kingsley RE, Echtenkamp SE. Sensory and sympathetic innervation of the mammalian cornea. a retrograde tracing study. Invest Ophthalmol Vis Sci (1989) 30(3):461–72.
    1. Vasamsetti SB, Florentin J, Coppin E, Stiekema LCA, Zheng KH, Nisar MU, et al. . Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity (2018) 49(1):93–106.e7. doi: 10.1016/j.immuni.2018.05.004
    1. Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J, Lambert G. Sympathetic nervous system and insulin resistance: From obesity to diabetes. Am J Hypertens (2001) 14(11 Pt 2):304s–9s. doi: 10.1016/s0895-7061(01)02236-1
    1. Seals DR, Bell C. Chronic sympathetic activation: Consequence and cause of age-associated obesity? Diabetes (2004) 53(2):276–84. doi: 10.2337/diabetes.53.2.276
    1. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J Diabetes Res (2015) 2015:341583. doi: 10.1155/2015/341583
    1. Marfurt CF, Jones MA, Thrasher K. Parasympathetic innervation of the rat cornea. Exp Eye Res (1998) 66(4):437–48. doi: 10.1006/exer.1997.0445
    1. Zhang Y, Jiang H, Dou S, Zhang B, Qi X, Li J, et al. . Comprehensive analysis of differentially expressed micrornas and mrnas involved in diabetic corneal neuropathy. Life Sci (2020) 261:118456. doi: 10.1016/j.lfs.2020.118456
    1. Hu J, Huang Y, Lin Y, Lin J. Protective effect inhibiting the expression of mir-181a on the diabetic corneal nerve in a mouse model. Exp Eye Res (2020) 192:107925. doi: 10.1016/j.exer.2020.107925
    1. Hu J, Hu X, Kan T. Mir-34c participates in diabetic corneal neuropathy Via regulation of autophagy. Invest Ophthalmol Vis Sci (2019) 60(1):16–25. doi: 10.1167/iovs.18-24968
    1. Wang Y, Zhao X, Wu X, Dai Y, Chen P, Xie L. Microrna-182 mediates Sirt1-induced diabetic corneal nerve regeneration. Diabetes (2016) 65(7):2020–31. doi: 10.2337/db15-1283
    1. Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L, et al. . Overexpression of Sirt1 promotes high glucose-attenuated corneal epithelial wound healing Via P53 regulation of the Igfbp3/Igf-1r/Akt pathway. Invest Ophthalmol Vis Sci (2013) 54(5):3806–14. doi: 10.1167/iovs.13-12091
    1. Zhang Y, Dou S, Qi X, Zhang Z, Qiao Y, Wang Y, et al. . Transcriptional network analysis reveals the role of mir-223-5p during diabetic corneal epithelial regeneration. Front Mol Biosci (2021) 8:737472. doi: 10.3389/fmolb.2021.737472
    1. Gao J, Wang Y, Zhao X, Chen P, Xie L. Microrna-204-5p-Mediated regulation of Sirt1 contributes to the delay of epithelial cell cycle traversal in diabetic corneas. Invest Ophthalmol Vis Sci (2015) 56(3):1493–504. doi: 10.1167/iovs.14-15913
    1. Bi X, Zhou L, Liu Y, Gu J, Mi QS. Microrna-146a deficiency delays wound healing in normal and diabetic mice. Adv Wound Care (New Rochelle) (2022) 11(1):19–27. doi: 10.1089/wound.2020.1165
    1. Poe AJ, Shah R, Khare D, Kulkarni M, Phan H, Ghiam S, et al. . Regulatory role of mir-146a in corneal epithelial wound healing Via its inflammatory targets in human diabetic cornea. Ocular Surface (2022) 25:92–100. doi: 10.1016/j.jtos.2022.06.001
    1. Chen X, Hu J. Long noncoding rna 3632454l22rik contributes to corneal epithelial wound healing by sponging mir-181a-5p in diabetic mice. Invest Ophthalmol Vis Sci (2021) 62(14):16. doi: 10.1167/iovs.62.14.16
    1. Tseng SC. Concept and application of limbal stem cells. Eye (Lond) (1989) 3(Pt 2):141–57. doi: 10.1038/eye.1989.22
    1. Joe AW, Yeung SN. Concise review: Identifying limbal stem cells: Classical concepts and new challenges. Stem Cells Transl Med (2014) 3(3):318–22. doi: 10.5966/sctm.2013-0137
    1. Di Girolamo N. Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Prog Retin Eye Res (2015) 48:203–25. doi: 10.1016/j.preteyeres.2015.04.002
    1. Amitai-Lange A, Altshuler A, Bubley J, Dbayat N, Tiosano B, Shalom-Feuerstein R. Lineage tracing of stem and progenitor cells of the murine corneal epithelium. Stem Cells (2015) 33(1):230–9. doi: 10.1002/stem.1840
    1. Saghizadeh M, Soleymani S, Harounian A, Bhakta B, Troyanovsky SM, Brunken WJ, et al. . Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol Vis (2011) 17:2177–90.
    1. Kramerov AA, Saghizadeh M, Maguen E, Rabinowitz YS, Ljubimov AV. Persistence of reduced expression of putative stem cell markers and slow wound healing in cultured diabetic limbal epithelial cells. Mol Vis (2015) 21:1357–67.
    1. Ueno H, Hattori T, Kumagai Y, Suzuki N, Ueno S, Takagi H. Alterations in the corneal nerve and Stem/Progenitor cells in diabetes: Preventive effects of insulin-like growth factor-1 treatment. Int J Endocrinol (2014) 2014:312401. doi: 10.1155/2014/312401
    1. Chen J, Chen P, Backman LJ, Zhou Q, Danielson P. Ciliary neurotrophic factor promotes the migration of corneal epithelial Stem/Progenitor cells by up-regulation of mmps through the phosphorylation of akt. Sci Rep (2016) 6:25870. doi: 10.1038/srep25870
    1. Chen J, Lan J, Liu D, Backman LJ, Zhang W, Zhou Q, et al. . Ascorbic acid promotes the stemness of corneal epithelial Stem/Progenitor cells and accelerates epithelial wound healing in the cornea. Stem Cells Transl Med (2017) 6(5):1356–65. doi: 10.1002/sctm.16-0441
    1. Zhou Q, Duan H, Wang Y, Qu M, Yang L, Xie L. Rock inhibitor y-27632 increases the cloning efficiency of limbal Stem/Progenitor cells by improving their adherence and ros-scavenging capacity. Tissue Eng Part C Methods (2013) 19(7):531–7. doi: 10.1089/ten.TEC.2012.0429
    1. Duan H, Wang Y, Yang L, Qu M, Wang Q, Shi W, et al. . Pluripotin enhances the expansion of rabbit limbal epithelial Stem/Progenitor cells in vitro. Exp Eye Res (2012) 100:52–8. doi: 10.1016/j.exer.2012.04.012
    1. Wang X, Zhang S, Dong M, Li Y, Zhou Q, Yang L. The proinflammatory cytokines il-1β and tnf-α modulate corneal epithelial wound healing through P16(Ink4a) suppressing Stat3 activity. J Cell Physiol (2020) 235(12):10081–93. doi: 10.1002/jcp.29823
    1. Yang L, Zhang S, Duan H, Dong M, Hu X, Zhang Z, et al. . Different effects of pro-inflammatory factors and hyperosmotic stress on corneal epithelial Stem/Progenitor cells and wound healing in mice. Stem Cells Transl Med (2019) 8(1):46–57. doi: 10.1002/sctm.18-0005
    1. Okada Y, Sumioka T, Ichikawa K, Sano H, Nambu A, Kobayashi K, et al. . Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: The role of trigeminal nerve transient receptor potential vanilloid 4. Lab Invest (2019) 99(2):210–30. doi: 10.1038/s41374-018-0118-4
    1. González-Méijome JM, Jorge J, Queirós A, Peixoto-de-Matos SC, Parafita MA. Two single descriptors of endothelial polymegethism and pleomorphism. Graefes Arch Clin Exp Ophthalmol (2010) 248(8):1159–66. doi: 10.1007/s00417-010-1337-6
    1. Larsson LI, Bourne WM, Pach JM, Brubaker RF. Structure and function of the corneal endothelium in diabetes mellitus type I and type ii. Arch Ophthalmol (1996) 114(1):9–14. doi: 10.1001/archopht.1996.01100130007001
    1. Storr-Paulsen A, Singh A, Jeppesen H, Norregaard JC, Thulesen J. Corneal endothelial morphology and central thickness in patients with type ii diabetes mellitus. Acta Ophthalmol (2014) 92(2):158–60. doi: 10.1111/aos.12064
    1. Sudhir RR, Raman R, Sharma T. Changes in the corneal endothelial cell density and morphology in patients with type 2 diabetes mellitus: A population-based study, Sankara nethralaya diabetic retinopathy and molecular genetics study (Sn-dreams, report 23). Cornea (2012) 31(10):1119–22. doi: 10.1097/ICO.0b013e31823f8e00
    1. Itoi M, Nakamura T, Mizobe K, Kodama Y, Nakagawa N, Itoi M. Specular microscopic studies of the corneal endothelia of Japanese diabetics. Cornea (1989) 8(1):2–6. doi: 10.1097/00003226-198903000-00002
    1. Urban B, Peczyńska J, Głowińska-Olszewska B, Urban M, Bakunowicz-Lazarczyk A, Kretowska M. Evaluation of central corneal thickness in children and adolescents with type I diabetes mellitus. Klin Oczna (2007) 109(10-12):418–20. doi: 10.1155/2013/913754
    1. Leelawongtawun W, Surakiatchanukul B, Kampitak K, Leelawongtawun R. Study of corneal endothelial cells related to duration in diabetes. J Med Assoc Thai (2016) 99 Suppl 4:S182–8.
    1. Meyer LA, Ubels JL, Edelhauser HF. Corneal endothelial morphology in the rat. effects of aging, diabetes, and topical aldose reductase inhibitor treatment. Invest Ophthalmol Vis Sci (1988) 29(6):940–8.
    1. Roszkowska AM, Tringali CG, Colosi P, Squeri CA, Ferreri G. Corneal endothelium evaluation in type I and type ii diabetes mellitus. Ophthalmologica (1999) 213(4):258–61. doi: 10.1159/000027431
    1. Inoue K, Tokuda Y, Inoue Y, Amano S, Oshika T, Inoue J. Corneal endothelial cell morphology in patients undergoing cataract surgery. Cornea (2002) 21(4):360–3. doi: 10.1097/00003226-200205000-00006
    1. Islam QU, Mehboob MA, Amin ZA. Comparison of corneal morphological characteristics between diabetic and non diabetic population. Pak J Med Sci (2017) 33(6):1307–11. doi: 10.12669/pjms.336.13628
    1. Goldstein AS, Janson BJ, Skeie JM, Ling JJ, Greiner MA. The effects of diabetes mellitus on the corneal endothelium: A review. Surv Ophthalmol (2020) 65(4):438–50. doi: 10.1016/j.survophthal.2019.12.009
    1. Módis L, Jr., Szalai E, Kertész K, Kemény-Beke A, Kettesy B, Berta A. Evaluation of the corneal endothelium in patients with diabetes mellitus type I and ii. Histol Histopathol (2010) 25(12):1531–7. doi: 10.14670/hh-25.1531
    1. Tuft SJ, Coster DJ. The corneal endothelium. Eye (Lond) (1990) 4(Pt 3):389–424. doi: 10.1038/eye.1990.53
    1. Aldrich BT, Schlötzer-Schrehardt U, Skeie JM, Burckart KA, Schmidt GA, Reed CR, et al. . Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Invest Ophthalmol Vis Sci (2017) 58(4):2130–8. doi: 10.1167/iovs.16-21094
    1. Anbar M, Ammar H, Mahmoud RA. Corneal endothelial morphology in children with type 1 diabetes. J Diabetes Res (2016) 2016:7319047. doi: 10.1155/2016/7319047
    1. El-Agamy A, Alsubaie S. Corneal endothelium and central corneal thickness changes in type 2 diabetes mellitus. Clin Ophthalmol (2017) 11:481–6. doi: 10.2147/opth.S126217
    1. Gao F, Lin T, Pan Y. Effects of diabetic keratopathy on corneal optical density, central corneal thickness, and corneal endothelial cell counts. Exp Ther Med (2016) 12(3):1705–10. doi: 10.3892/etm.2016.3511
    1. Calvo-Maroto AM, Cerviño A, Perez-Cambrodí RJ, García-Lázaro S, Sanchis-Gimeno JA. Quantitative corneal anatomy: Evaluation of the effect of diabetes duration on the endothelial cell density and corneal thickness. Ophthalmic Physiol Opt (2015) 35(3):293–8. doi: 10.1111/opo.12191
    1. Chocron IM, Rai DK, Kwon JW, Bernstein N, Hu J, Heo M, et al. . Effect of diabetes mellitus and metformin on central corneal endothelial cell density in eye bank eyes. Cornea (2018) 37(8):964–6. doi: 10.1097/ico.0000000000001623
    1. Choo M, Prakash K, Samsudin A, Soong T, Ramli N, Kadir A. Corneal changes in type ii diabetes mellitus in Malaysia. Int J Ophthalmol (2010) 3(3):234–6. doi: 10.3980/j.issn.2222-3959.2010.03.12
    1. Liaboe CA, Aldrich BT, Carter PC, Skeie JM, Burckart KA, Schmidt GA, et al. . Assessing the impact of diabetes mellitus on donor corneal endothelial cell density. Cornea (2017) 36(5):561–6. doi: 10.1097/ico.0000000000001174
    1. Urban B, Raczyńska D, Bakunowicz-Łazarczyk A, Raczyńska K, Krętowska M. Evaluation of corneal endothelium in children and adolescents with type 1 diabetes mellitus. Mediators Inflammation (2013) 2013:913754. doi: 10.1155/2013/913754
    1. Busted N, Olsen T, Schmitz O. Clinical observations on the corneal thickness and the corneal endothelium in diabetes mellitus. Br J Ophthalmol (1981) 65(10):687–90. doi: 10.1136/bjo.65.10.687
    1. Lee JS, Oum BS, Choi HY, Lee JE, Cho BM. Differences in corneal thickness and corneal endothelium related to duration in diabetes. Eye (Lond) (2006) 20(3):315–8. doi: 10.1038/sj.eye.6701868
    1. Saini JS, Mittal S. In vivo assessment of corneal endothelial function in diabetes mellitus. Arch Ophthalmol (1996) 114(6):649–53. doi: 10.1001/archopht.1996.01100130641001
    1. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res (2005) 8(1):3–5. doi: 10.1089/rej.2005.8.3
    1. Chen C, Zhou Q, Li Z, et al. . Hyperglycemia induces corneal endothelial dysfunction through attenuating mitophagy . Exp Eye Res (2022) 215:108903. doi: 10.1016/j.exer.2021.108903
    1. Livezey M, Huang R, Hergenrother PJ, Shapiro DJ. Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death. Cell Death Differ (2018) 25(10):1796–807. doi: 10.1038/s41418-018-0143-2
    1. Xiong Z, Yuan C, Shi J, Xiong W, Huang Y, Xiao W, et al. . Restoring the epigenetically silenced Pck2 suppresses renal cell carcinoma progression and increases sensitivity to sunitinib by promoting endoplasmic reticulum stress. Theranostics (2020) 10(25):11444–61. doi: 10.7150/thno.48469
    1. Lim H, Lim YM, Kim KH, Jeon YE, Park K, Kim J, et al. . A novel autophagy enhancer as a therapeutic agent against metabolic syndrome and diabetes. Nat Commun (2018) 9(1):1438. doi: 10.1038/s41467-018-03939-w
    1. Chen C, Zhang B, Xue J, Li Z, Dou S, Chen H, et al. . Pathogenic role of endoplasmic reticulum stress in diabetic corneal endothelial dysfunction. Invest Ophthalmol Vis Sci (2022) 63(3):4. doi: 10.1167/iovs.63.3.4
    1. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell (2014) 157(5):1013–22. doi: 10.1016/j.cell.2014.04.007
    1. You ZP, Zhang YL, Li BY, Zhu XG, Shi K. Bioinformatics analysis of weighted genes in diabetic retinopathy. Invest Ophthalmol Vis Sci (2018) 59(13):5558–63. doi: 10.1167/iovs.18-25515
    1. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol (2009) 7(2):99–109. doi: 10.1038/nrmicro2070
    1. Zhang Y, Song Z, Li X, Xu S, Zhou S, Jin X, et al. . Long noncoding rna Kcnq1ot1 induces pyroptosis in diabetic corneal endothelial keratopathy. Am J Physiol Cell Physiol (2020) 318(2):C346–c59. doi: 10.1152/ajpcell.00053.2019
    1. De Freitas GR, Ferraz GAM, Gehlen M, Skare TL. Dry eyes in patients with diabetes mellitus. Prim Care Diabetes (2021) 15(1):184–6. doi: 10.1016/j.pcd.2020.01.011
    1. Uchino M, Schaumberg DA. Dry eye disease: Impact on quality of life and vision. Curr Ophthalmol Rep (2013) 1(2):51–7. doi: 10.1007/s40135-013-0009-1
    1. Su YC, Hung JH, Chang KC, Sun CC, Huang YH, Lee CN, et al. . Comparison of sodium-glucose cotransporter 2 inhibitors vs glucagonlike peptide-1 receptor agonists and incidence of dry eye disease in patients with type 2 diabetes in Taiwan. JAMA Netw Open (2022) 5(9):e2232584. doi: 10.1001/jamanetworkopen.2022.32584
    1. Hann LE, Kelleher RS, Sullivan DA. Influence of culture conditions on the androgen control of secretory component production by acinar cells from the rat lacrimal gland. Invest Ophthalmol Vis Sci (1991) 32(9):2610–21.
    1. Dias AC, Batista TM, Roma LP, Módulo CM, Malki LT, Dias LC, et al. . Insulin replacement restores the vesicular secretory apparatus in the diabetic rat lacrimal gland. Arq Bras Oftalmol (2015) 78(3):158–63. doi: 10.5935/0004-2749.20150041
    1. Wu K, Joffre C, Li X, MacVeigh-Aloni M, Hom M, Hwang J, et al. . Altered expression of genes functioning in lipid homeostasis is associated with lipid deposition in nod mouse lacrimal gland. Exp Eye Res (2009) 89(3):319–32. doi: 10.1016/j.exer.2009.03.020
    1. Ramos-Remus C, Suarez-Almazor M, Russell AS. Low tear production in patients with diabetes mellitus is not due to sjögren’s syndrome. Clin Exp Rheumatol (1994) 12(4):375–80.
    1. He X, Zhao Z, Wang S, Kang J, Zhang M, Bu J, et al. . High-fat diet-induced functional and pathologic changes in lacrimal gland. Am J Pathol (2020) 190(12):2387–402. doi: 10.1016/j.ajpath.2020.09.002
    1. Nakata M, Okada Y, Kobata H, Shigematsu T, Reinach PS, Tomoyose K, et al. . Diabetes mellitus suppresses hemodialysis-induced increases in tear fluid secretion. BMC Res Notes (2014) 7:78. doi: 10.1186/1756-0500-7-78
    1. Qu M, Wan L, Dong M, Wang Y, Xie L, Zhou Q. Hyperglycemia-induced severe mitochondrial bioenergetic deficit of lacrimal gland contributes to the early onset of dry eye in diabetic mice. Free Radic Biol Med (2021) 166:313–23. doi: 10.1016/j.freeradbiomed.2021.02.036
    1. Alves M, Calegari VC, Cunha DA, Saad MJ, Velloso LA, Rocha EM. Increased expression of advanced glycation end-products and their receptor, and activation of nuclear factor kappa-b in lacrimal glands of diabetic rats. Diabetologia (2005) 48(12):2675–81. doi: 10.1007/s00125-005-0010-9
    1. Kubota M, Shui YB, Liu M, Bai F, Huang AJ, Ma N, et al. . Mitochondrial oxygen metabolism in primary human lens epithelial cells: Association with age, diabetes and glaucoma. Free Radic Biol Med (2016) 97:513–9. doi: 10.1016/j.freeradbiomed.2016.07.016
    1. Czajka A, Malik AN. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy. Redox Biol (2016) 10:100–7. doi: 10.1016/j.redox.2016.09.007
    1. Shao Y, Chen J, Dong LJ, He X, Cheng R, Zhou K, et al. . A protective effect of pparα in endothelial progenitor cells through regulating metabolism. Diabetes (2019) 68(11):2131–42. doi: 10.2337/db18-1278
    1. Seo Y, Ji YW, Lee SM, Shim J, Noh H, Yeo A, et al. . Activation of hif-1α (Hypoxia inducible factor-1α) prevents dry eye-induced acinar cell death in the lacrimal gland. Cell Death Dis (2014) 5(6):e1309. doi: 10.1038/cddis.2014.260
    1. Uchino Y, Kawakita T, Ishii T, Ishii N, Tsubota K. A new mouse model of dry eye disease: Oxidative stress affects functional decline in the lacrimal gland. Cornea (2012) 31 Suppl 1:S63–7. doi: 10.1097/ICO.0b013e31826a5de1
    1. Stevenson W, Chauhan SK, Dana R. Dry eye disease: An immune-mediated ocular surface disorder. Arch Ophthalmol (2012) 130(1):90–100. doi: 10.1001/archophthalmol.2011.364
    1. Dartt DA. Neural regulation of lacrimal gland secretory processes: Relevance in dry eye diseases. Prog Retin Eye Res (2009) 28(3):155–77. doi: 10.1016/j.preteyeres.2009.04.003
    1. Ruskell GL. Changes in nerve terminals and acini of the lacrimal gland and changes in secretion induced by autonomic denervation. Z Zellforsch Mikrosk Anat (1969) 94(2):261–81. doi: 10.1007/bf00339361
    1. Ruskell GL. The distribution of autonomic post-ganglionic nerve fibres to the lacrimal gland in monkeys. J Anat (1971) 109(Pt 2):229–42.
    1. Dartt DA, Baker AK, Vaillant C, Rose PE. Vasoactive intestinal polypeptide stimulation of protein secretion from rat lacrimal gland acini. Am J Physiol (1984) 247(5 Pt 1):G502–9. doi: 10.1152/ajpgi.1984.247.5.G502
    1. Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocular Surface (2004) 2(2):76–91. doi: 10.1016/s1542-0124(12)70146-5
    1. Nakamura S, Imada T, Jin K, Shibuya M, Sakaguchi H, Izumiseki F, et al. . The oxytocin system regulates tearing. (2022). doi: 10.1101/2022.03.08.483433
    1. Jin K, Imada T, Hisamura R, Ito M, Toriumi H, Tanaka KF, et al. . Identification of lacrimal gland postganglionic innervation and its regulation of tear secretion. Am J Pathol (2020) 190(5):1068–79. doi: 10.1016/j.ajpath.2020.01.007
    1. Dias-Teixeira K. Lacrimal gland postganglionic innervation: Unveiling the role of parasympathetic and sympathetic nerves in stimulating tear secretion. Am J Pathol (2020) 190(5):968–9. doi: 10.1016/j.ajpath.2020.03.001
    1. Nguyen DH, Toshida H, Schurr J, Beuerman RW. Microarray analysis of the rat lacrimal gland following the loss of parasympathetic control of secretion. Physiol Genomics (2004) 18(1):108–18. doi: 10.1152/physiolgenomics.00011.2004
    1. Ding C, Walcott B, Keyser KT. Sympathetic neural control of the mouse lacrimal gland. Invest Ophthalmol Vis Sci (2003) 44(4):1513–20. doi: 10.1167/iovs.02-0406
    1. Meneray MA, Bennett DJ, Nguyen DH, Beuerman RW. Effect of sensory denervation on the structure and physiologic responsiveness of rabbit lacrimal gland. Cornea (1998) 17(1):99–107. doi: 10.1097/00003226-199801000-00015
    1. Tangkrisanavinont V. Stimulation of lacrimal secretion by sympathetic nerve impulses in the rabbit. Life Sci (1984) 34(24):2365–71. doi: 10.1016/0024-3205(84)90423-5
    1. Yu T, Shi WY, Song AP, Gao Y, Dang GF, Ding G. Changes of meibomian glands in patients with type 2 diabetes mellitus. Int J Ophthalmol (2016) 9(12):1740–4. doi: 10.18240/ijo.2016.12.06
    1. Shamsheer RP, Arunachalam C. A clinical study of meibomian gland dysfunction in patients with diabetes. Middle East Afr J Ophthalmol (2015) 22(4):462–6. doi: 10.4103/0974-9233.167827
    1. Lin X, Xu B, Zheng Y, Coursey TG, Zhao Y, Li J, et al. . Meibomian gland dysfunction in type 2 diabetic patients. J Ophthalmol (2017) 2017:3047867. doi: 10.1155/2017/3047867
    1. Wu H, Fang X, Luo S, Shang X, Xie Z, Dong N, et al. . Meibomian glands and tear film findings in type 2 diabetic patients: A cross-sectional study. Front Med (Lausanne) (2022) 9:762493. doi: 10.3389/fmed.2022.762493
    1. Sandra Johanna GP, Antonio LA, Andrés GS. Correlation between type 2 diabetes, dry eye and meibomian glands dysfunction. J Optom (2019) 12(4):256–62. doi: 10.1016/j.optom.2019.02.003
    1. Viso E, Rodríguez-Ares MT, Abelenda D, Oubiña B, Gude F. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. Invest Ophthalmol Vis Sci (2012) 53(6):2601–6. doi: 10.1167/iovs.11-9228
    1. Inanc M, Kiziltoprak H, Hekimoglu R, Tekin K, Ozalkak S, Koc M, et al. . Alterations of tear film and ocular surface in children with type 1 diabetes mellitus. Ocul Immunol Inflammation (2020) 28(3):362–9. doi: 10.1080/09273948.2019.1571212
    1. Akinci A, Cetinkaya E, Aycan Z. Dry eye syndrome in diabetic children. Eur J Ophthalmol (2007) 17(6):873–8. doi: 10.1177/112067210701700601
    1. Koca S, Koca SB, İnan S. Ocular surface alterations and changes of meibomian glands with meibography in type 1 diabetic children. Int Ophthalmol (2022) 42(5):1613–21. doi: 10.1007/s10792-021-02155-8
    1. Guo Y, Zhang H, Zhao Z, Luo X, Zhang M, Bu J, et al. . Hyperglycemia induces meibomian gland dysfunction. Invest Ophthalmol Vis Sci (2022) 63(1):30. doi: 10.1167/iovs.63.1.30
    1. Wang H, Zhou Q, Wan L, Guo M, Chen C, Xue J, et al. . Lipidomic analysis of meibomian glands from type-1 diabetes mouse model and preliminary studies of potential mechanism. Exp Eye Res (2021) 210:108710. doi: 10.1016/j.exer.2021.108710
    1. Jester JV, Potma E, Brown DJ. Pparγ regulates mouse meibocyte differentiation and lipid synthesis. Ocular Surface (2016) 14(4):484–94. doi: 10.1016/j.jtos.2016.08.001
    1. Kim SW, Xie Y, Nguyen PQ, Bui VT, Huynh K, Kang JS, et al. . Pparγ regulates meibocyte differentiation and lipid synthesis of cultured human meibomian gland epithelial cells (Hmgec). Ocular Surface (2018) 16(4):463–9. doi: 10.1016/j.jtos.2018.07.004
    1. Zou Z, Wang H, Zhang B, Zhang Z, Chen R, Yang L. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. BioMed Pharmacother (2022) 151:113109. doi: 10.1016/j.biopha.2022.113109
    1. Kam WR, Sullivan DA. Neurotransmitter influence on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci (2011) 52(12):8543–8. doi: 10.1167/iovs.11-8113
    1. Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci (1996) 37(1):238–45.
    1. Bründl M, Garreis F, Schicht M, Dietrich J, Paulsen F. Characterization of the innervation of the meibomian glands in humans, rats and mice. Ann Anat (2021) 233:151609. doi: 10.1016/j.aanat.2020.151609
    1. Tavakoli M, Petropoulos IN, Malik RA. Corneal confocal microscopy to assess diabetic neuropathy: An eye on the foot. J Diabetes Sci Technol (2013) 7(5):1179–89. doi: 10.1177/193229681300700509
    1. Yu T, Han XG, Gao Y, Song AP, Dang GF. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus. Int J Ophthalmol (2019) 12(9):1415–9. doi: 10.18240/ijo.2019.09.07
    1. Yıldız E, Zibandeh N, Özer B, Şahin A. Effects of type 2 diabetes mellitus on gene expressions of mouse meibomian glands. Curr Eye Res (2020) 45(1):72–80. doi: 10.1080/02713683.2019.1656750
    1. Yan J, Horng T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol (2020) 30(12):979–89. doi: 10.1016/j.tcb.2020.09.006
    1. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab (2012) 15(5):635–45. doi: 10.1016/j.cmet.2012.04.001
    1. Yang Q, Li B, Sheng M. Meibum lipid composition in type 2 diabetics with dry eye. Exp Eye Res (2021) 206:108522. doi: 10.1016/j.exer.2021.108522
    1. Knop E, Knop N, Millar T, Obata H, Sullivan DA. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci (2011) 52(4):1938–78. doi: 10.1167/iovs.10-6997c
    1. Han JW, Choi D, Lee MY, Huh YH, Yoon YS. Bone marrow-derived mesenchymal stem cells improve diabetic neuropathy by direct modulation of both angiogenesis and myelination in peripheral nerves. Cell Transplant (2016) 25(2):313–26. doi: 10.3727/096368915x688209
    1. Monfrini M, Donzelli E, Rodriguez-Menendez V, Ballarini E, Carozzi VA, Chiorazzi A, et al. . Therapeutic potential of mesenchymal stem cells for the treatment of diabetic peripheral neuropathy. Exp Neurol (2017) 288:75–84. doi: 10.1016/j.expneurol.2016.11.006
    1. He D, Xu Y, Xiong X, Yin C, Lei S, Cheng X. The bone marrow-derived mesenchymal stem cells (Bmscs) alleviate diabetic peripheral neuropathy induced by stz Via activating gsk-3β/β-Catenin signaling pathway. Environ Toxicol Pharmacol (2020) 79:103432. doi: 10.1016/j.etap.2020.103432
    1. Zhou JY, Zhang Z, Qian GS. Mesenchymal stem cells to treat diabetic neuropathy: A long and strenuous way from bench to the clinic. Cell Death Discovery (2016) 2:16055. doi: 10.1038/cddiscovery.2016.55
    1. Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. . Mesenchymal stem cells promote diabetic corneal epithelial wound healing through tsg-6-Dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci (2017) 58(10):4344–54. doi: 10.1167/iovs.17-21506
    1. Zickri MB, Ahmad NA, Maadawi ZM, Mohamady YK, Metwally HG. Effect of stem cell therapy on induced diabetic keratopathy in albino rat. Int J Stem Cells (2012) 5(1):57–64. doi: 10.15283/ijsc.2012.5.1.57
    1. Jackson CJ, Myklebust Ernø IT, Ringstad H, Tønseth KA, Dartt DA, Utheim TP. Simple limbal epithelial transplantation: Current status and future perspectives. Stem Cells Transl Med (2020) 9(3):316–27. doi: 10.1002/sctm.19-0203
    1. Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, et al. . Co-Ordinated ocular development from human ips cells and recovery of corneal function. Nature (2016) 531(7594):376–80. doi: 10.1038/nature17000
    1. He J, Ou S, Ren J, Sun H, He X, Zhao Z, et al. . Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocular Surface (2020) 18(4):672–80. doi: 10.1016/j.jtos.2020.07.009
    1. Bandeira F, Goh TW, Setiawan M, Yam GH, Mehta JS. Cellular therapy of corneal epithelial defect by adipose mesenchymal stem cell-derived epithelial progenitors. Stem Cell Res Ther (2020) 11(1):14. doi: 10.1186/s13287-019-1533-1
    1. Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, et al. . Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocular Surface (2019) 17(4):729–36. doi: 10.1016/j.jtos.2019.07.005
    1. Pflugfelder SC, Stern ME. Biological functions of tear film. Exp Eye Res (2020) 197:108115. doi: 10.1016/j.exer.2020.108115
    1. Wong HL, Bu Y, Chan YK, Shih KC. Lycium barbarum polysaccharide promotes corneal re-epithelialization after alkaline injury. Exp Eye Res (2022) 221:109151. doi: 10.1016/j.exer.2022.109151
    1. Desjardins P, Berthiaume R, Couture C, Le-Bel G, Roy V, Gros-Louis F, et al. . Impact of exosomes released by different corneal cell types on the wound healing properties of human corneal epithelial cells. Int J Mol Sci (2022) 23(20):12201. doi: 10.3390/ijms232012201
    1. Shen X, Li S, Zhao X, Han J, Chen J, Rao Z, et al. . Dual-crosslinked regenerative hydrogel for sutureless long-term repair of corneal defect. Bioactive Mater (2023) 20:434–48. doi: 10.1016/j.bioactmat.2022.06.006

Source: PubMed

3
Abonnieren