Acute Effects of Percussive Massage Therapy on Thoracolumbar Fascia Thickness and Ultrasound Echo Intensity in Healthy Male Individuals: A Randomized Controlled Trial

Chao Yang, Xingyu Huang, Ying Li, Wiraphong Sucharit, Patpiya Sirasaporn, Wichai Eungpinichpong, Chao Yang, Xingyu Huang, Ying Li, Wiraphong Sucharit, Patpiya Sirasaporn, Wichai Eungpinichpong

Abstract

Percussive massage therapy (PT) has been widely used by therapists and the fitness population to treat myofascial-related conditions. However, there is no evidence to confirm the effects of PT on the fascia. This study aimed to investigate the effects of PT on thoracolumbar fascia (TLF) morphology and other related outcomes.

Methods: Sixty-six healthy males participated and were randomly allocated into a percussive massage group (PT group) and a control group. The PT group received 15 min of back percussion massage, while the control group rested prone lying in the same environment for 15 min. Thoracolumbar fascia (TLF) thickness and echo intensity, perceived stiffness, lumbar flexibility, and skin temperature were measured in both groups before and immediately after the intervention.

Result: TLF thickness and lumbar flexibility did not change when compared in the two groups. However, the echo intensity (left side, difference -3.36, 95% CI -5.1 to -1.6; right side, difference -4.39, 95% CI -6.1 to -2.7) and perceived stiffness (difference, -1.18, 95% CI -1.84 to -0.52) in the TLF region were significantly lower in the PT group than in the control group and were accompanied by increased skin temperature (difference 0.29, 95% CI 0.11 to 0.48).

Conclusion: We suggest that a 15 min PT with 30 Hz on the back region could reduce TLF echo intensity and perceived stiffness and increase skin temperature in healthy men individual.

Keywords: back; fascia; massage; percussion; ultrasound.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Percussive massage therapy diagram.
Figure 2
Figure 2
Example of a parasagittal ultrasound image.
Figure 3
Figure 3
Thoracolumbar fascia thickness and echo intensity measurement process. (A). Use ImageJ to draw the boundaries of the TLF. (B). CSA of TLF histogram displayed. (C). Hyperbolic diagram of the TLF of CSA obtained after texture extraction by AI imaging software (version 1, Yongzhou, China).
Figure 4
Figure 4
The CONSORT flow chart shows the acute percussive massage trial participant pathway. Intervention group = PT group.
Figure 5
Figure 5
Results of inter-group and intra-group comparisons of other outcomes. Abbreviations: PT: percussive massage therapy; Control: control group; Pre: before the intervention; Post: after the intervention. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, ns represents no significant differences.

References

    1. Zügel M., Maganaris C.N., Wilke J., Jurkat-Rott K., Klingler W., Wearing S.C., Findley T., Barbe M.F., Steinacker J.M., Vleeming A., et al. Fascial Tissue Research in Sports Medicine: From Molecules to Tissue Adaptation, Injury and Diagnostics: Consensus Statement. Br. J. Sport. Med. 2018;52:1497. doi: 10.1136/bjsports-2018-099308.
    1. Langevin H.M., Keely P., Mao J., Hodge L.M., Schleip R., Deng G., Hinz B., Swartz M.A., De Valois B.A., Zick S., et al. Connecting (T)Issues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer Res. 2016;76:6159–6162. doi: 10.1158/0008-5472.CAN-16-0753.
    1. Benjamin M. The Fascia of the Limbs and Back—A Review. J. Anat. 2009;214:1–18. doi: 10.1111/j.1469-7580.2008.01011.x.
    1. Willard F.H., Vleeming A., Schuenke M.D., Danneels L., Schleip R. The Thoracolumbar Fascia: Anatomy, Function and Clinical Considerations. J. Anat. 2012;221:507–536. doi: 10.1111/j.1469-7580.2012.01511.x.
    1. Langevin H.M., Sherman K.J. Pathophysiological Model for Chronic Low Back Pain Integrating Connective Tissue and Nervous System Mechanisms. Med. Hypotheses. 2007;68:74–80. doi: 10.1016/j.mehy.2006.06.033.
    1. Langevin H.M., Stevens-Tuttle D., Fox J.R., Badger G.J., Bouffard N.A., Krag M.H., Wu J., Henry S.M. Ultrasound Evidence of Altered Lumbar Connective Tissue Structure in Human Subjects with Chronic Low Back Pain. BMC Musculoskelet. Disord. 2009;10:151. doi: 10.1186/1471-2474-10-151.
    1. Langevin H.M., Fox J.R., Koptiuch C., Badger G.J., Greenan-Naumann A.C., Bouffard N.A., Konofagou E.E., Lee W.N., Triano J.J., Henry S.M. Reduced Thoracolumbar Fascia Shear Strain in Human Chronic Low Back Pain. BMC Musculoskelet. Disord. 2011;12:203. doi: 10.1186/1471-2474-12-203.
    1. Almaz J., Daniel L., Romero-morales C., Bravo-aguilar M., Calvo-lobo C. Quantitative Ultrasound Imaging Differences in Multifidus and Thoracolumbar Fasciae between Athletes with and without Chronic Lumbopelvic Pain: A Case-Control Study. J. Clin. Med. 2020;9:2647.
    1. Schilder A., Hoheisel U., Magerl W., Benrath J., Klein T., Treede R.D. Sensory Findings after Stimulation of the Thoracolumbar Fascia with Hypertonic Saline Suggest Its Contribution to Low Back Pain. Pain. 2014;155:222–231. doi: 10.1016/j.pain.2013.09.025.
    1. Wilke J., Schleip R., Klingler W., Stecco C. The Lumbodorsal Fascia as a Potential Source of Low Back Pain: A Narrative Review. BioMed Res. Int. 2017;2017:5349620. doi: 10.1155/2017/5349620.
    1. Di Matteo A., Filippucci E., Cipolletta E., Martire V., Jesus D., Musca A., Corradini D., Isidori M., Salaffi F., Grassi W. How Normal Is the Enthesis by Ultrasound in Healthy Subjects? Clin. Exp. Rheumatol. 2020;38:472–478.
    1. Pavan P.G., Stecco A., Stern R., Stecco C. Painful Connections: Densification versus Fibrosis of Fascia. Curr. Pain Headache Rep. 2014;18:441. doi: 10.1007/s11916-014-0441-4.
    1. Chase P.B. The Rolf Method of Structural Integration on Fascial Tissue Stiffness, Elasticity, and Superficial Blood Perfusion in Healthy Individuals: The Prospective, Interventional Study. Front. Physiol. 2020;11:1062. doi: 10.3389/fphys.2020.01062.
    1. Cullen M.F.L., Casazza G.A., Davis B.A. Passive Recovery Strategies after Exercise: A Narrative Literature Review of the Current Evidence. Curr. Sport. Med. Rep. 2021;20:351–358. doi: 10.1249/JSR.0000000000000859.
    1. Stecco A., Meneghini A., Stern R., Stecco C., Imamura M. Ultrasonography in Myofascial Neck Pain: Randomized Clinical trial for Diagnosis and Follow-Up. Surg. Radiol. Anat. 2014;36:243–253. doi: 10.1007/s00276-013-1185-2.
    1. Stecco A., Stern R., Fantoni I., De Caro R., Stecco C. Fascial Disorders: Implications for Treatment. PMR. 2016;8:161–168. doi: 10.1016/j.pmrj.2015.06.006.
    1. Cheatham S.W., Baker R.T., Behm D.G., Stull K., Kolber M.J. Mechanical Percussion Devices: A Survey of Practice Patterns among Healthcare Professionals. Int. J. Sport. Phys. Ther. 2021;16:766–777. doi: 10.26603/001c.23530.
    1. Lupowitz L. Vibration Therapy—A Clinical Commentary. Int. J. Sport. Phys. Ther. 2022;17:984–987. doi: 10.26603/001c.36964.
    1. García-Sillero M., Jurado-Castro J.M., Benítez-Porres J., Vargas-Molina S. Acute Effects of a Percussive Massage Treatment on Movement Velocity during Resistance Training. Int. J. Environ. Res. Public Health. 2021;18:7726. doi: 10.3390/ijerph18157726.
    1. Konrad A., Glashüttner C., Reiner M.M., Bernsteiner D., Tilp M. The Acute Effects of a Percussive Massage Treatment with a Hypervolt Device on Plantar Flexor Muscles’ Range of Motion and Performance. J. Sport. Sci. Med. 2020;19:690–694.
    1. García-Sillero M., Benítez-Porres J., García-Romero J., Bonilla D.A., Petro J.L., Vargas-Molina S. Comparison of Interventional Strategies to Improve Recovery after Eccentric Exercise-Induced Muscle Fatigue. Int. J. Environ. Res. Public Health. 2021;18:647. doi: 10.3390/ijerph18020647.
    1. Trainer J.H., Pascarella M., Paul R.W., Thomas S.J. Acute Effects of Percussive Therapy on the Posterior Shoulder Muscles Differ Based on the Athlete’s Soreness Response. Int. J. Sport. Phys. Ther. 2022;17:887–895. doi: 10.26603/001c.37254.
    1. Guang H., Ji L., Shi Y. Focal Vibration Stretches Muscle Fibers by Producing Muscle Waves. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:839–846. doi: 10.1109/TNSRE.2018.2816953.
    1. Yang C., Eungpinichpong W., Sucharit W., Huang X. Immediate Effects of Percussive Massage Treatment on Thoracolumbar Fascia Thickness: A Quasi-Experimental Design in Healthy Individuals. Arch. Allied Health Sci. 2022;34:22–32.
    1. Peloquin K., Barnhardt M., Behling G., Braun S. The Immediate Effect of Percussion Myofascial Release Therapy on Hamstring Flexibility and Hip Flexion Range of Motion Among Active Young Adults. Int. J. Res. Phys. 2022;17:48–61.
    1. Oatyimprai K., Eungpinichpong W., Buranruk O., Konharn K., Tudpor K. Effect of Traditional Thai Massage on Muscle Oxygen Saturation in Low Back Pain Patients: A Preliminary Study. Int. J. GEOMATE. 2020;19:54–61. doi: 10.21660/2020.72.5636.
    1. Imamura M., Furlan A.D., Dryden T., Irvin E. Evidence-Informed Management of Chronic Low Back Pain with Massage. Spine J. 2008;8:121–133. doi: 10.1016/j.spinee.2007.10.016.
    1. De Coninck K., Hambly K., Dickinson J.W., Passfield L. Measuring the Morphological Characteristics of Thoracolumbar Fascia in Ultrasound Images: An Inter-Rater Reliability Study. BMC Musculoskelet. Disord. 2018;19:180. doi: 10.1186/s12891-018-2088-5.
    1. Wilke J., Macchi V., De Caro R., Stecco C. Fascia Thickness, Aging and Flexibility: Is There an Association? J. Anat. 2019;234:43–49. doi: 10.1111/joa.12902.
    1. Pirri C., Stecco C., Fede C., Macchi V., Özçakar L. Ultrasound Imaging of the Fascial Layers: You See (Only) What You Know. J. Ultrasound Med. 2020;39:827–828. doi: 10.1002/jum.15148.
    1. Caresio C., Molinari F., Emanuel G., Minetto M.A. Muscle Echo Intensity: Reliability and Conditioning Factors. Clin. Physiol. Funct. Imaging. 2015;35:393–403. doi: 10.1111/cpf.12175.
    1. Siegmund L.A., Barkley J.E., Knapp D., Peer K.S. Acute Effects of Local Vibration with Biomechanical Muscle Stimulation on Low-Back Flexibility and Perceived Stiffness. Athl. Train. Sport. Health Care. 2014;6:37–45. doi: 10.3928/19425864-20140115-01.
    1. Robinson H.S., Mengshoel A.M. Assessments of Lumbar Flexion Range of Motion. Spine. 2014;39:E270–E275. doi: 10.1097/BRS.0000000000000131.
    1. Tousignant M., Poulin L., Marchand S., Viau A., Place C. The Modified-Modified Schober Test for Range of Motion Assessment of Lumbar Flexion in Patients with Low Back Pain: A Study of Criterion Validity, Intra-and Inter-Rater Reliability and Minimum Metrically Detectable Change. Disabil. Rehabil. 2005;27:553–559. doi: 10.1080/09638280400018411.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. Routledge; New York, NY, USA: 1988.
    1. Park H.S., Martin B.J. Contribution of the Tonic Vibration Reflex to Muscle Stress and Muscle Fatigue. Scand. J. Work. Environ. Health. 1993;19:35–42. doi: 10.5271/sjweh.1506.
    1. Bordoni B., Zanier E. Understanding Fibroblasts in Order to Comprehend the Osteopathic Treatment of the Fascia. Evid.-Based Complement. Altern. Med. 2015;2015:860934. doi: 10.1155/2015/860934.
    1. Liang H.W., Wang T.G., Chen W.S., Hou S.M. Thinner Plantar Fascia Predicts Decreased Pain after Extracorporeal Shock Wave Therapy. Clin. Orthop. Relat. Res. 2007;460:219–225. doi: 10.1097/BLO.0b013e31804ffd19.
    1. Zullo A., Fleckenstein J., Schleip R., Hoppe K., Wearing S., Klingler W. Structural and Functional Changes in the Coupling of Fascial Tissue, Skeletal Muscle, and Nerves During Aging. Front. Physiol. 2020;11:592. doi: 10.3389/fphys.2020.00592.
    1. Stock M.S., Thompson B.J. Echo Intensity as an Indicator of Skeletal Muscle Quality: Applications, Methodology, and Future directions. Eur. J. Appl. Physiol. 2021;121:369–380. doi: 10.1007/s00421-020-04556-6.
    1. Pillen S., Tak R.O., Zwarts M.J., Lammens M.M.Y., Verrijp K.N., Arts I.M.P., van der Laak J.A., Hoogerbrugge P.M., van Engelen B.G.M., Verrips A. Skeletal Muscle Ultrasound: Correlation between Fibrous Tissue and Echo Intensity. Ultrasound Med. Amp Biol. 2009;35:443–446. doi: 10.1016/j.ultrasmedbio.2008.09.016.
    1. Stecco A., Cowman M., Pirri N., Raghavan P., Pirri C. Densification: Hyaluronan Aggregation in Different Human Organs. Bioengineering. 2022;9:159. doi: 10.3390/bioengineering9040159.
    1. Krause F., Wilke J., Niederer D., Vogt L., Banzer W. Acute Effects of Foam Rolling on Passive Stiffness, Stretch Sensation and Fascial Sliding: A Randomized Controlled Trial. Hum. Mov. Sci. 2019;67:102514. doi: 10.1016/j.humov.2019.102514.
    1. Griefahn A., Knicker A., von Piekartz H. Efficacy of Foam Rolling with Additional Vibration Stimulation on the Mobility of the Thoracolumbar Fascia. An Observational Study. J. Bodyw. Mov. Ther. 2021;26:84–93. doi: 10.1016/j.jbmt.2020.12.036.
    1. Okamoto T., Masuhara M., Ikuta K. Acute Effects of Self-Myofascial Release Using a Foam Roller on Arterial Function. J. Strength Cond. Res. 2014;28:69–73. doi: 10.1519/JSC.0b013e31829480f5.
    1. Stecco C., Stern R., Porzionato A., MacChi V., Masiero S., Stecco A., De Caro R. Hyaluronan within Fascia in the Etiology of Myofascial Pain. Surg. Radiol. Anat. 2011;33:891–896. doi: 10.1007/s00276-011-0876-9.
    1. Roman M., Chaudhry H., Bukiet B., Stecco A., Findley T.W. Mathematical Analysis of the Flow of Hyaluronic Acid around Fascia during Manual Therapy Motions. J. Am. Osteopath. Assoc. 2013;113:600–610. doi: 10.7556/jaoa.2013.021.
    1. Langevin H.M. Fascia Mobility, Proprioception, and Myofascial Pain. Life. 2021;11:668. doi: 10.3390/life11070668.
    1. Tadmor R., Chen N., Israelachvili J.N. Thin Film Rheology and Lubricity of Hyaluronic Acid Solutions at a Normal Physiological Concentration. J. Biomed. Mater. Res. 2002;61:514–523. doi: 10.1002/jbm.10215.
    1. Behm D.G., Wilke J. Do Self-Myofascial Release Devices Release Myofascia? Rolling Mechanisms: A Narrative Review. Sport. Med. 2019;49:1173–1181. doi: 10.1007/s40279-019-01149-y.
    1. Schleip R., Gabbiani G., Wilke J., Naylor I., Hinz B., Zorn A., Jäger H., Breul R., Schreiner S., Klingler W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front. Physiol. 2019;10:336. doi: 10.3389/fphys.2019.00336.
    1. Schleip R., Klingler W. Active Contractile Properties of Fascia. Clin. Anat. 2019;32:891–895. doi: 10.1002/ca.23391.

Source: PubMed

3
Abonnieren