The Role of Immune Cells in Oxi-Inflamm-Aging

Irene Martínez de Toda, Noemi Ceprián, Estefanía Díaz-Del Cerro, Mónica De la Fuente, Irene Martínez de Toda, Noemi Ceprián, Estefanía Díaz-Del Cerro, Mónica De la Fuente

Abstract

Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism's health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system's activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.

Keywords: aging; biological age; immune cells; inflammatory stress; oxidative stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Influence of immunosenescence in the accumulation of senescent cells. Oxidative compounds come mainly from two sources, the mitochondria and NOX-2, located in the membrane of immune cells, especially in phagocytes. These oxidative compounds lead to senescent and apoptotic cells. However, senescence can be transient and homeostatic or chronic and damaging depending on the efficiency of immune cells in removing them. Thus, from the fetal stage to adulthood, the senescent cells that appear are transitory thanks to the adequate function of immune cells. Thus, immune cells remove these cells, promoting regeneration and repair processes, which are crucial for proper development. However, from adulthood to death, chronic exposure to ROS produces oxidative tissue damage and deterioration of the function of immune cells (immunosenescence), which causes accumulation of senescent and apoptotic cells, leading to accelerated aging and, consequently, increased morbidity and mortality.
Figure 2
Figure 2
Effects of immunosenescence in oxi-inflamm-aging. 1. Aging starts with the leakage of reactive oxygen species (ROS) that happens in the mitochondria, that react with the mitochondrial DNA (mtDNA) and cause mitochondrial dysfunction, which increases ROS production and generation of mtDNA fragments. These fragments travel to the nucleus and insert into nDNA generating DNA damage and genomic instability. These ROS beyond a threshold cause the cell to enter senescence and develop a senescence-associated secretory phenotype (SASP), which happens in both immune and non-immune cell types. 2. ROS impact the expression of cadherins and integrins, causing a higher adherence and lower migration capacity of immune cells. 3. DNA damage results in a lower lymphoproliferative response. 4. ROS decrease the cytotoxic activity of immune cells that is responsible for the accumulation of chronic senescent cells in other tissues. 5. Uncontrolled ROS balance also leads to inefficient phagocytosis, which results in the increased concentration of several molecules from both immune and non-immune cells that behave as damage-associated molecular patterns (DAMPs) and that can bind to immune cells and throughout inflammasome and nuclear factor kappa B (NF-κB) activation induce the production of inflammatory mediators (cytokines, CKs) causing inflamm-aging. The accumulation of chronic senescent cells, together with the increased pro-inflammatory mediators at the systemic level, causes excessive production of ROS by immune cells, mainly phagocytes through NADPH-oxidase (NOX-2), to destroy and remove these senescent cells. 6. This situation generates vicious spiral feedback of oxidation and inflammation with aging (oxi-inflamm-aging), in which immune cells play a central role.
Figure 3
Figure 3
Dual effect of different lifestyle situations on oxi-inflamm-aging. The communication between the regulatory systems (nervous, endocrine, and immune systems), known as neuroimmunoendocrine communication, ensures the homeostasis of the organism and, therefore, health. This crosstalk takes place by the existence of receptors in each homeostatic system for neurotransmitters (NT), hormones (H), and cytokines (CKS). Oxi-inflamm-aging alters the function of the regulatory systems as well as the neuroimmunoendocrine communication, which causes age-related increased morbidity and mortality. External factors, such as the social environment, nutrition, and exercise, can modify the oxidative and inflammatory stress of the organism and the function of immune, nervous, and endocrine cells, altering this communication, and consequently, modulating the aging rate of an individual. Thus, a negative social environment, which can be the isolation of an individual (rodents) or loneliness (humans), or the cohabitation with sick or older subjects, affects the neuroimmunoendocrine communication negatively, increasing the rate of aging while a positive social environment, understood as living with healthy or younger individuals, enhances this communication, decreasing the aging rate. With respect to nutrition, high-fat diets and obesity, as well as an excess of antioxidant supplementation, accelerate the rate of aging, whereas caloric restriction or supplementation with adequate amounts of vitamins, antioxidants, or probiotics decelerate it. Finally, whereas a sedentary life or overtraining can negatively impact the aging rate, low and moderate exercise was shown to slow down aging. All these conditions modulate the function of immune cells by increasing or decreasing oxidant, pro-inflammatory, antioxidant, and anti-inflammatory compounds; therefore, they can alter the rate of oxi-inflamm-aging. Antinf CKS: anti-inflamatory cytokines; Ax: antioxidants; CKS: cytokines; H: hormones; NT: neurotransmitters; Proinf CKS: pro-inflammatory cytokines.

References

    1. López-Otín C., Kroemer G. Hallmarks of Health. Cell. 2021;184:33–63. doi: 10.1016/j.cell.2020.11.034.
    1. De la Fuente M., Miquel J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009;15:3003–3026. doi: 10.2174/138161209789058110.
    1. Del Rey A., Besedovsky H.O. Immune-Neuro-Endocrine Reflexes, Circuits, and Networks: Physiologic and Evolutionary Implications. Front. Horm. Res. 2017;48:1–18. doi: 10.1159/000452902.
    1. De la Fuente M. Oxidation and Inflammation in the Immune and Nervous Systems, a Link Between Aging and Anxiety. In: Fulop T., Franceschi C., Hirokawa K., Pawelec G., editors. Handbook of Immunosenescence. Springer; Dordrecht, The Netherlands: 2018.
    1. Rattan S.I. Healthy ageing, but what is health? Biogerontology. 2013;14:673–677. doi: 10.1007/s10522-013-9442-7.
    1. Rattan S.I. Molecular gerontology: From homeodynamics to hormesis. Curr. Pharm. Des. 2014;20:3036–3039. doi: 10.2174/13816128113196660708.
    1. Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298.
    1. Harman D. The biologic clock: The mitochondria? J. Am. Geriatr. Soc. 1972;20:145–147. doi: 10.1111/j.1532-5415.1972.tb00787.x.
    1. Miquel J., Economos A.C., Fleming J., Johnson J.E., Jr. Mitochondrial role in cell aging. Exp. Gerontol. 1980;15:575–591. doi: 10.1016/0531-5565(80)90010-8.
    1. Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: Genetic and evolutionary implications. Exp. Gerontol. 1998;33:113–126. doi: 10.1016/S0531-5565(97)00060-0.
    1. Barja G. Updating the mitochondrial free radical theory of aging: An integrated view, key aspects, and confounding concepts. Antioxid. Redox Signal. 2013;19:1420–1445. doi: 10.1089/ars.2012.5148.
    1. Zhang J., Wang X., Vikash V., Ye Q., Wu D., Liu Y., Dong W. ROS and ROS-Mediated Cellular Signaling. Oxid. Med. Cell. Longev. 2016;2016:4350965. doi: 10.1155/2016/4350965.
    1. Gladyshev V.N. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal. 2014;20:727–731. doi: 10.1089/ars.2013.5228.
    1. Sadowska-Bartosz I., Bartosz G. Effect of antioxidants supplementation on aging and longevity. BioMed Res. Int. 2014;2014:404680. doi: 10.1155/2014/404680.
    1. Honda Y., Honda S. Oxidative stress and life span determination in the nematode Caenorhabditis elegans. Ann. N. Y. Acad. Sci. 2002;959:466–474. doi: 10.1111/j.1749-6632.2002.tb02117.x.
    1. Ristow M., Schmeisser S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 2011;51:327–336. doi: 10.1016/j.freeradbiomed.2011.05.010.
    1. Mesquita A., Weinberger M., Silva A., Sampaio-Marques B., Almeida B., Leão C., Costa V., Rodrigues F., Burhans W.C., Ludovico P. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. Proc. Natl. Acad. Sci. USA. 2010;107:15123–15128. doi: 10.1073/pnas.1004432107.
    1. Yang W., Hekimi S. A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol. 2010;8:e1000556. doi: 10.1371/journal.pbio.1000556.
    1. Schulz T.J., Zarse K., Voigt A., Urban N., Birringer M., Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 2007;6:280–293. doi: 10.1016/j.cmet.2007.08.011.
    1. Barja G. The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging. 2000;12:342–355. doi: 10.1007/BF03339859.
    1. Jang Y.C., Pérez V.I., Song W., Lustgarten M.S., Salmon A.B., Mele J., Qi W., Liu Y., Liang H., Chaudhuri A., et al. Overexpression of Mn superoxide dismutase does not increase life span in mice. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:1114–1125. doi: 10.1093/gerona/glp100.
    1. Mockett R.J., Sohal B.H., Sohal R.S. Expression of multiple copies of mitochondrially targeted catalase or genomic Mn superoxide dismutase transgenes does not extend the life span of Drosophila melanogaster. Free Radic. Biol. Med. 2010;49:2028–2031. doi: 10.1016/j.freeradbiomed.2010.09.029.
    1. Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–1911. doi: 10.1126/science.1106653.
    1. Vermot A., Petit-Härtlein I., Smith S.M.E., Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants. 2021;10:890. doi: 10.3390/antiox10060890.
    1. Konno T., Melo E.P., Chambers J.E., Avezov E. Intracellular Sources of ROS/H2O2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells. 2021;10:233. doi: 10.3390/cells10020233.
    1. Knaus U.G. Oxidants in Physiological Processes. Handb. Exp. Pharmacol. 2021;264:27–47. doi: 10.1007/164_2020_380.
    1. Moghadam Z.M., Henneke P., Kolter J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front. Cell Dev. Biol. 2021;9:628991. doi: 10.3389/fcell.2021.628991.
    1. Singh G., Pachouri U.C., Khaidem D.C., Kundu A., Chopra C., Singh P. Mitochondrial DNA Damage and Diseases. F1000Research. 2015;4:176. doi: 10.12688/f1000research.6665.1.
    1. Puertas M.J., González-Sánchez M. Insertions of mitochondrial DNA into the nucleus-effects and role in cell evolution. Genome. 2020;63:365–374. doi: 10.1139/gen-2019-0151.
    1. Barja G. Towards a unified mechanistic theory of aging. Exp. Gerontol. 2019;124:110627. doi: 10.1016/j.exger.2019.05.016.
    1. Tuboly E., Mcllroy D., Briggs G., Lott N., Balogh Z.J. Clinical implications and pathological associations of circulating mitochondrial DNA. Front. Biosci. 2017;22:1011–1022. doi: 10.2741/4530.
    1. Boyapati R.K., Tamborska A., Dorward D.A., Ho G.T. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Research. 2017;6:169. doi: 10.12688/f1000research.10397.1.
    1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Franceschi C., Bonafè M., Valensin S., Olivieri F., De Luca M., Ottaviani E., De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000;908:244–254. doi: 10.1111/j.1749-6632.2000.tb06651.x.
    1. Vida C., González E.M., De la Fuente M. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety. Curr. Pharm. Des. 2014;20:4656–4678. doi: 10.2174/1381612820666140130201734.
    1. Fülöp T., Larbi A., Witkowski J.M. Human Inflammaging. Gerontology. 2019;65:495–504. doi: 10.1159/000497375.
    1. Khansari N., Shakiba Y., Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009;3:73–80. doi: 10.2174/187221309787158371.
    1. Federico A., Morgillo F., Tuccillo C., Ciardiello F., Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer. 2007;121:2381–2386. doi: 10.1002/ijc.23192.
    1. Su Y.J., Wang P.W., Weng S.W. The Role of Mitochondria in Immune-Cell-Mediated Tissue Regeneration and Ageing. Int. J. Mol. Sci. 2021;22:2668. doi: 10.3390/ijms22052668.
    1. Picca A., Calvani R., Coelho-Junior H.J., Marzetti E. Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells. 2021;10:537. doi: 10.3390/cells10030537.
    1. Dan Dunn J., Alvarez L.A., Zhang X., Soldati T. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biol. 2015;6:472–485. doi: 10.1016/j.redox.2015.09.005.
    1. Cannizzo E.S., Clement C.C., Sahu R., Follo C., Santambrogio L. Oxidative stress, inflamm-aging and immunosenescence. J. Proteom. 2011;74:2313–2323. doi: 10.1016/j.jprot.2011.06.005.
    1. Chen G.Y., Nuñez G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010;10:826–837. doi: 10.1038/nri2873.
    1. Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010;11:136–140. doi: 10.1038/ni.1831.
    1. Vida C., de Toda I.M., Cruces J., Garrido A., Gonzalez-Sanchez M., De la Fuente M. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice. Redox Biol. 2017;12:423–437. doi: 10.1016/j.redox.2017.03.005.
    1. Pawelec G. Age and immunity: What is “immunosenescence”? Exp. Gerontol. 2018;105:4–9. doi: 10.1016/j.exger.2017.10.024.
    1. Feehan J., Tripodi N., Apostolopoulos V. The twilight of the immune system: The impact of immunosenescence in aging. Maturitas. 2021;147:7–13. doi: 10.1016/j.maturitas.2021.02.006.
    1. Rodriguez I.J., Lalinde Ruiz N., Llano León M., Martínez Enríquez L., Montilla Velásquez M.D.P., Ortiz Aguirre J.P., Rodríguez Bohórquez O.M., Velandia Vargas E.A., Hernández E.D., Parra López C.A. Immunosenescence Study of T Cells: A Systematic Review. Front. Immunol. 2021;11:604591. doi: 10.3389/fimmu.2020.604591.
    1. Rodrigues L.P., Teixeira V.R., Alencar-Silva T., Simonassi-Paiva B., Pereira R.W., Pogue R., Carvalho J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev. 2021;59:9–21. doi: 10.1016/j.cytogfr.2021.01.006.
    1. Solana R., Mariani E. NK and NK/T cells in human senescence. Vaccine. 2000;18:1613–1620. doi: 10.1016/S0264-410X(99)00495-8.
    1. Hazeldine J., Lord J.M. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res. Rev. 2013;12:1069–1078. doi: 10.1016/j.arr.2013.04.003.
    1. Hashimoto K., Kouno T., Ikawa T., Hayatsu N., Miyajima Y., Yabukami H., Terooatea T., Sasaki T., Suzuki T., Valentine M., et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl. Acad. Sci. USA. 2019;116:24242–24251. doi: 10.1073/pnas.1907883116.
    1. Alonso-Fernández P., Puerto M., Maté I., Ribera J.M., de la Fuente M. Neutrophils of centenarians show function levels similar to those of young adults. J. Am. Geriatr. Soc. 2008;56:2244–2251. doi: 10.1111/j.1532-5415.2008.02018.x.
    1. Martínez de Toda I., Maté I., Vida C., Cruces J., De la Fuente M. Immune function parameters as markers of biological age and predictors of longevity. Aging. 2016;8:3110–3119. doi: 10.18632/aging.101116.
    1. Van der Loo B., Schildknecht S., Zee R., Bachschmid M.M. Signalling processes in endothelial ageing in relation to chronic oxidative stress and their potential therapeutic implications in humans. Exp. Physiol. 2009;94:305–310. doi: 10.1113/expphysiol.2008.043315.
    1. Stout-Delgado H.W., Du W., Shirali A.C., Booth C.J., Goldstein D.R. Aging promotes neutrophil-induced mortality by augmenting IL-17 production during viral infection. Cell Host Microbe. 2009;6:446–456. doi: 10.1016/j.chom.2009.09.011.
    1. Sendama W. The effect of ageing on the resolution of inflammation. Ageing Res. Rev. 2020;57:101000. doi: 10.1016/j.arr.2019.101000.
    1. Van Beek A.A., Van den Bossche J., Mastroberardino P.G., de Winther M.P.J., Leenen P.J.M. Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging? Trends Immunol. 2019;40:113–127. doi: 10.1016/j.it.2018.12.007.
    1. Kale A., Sharma A., Stolzing A., Desprez P.Y., Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun. Ageing. 2020;17:16. doi: 10.1186/s12979-020-00187-9.
    1. Cope A.P. Studies of T-cell activation in chronic inflammation. Arthritis Res. 2002;3:S197–S211. doi: 10.1186/ar557.
    1. Thorén F.B., Betten A., Romero A.I., Hellstrand K. Cutting edge: Antioxidative properties of myeloid dendritic cells: Protection of T cells and NK cells from oxygen radical-induced inactivation and apoptosis. J. Immunol. 2007;179:21–25. doi: 10.4049/jimmunol.179.1.21.
    1. Ogata K., An E., Shioi Y., Nakamura K., Luo S., Yokose N., Minami S., Dan K. Association between natural killer cell activity and infection in immunologically normal elderly people. Clin. Exp. Immunol. 2001;124:392–397. doi: 10.1046/j.1365-2249.2001.01571.x.
    1. Aw D., Silva A.B., Palmer D.B. Immunosenescence: Emerging challenges for an ageing population. Immunology. 2007;120:435–446. doi: 10.1111/j.1365-2567.2007.02555.x.
    1. Brighton P.J., Maruyama Y., Fishwick K., Vrljicak P., Tewary S., Fujihara R., Muter J., Lucas E.S., Yamada T., Woods L., et al. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife. 2017;6:e31274. doi: 10.7554/eLife.31274.
    1. Sagiv A., Biran A., Yon M., Simon J., Lowe S.W., Krizhanovsky V. Granule exocytosis mediates immune surveillance of senescent cells. Oncogene. 2013;32:1971–1977. doi: 10.1038/onc.2012.206.
    1. Ovadya Y., Landsberger T., Leins H., Vadai E., Gal H., Biran A., Yosef R., Sagiv A., Agrawal A., Shapira A., et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 2018;9:5435. doi: 10.1038/s41467-018-07825-3.
    1. Ben-Shmuel A., Biber G., Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front. Immunol. 2020;11:275. doi: 10.3389/fimmu.2020.00275.
    1. Song S., Tchkonia T., Jiang J., Kirkland J.L., Sun Y. Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. Adv. Sci. 2020;7:2002611. doi: 10.1002/advs.202002611.
    1. Borghesan M., Hoogaars W.M.H., Varela-Eirin M., Talma N., Demaria M. A Senescence-Centric View of Aging: Implications for Longevity and Disease. Trends Cell Biol. 2020;30:777–791. doi: 10.1016/j.tcb.2020.07.002.
    1. Childs B.G., Baker D.J., Kirkland J.L., Campisi J., van Deursen J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014;15:1139–1153. doi: 10.15252/embr.201439245.
    1. Chandrasekaran A., Idelchik M.D.P.S., Melendez J.A. Redox control of senescence and age-related disease. Redox Biol. 2017;11:91–102. doi: 10.1016/j.redox.2016.11.005.
    1. Pawelec G. Does immunosenescence drive organismal ageing via inflammageing? Immun. Ageing. 2021;18:31. doi: 10.1186/s12979-021-00242-z.
    1. Hall B.M., Balan V., Gleiberman A.S., Strom E., Krasnov P., Virtuoso L.P., Rydkina E., Vujcic S., Balan K., Gitlin I., et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging. 2016;8:1294–1315. doi: 10.18632/aging.100991.
    1. Prattichizzo F., Bonafè M., Olivieri F., Franceschi C. Senescence associated macrophages and “macroph-aging”: Are they pieces of the same puzzle? Aging. 2016;8:3159–3160. doi: 10.18632/aging.101133.
    1. Arranz L., Caamaño J.H., Lord J.M., De la Fuente M. Preserved immune functions and controlled leukocyte oxidative stress in naturally long-lived mice: Possible role of nuclear factor kappa B. J. Gerontol. A Biol. Sci. Med. Sci. 2010;65:941–950. doi: 10.1093/gerona/glq101.
    1. Desdín-Micó G., Soto-Heredero G., Aranda J.F., Oller J., Carrasco E., Gabandé-Rodríguez E., Blanco E.M., Alfranca A., Cussó L., Desco M., et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020;368:1371–1376. doi: 10.1126/science.aax0860.
    1. Blasco M.A. Telomere length, stem cells and aging. Nat. Chem. Biol. 2007;3:640–649. doi: 10.1038/nchembio.2007.38.
    1. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. doi: 10.1186/gb-2013-14-10-r115.
    1. Enroth S., Enroth S.B., Johansson Å., Gyllensten U. Protein profiling reveals consequences of lifestyle choices on predicted biological aging. Sci. Rep. 2015;5:17282. doi: 10.1038/srep17282.
    1. Martínez de Toda I., Vida C., Garrido A., De la Fuente M. Redox Parameters as Markers of the Rate of Aging and Predictors of Life Span. J. Gerontol. A Biol. Sci. Med. Sci. 2020;75:613–620. doi: 10.1093/gerona/glz033.
    1. Martínez de Toda I., Vida C., Sanz San Miguel L., De la Fuente M. Function, Oxidative, and Inflammatory Stress Parameters in Immune Cells as Predictive Markers of Lifespan throughout Aging. Oxid. Med. Cell. Longev. 2019;2019:4574276. doi: 10.1155/2019/4574276.
    1. Martínez de Toda I., Vida C., Díaz-Del Cerro E., De la Fuente M. The Immunity Clock. J. Gerontol. A Biol. Sci. Med. Sci. 2021:glab136. doi: 10.1093/gerona/glab136. Epub ahead of print.
    1. Alpert A., Pickman Y., Leipold M., Rosenberg-Hasson Y., Ji X., Gaujoux R., Rabani H., Starosvetsky E., Kveler K., Schaffert S., et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 2019;25:487–495. doi: 10.1038/s41591-019-0381-y.
    1. Sayed N., Huang Y., Nguyen K., Krejciova-Rajaniemi Z., Grawe A.P., Gao T., Tibshirani R., Hastie T., Alpert A., Cui L., et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging. 2021;1:598–615. doi: 10.1038/s43587-021-00082-y.
    1. Mariotti A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Future Sci. OA. 2015;1:FSO23. doi: 10.4155/fso.15.21.
    1. Lu S., Wei F., Li G. The evolution of the concept of stress and the framework of the stress system. Cell Stress. 2021;5:76–85. doi: 10.15698/cst2021.06.250.
    1. Arranz L., Guayerbas N., De la Fuente M. Impairment of several immune functions in anxious women. J. Psychosom. Res. 2007;62:1–8. doi: 10.1016/j.jpsychores.2006.07.030.
    1. Rohleder N. Acute and chronic stress induced changes in sensitivity of peripheral inflammatory pathways to the signals of multiple stress systems—2011 Curt Richter Award Winner. Psychoneuroendocrinology. 2012;37:307–316. doi: 10.1016/j.psyneuen.2011.12.015.
    1. Cruces J., Venero C., Pereda-Pérez I., De la Fuente M. The effect of psychological stress and social isolation on neuroimmunoendocrine communication. Curr. Pharm. Des. 2014;20:4608–4628. doi: 10.2174/1381612820666140130205822.
    1. de Toda I.M., Miguélez L., Siboni L., Vida C., De la Fuente M. High perceived stress in women is linked to oxidation, inflammation and immunosenescence. Biogerontology. 2019;20:823–835. doi: 10.1007/s10522-019-09829-y.
    1. Garrido A., Cruces J., Ceprián N., Vara E., de la Fuente M. Oxidative-Inflammatory Stress in Immune Cells from Adult Mice with Premature Aging. Int. J. Mol. Sci. 2019;20:769. doi: 10.3390/ijms20030769.
    1. Pérez-Alvarez L., Baeza I., Arranz L., Marco E.M., Borcel E., Guaza C., Viveros M.P., De la Fuente M. Behavioral, endocrine and immunological characteristics of a murine model of premature aging. Dev. Comp. Immunol. 2005;29:965–976. doi: 10.1016/j.dci.2005.02.008.
    1. Viveros M.P., Arranz L., Hernanz A., Miquel J., De la Fuente M. A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence. Neuroimmunomodulation. 2007;14:157–162. doi: 10.1159/000110640.
    1. Martinez de Toda I., Garrido A., Vida C., Gomez-Cabrera M.C., Viña J., De la Fuente M. Frailty Quantified by the “Valencia Score” as a Potential Predictor of Lifespan in Mice. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73:1323–1329. doi: 10.1093/gerona/gly064.
    1. Rattan S.I. Hormesis in aging. Ageing Res. Rev. 2008;7:63–78. doi: 10.1016/j.arr.2007.03.002.
    1. Dhabhar F.S. The short-term stress response−Mother nature’s mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Front. Neuroendocrinol. 2018;49:175–192. doi: 10.1016/j.yfrne.2018.03.004.
    1. Du Preez A., Onorato D., Eiben I., Musaelyan K., Egeland M., Zunszain P.A., Fernandes C., Thuret S., Pariante C.M. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav. Immun. 2021;91:24–47. doi: 10.1016/j.bbi.2020.07.015.
    1. Farbstein D., Hollander N., Peled O., Apter A., Fennig S., Haberman Y., Gitman H., Yaniv I., Shkalim V., Pick C.G., et al. Social isolation in mice: Behavior, immunity, and tumor growth. Stress. 2021;24:229–238. doi: 10.1080/10253890.2020.1777976.
    1. Gorenko J.A., Moran C., Flynn M., Dobson K., Konnert C. Social Isolation and Psychological Distress Among Older Adults Related to COVID-19: A Narrative Review of Remotely-Delivered Interventions and Recommendations. J. Appl. Gerontol. 2021;40:3–13. doi: 10.1177/0733464820958550.
    1. Guner T.A., Erdogan Z., Demir I. The Effect of Loneliness on Death Anxiety in the Elderly During the COVID-19 Pandemic. Omega. 2021:302228211010587. doi: 10.1177/00302228211010587. Epub ahead of print.
    1. Palermo-Neto J., Alves G.J. Neuroimmune interactions and psychologycal stress induced by cohabitation with a sick partner: A review. Curr. Pharm. Des. 2014;20:4629–4641. doi: 10.2174/1381612820666140130204657.
    1. Machado T.R., Alves G.J., Quinteiro-Filho W.M., Palermo-Neto J. Cohabitation with an Ehrlich tumor-bearing cagemate induces immune but not behavioral changes in male mice. Physiol. Behav. 2017;169:82–89. doi: 10.1016/j.physbeh.2016.11.022.
    1. Stevenson J.R., McMahon E.K., Boner W., Haussmann M.F. Oxytocin administration prevents cellular aging caused by social isolation. Psychoneuroendocrinology. 2019;103:52–60. doi: 10.1016/j.psyneuen.2019.01.006.
    1. Li H., Xia N. The role of oxidative stress in cardiovascular disease caused by social isolation and loneliness. Redox Biol. 2020;37:101585. doi: 10.1016/j.redox.2020.101585.
    1. Hamasato E.K., de Lima A.P., de Oliveira A.P., dos Santos Franco A.L., de Lima W.T., Palermo-Neto J. Cohabitation with a sick partner increases allergic lung inflammatory response in mice. Brain Behav. Immun. 2014;42:109–117. doi: 10.1016/j.bbi.2014.06.001.
    1. Smith K.J., Gavey S., Riddell N.E., Kontari P., Victor C. The association between loneliness, social isolation and inflammation: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020;112:519–541. doi: 10.1016/j.neubiorev.2020.02.002.
    1. Holt-Lunstad J., Smith T.B., Baker M., Harris T., Stephenson D. Loneliness and social isolation as risk factors for mortality: A meta-analytic review. Perspect. Psychol. Sci. 2015;10:227–237. doi: 10.1177/1745691614568352.
    1. Seeman T.E., Crimmins E. Social environment effects on health and aging: Integrating epidemiologic and demographic approaches and perspectives. Ann. N. Y. Acad. Sci. 2001;954:88–117. doi: 10.1111/j.1749-6632.2001.tb02749.x.
    1. DeVries A.C. Interaction among social environment, the hypothalamic-pituitary-adrenal axis, and behavior. Horm. Behav. 2002;41:405–413. doi: 10.1006/hbeh.2002.1780.
    1. Garrido A., Cruces J., Ceprián N., De la Fuente M. Improvements in Behavior and Immune Function and Increased Life Span of Old Mice Cohabiting With Adult Animals. J. Gerontol. A Biol. Sci. Med. Sci. 2018;73:873–881. doi: 10.1093/gerona/gly043.
    1. Garrido A., Cruces J., Ceprián N., Díaz-Del Cerro E., Félix J., De la Fuente M. The ratio of prematurely aging to non-prematurely aging mice cohabiting, conditions their behavior, immunity and lifespan. J. Neuroimmunol. 2020;343:577240. doi: 10.1016/j.jneuroim.2020.577240.
    1. Holt-Lunstad J. The Major Health Implications of Social Connection. Curr. Dir. Psychol. Sci. 2021;30:251–259. doi: 10.1177/0963721421999630.
    1. Carruba G., Cocciadiferro L., Di Cristina A., Granata O.M., Dolcemascolo C., Campisi L., Zarcone M., Cinquegrani C., Traina A. Nutrition, aging and cancer: Lessons from dietary intervention studies. Immun. Ageing. 2016;13:13. doi: 10.1186/s12979-016-0069-9.
    1. Kritchevsky S.B. Nutrition and Healthy Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:1303–1305. doi: 10.1093/gerona/glw165.
    1. Van Gaal L.F., Mertens I.L., De Block C.E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875–880. doi: 10.1038/nature05487.
    1. Julien C., Tremblay C., Phivilay A., Berthiaume L., Emond V., Julien P., Calon F. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol. Aging. 2010;31:1516–1531. doi: 10.1016/j.neurobiolaging.2008.08.022.
    1. Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol. Metab. 2013;24:40–47. doi: 10.1016/j.tem.2012.11.003.
    1. Bastien M., Poirier P., Lemieux I., Després J.P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc Dis. 2014;56:369–381. doi: 10.1016/j.pcad.2013.10.016.
    1. Rath E., Haller D. Inflammation and cellular stress: A mechanistic link between immune-mediated and metabolically driven pathologies. Eur. J. Nutr. 2011;50:219–233. doi: 10.1007/s00394-011-0197-0.
    1. Sheridan P.A., Paich H.A., Handy J., Karlsson E.A., Hudgens M.G., Sammon A.B., Holland L.A., Weir S., Noah T.L., Beck M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012;36:1072–1077. doi: 10.1038/ijo.2011.208.
    1. Hunsche C., Hernandez O., De la Fuente M. Impaired Immune Response in Old Mice Suffering from Obesity and Premature Immunosenescence in Adulthood. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:983–991. doi: 10.1093/gerona/glv082.
    1. Hunsche C., de Toda I.M., De la Fuente M. Impacts of the late adulthood diet-induced obesity onset on behavior, immune function, redox state and life span of male and female mice. Brain Behav. Immun. 2019;78:65–77. doi: 10.1016/j.bbi.2019.01.010.
    1. Schipper H.S., Prakken B., Kalkhoven E., Boes M. Adipose tissue-resident immune cells: Key players in immunometabolism. Trends Endocrinol. Metab. 2012;23:407–415. doi: 10.1016/j.tem.2012.05.011.
    1. Klöting N., Blüher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev. Endocr. Metab. Disord. 2014;15:277–287. doi: 10.1007/s11154-014-9301-0.
    1. Kalache A., de Hoogh A.I., Howlett S.E., Kennedy B., Eggersdorfer M., Marsman D.S., Shao A., Griffiths J.C. Nutrition interventions for healthy ageing across the lifespan: A conference report. Eur. J. Nutr. 2019;58:1–11. doi: 10.1007/s00394-019-02027-z.
    1. Mareschal J., Genton L., Collet T.H., Graf C. Nutritional Intervention to Prevent the Functional Decline in Community-Dwelling Older Adults: A Systematic Review. Nutrients. 2020;12:2820. doi: 10.3390/nu12092820.
    1. Heilbronn L.K., Ravussin E. Calorie restriction and aging: Review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 2003;78:361–369. doi: 10.1093/ajcn/78.3.361.
    1. Masoro E.J. Subfield history: Caloric restriction, slowing aging, and extending life. Sci. Aging Knowl. Environ. 2003;2003:RE2. doi: 10.1126/sageke.2003.8.re2.
    1. Gensous N., Franceschi C., Santoro A., Milazzo M., Garagnani P., Bacalini M.G. The Impact of Caloric Restriction on the Epigenetic Signatures of Aging. Int. J. Mol. Sci. 2019;20:2022. doi: 10.3390/ijms20082022.
    1. Pifferi F., Aujard F. Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;95:109702. doi: 10.1016/j.pnpbp.2019.109702.
    1. Caristia S., Vito M., Sarro A., Leone A., Pecere A., Zibetti A., Filigheddu N., Zeppegno P., Prodam F., Faggiano F., et al. Is Caloric Restriction Associated with Better Healthy Aging Outcomes? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2020;12:2290. doi: 10.3390/nu12082290.
    1. Solon-Biet S.M., McMahon A.C., Ballard J.W., Ruohonen K., Wu L.E., Cogger V.C., Warren A., Huang X., Pichaud N., Melvin R.G., et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19:418–430. doi: 10.1016/j.cmet.2014.02.009.
    1. Senior A.M., Solon-Biet S.M., Cogger V.C., Le Couteur D.G., Nakagawa S., Raubenheimer D., Simpson S.J. Dietary macronutrient content, age-specific mortality and lifespan. Proc. Biol. Sci. 2019;286:20190393. doi: 10.1098/rspb.2019.0393.
    1. Duncan S.H., Flint H.J. Probiotics and prebiotics and health in ageing populations. Maturitas. 2013;75:44–50. doi: 10.1016/j.maturitas.2013.02.004.
    1. Vaiserman A.M., Koliada A.K., Marotta F. Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Res. Rev. 2017;35:36–45. doi: 10.1016/j.arr.2017.01.001.
    1. Hunsche C., Cruces J., De la Fuente M. Improvement of Redox State and Functions of Immune Cells as Well as of Behavioral Response in Aged Mice After Two-Week Supplementation of Fermented Milk with Probiotics. Curr. Microbiol. 2019;76:1278–1289. doi: 10.1007/s00284-019-01759-9.
    1. De la Fuente M., Hernanz A., Guayerbas N., Victor V.M., Arnalich F. Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic. Res. 2008;42:272–280. doi: 10.1080/10715760801898838.
    1. De la Fuente M., Sánchez C., Vallejo C., Díaz-Del Cerro E., Arnalich F., Hernanz Á. Vitamin C and vitamin C plus E improve the immune function in the elderly. Exp. Gerontol. 2020;142:111118. doi: 10.1016/j.exger.2020.111118.
    1. Alvarado C., Alvarez P., Puerto M., Gausserès N., Jiménez L., De la Fuente M. Dietary supplementation with antioxidants improves functions and decreases oxidative stress of leukocytes from prematurely aging mice. Nutrition. 2006;22:767–777. doi: 10.1016/j.nut.2006.05.007.
    1. Monti D.A., Zabrecky G., Kremens D., Liang T.W., Wintering N.A., Bazzan A.J., Zhong L., Bowens B.K., Chervoneva I., Intenzo C., et al. N-Acetyl Cysteine Is Associated With Dopaminergic Improvement in Parkinson’s Disease. Clin. Pharmacol. Ther. 2019;106:884–890. doi: 10.1002/cpt.1548.
    1. Pahlavani M.A. Influence of caloric restriction on aging immune system. J. Nutr. Health Aging. 2004;8:38–47.
    1. Alvarez P., Alvarado C., Puerto M., Schlumberger A., Jiménez L., De la Fuente M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition. 2006;22:913–921. doi: 10.1016/j.nut.2005.12.012.
    1. Yaqoob P. Ageing alters the impact of nutrition on immune function. Proc. Nutr. Soc. 2017;76:347–351. doi: 10.1017/S0029665116000781.
    1. Hunsche C., Hernandez O., Gheorghe A., Díaz L.E., Marcos A., De la Fuente M. Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids. Eur. J. Nutr. 2018;57:1123–1135. doi: 10.1007/s00394-017-1395-1.
    1. Weyh C., Krüger K., Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients. 2020;12:622. doi: 10.3390/nu12030622.
    1. Baeza I., De Castro N.M., Arranz L., De la Fuente M. Soybean and green tea polyphenols improve immune function and redox status in very old ovariectomized mice. Rejuvenation Res. 2010;13:665–674. doi: 10.1089/rej.2010.1049.
    1. Sanchez-Roman I., Barja G. Regulation of longevity and oxidative stress by nutritional interventions: Role of methionine restriction. Exp. Gerontol. 2013;48:1030–1042. doi: 10.1016/j.exger.2013.02.021.
    1. Levine M.E., Suarez J.A., Brandhorst S., Balasubramanian P., Cheng C.W., Madia F., Fontana L., Mirisola M.G., Guevara-Aguirre J., Wan J., et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. doi: 10.1016/j.cmet.2014.02.006.
    1. Wallace M.A., Aguirre N.W., Marcotte G.R., Marshall A.G., Baehr L.M., Hughes D.C., Hamilton K.L., Roberts M.N., Lopez-Dominguez J.A., Miller B.F., et al. The ketogenic diet preserves skeletal muscle with aging in mice. Aging Cell. 2021;20:e13322. doi: 10.1111/acel.13322.
    1. De la Fuente M., Victor V.M. Anti-oxidants as modulators of immune function. Immunol. Cell Biol. 2000;78:49–54. doi: 10.1046/j.1440-1711.2000.00884.x.
    1. De la Fuente M. Effects of antioxidants on immune system ageing. Eur. J. Clin. Nutr. 2002;56:S5–S8. doi: 10.1038/sj.ejcn.1601476.
    1. Arranz L., Fernández C., Rodríguez A., Ribera J.M., De la Fuente M. The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Radic. Biol. Med. 2008;45:1252–1262. doi: 10.1016/j.freeradbiomed.2008.07.014.
    1. Guayerbas N., Puerto M., Ferrández M.D., De La Fuente M. A diet supplemented with thiolic anti-oxidants improves leucocyte function in two strains of prematurely ageing mice. Clin. Exp. Pharmacol. Physiol. 2002;29:1009–1014. doi: 10.1046/j.1440-1681.2002.03758.x.
    1. Sharma R., Kapila R., Kapasiya M., Saliganti V., Dass G., Kapila S. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr. Res. 2014;34:968–981. doi: 10.1016/j.nutres.2014.09.006.
    1. Sichetti M., De Marco S., Pagiotti R., Traina G., Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum) Nutrition. 2018;53:95–102. doi: 10.1016/j.nut.2018.02.005.
    1. Azad M.A.K., Sarker M., Wan D. Immunomodulatory Effects of Probiotics on Cytokine Profiles. BioMed Res. Int. 2018;2018:8063647. doi: 10.1155/2018/8063647.
    1. De Moreno de LeBlanc A., Chaves S., Carmuega E., Weill R., Antóine J., Perdigón G. Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology. 2008;213:97–108. doi: 10.1016/j.imbio.2007.07.002.
    1. Dong H., Rowland I., Thomas L.V., Yaqoob P. Immunomodulatory effects of a probiotic drink containing Lactobacillus casei Shirota in healthy older volunteers. Eur. J. Nutr. 2013;52:1853–1863. doi: 10.1007/s00394-012-0487-1.
    1. Maneerat S., Lehtinen M.J., Childs C.E., Forssten S.D., Alhoniemi E., Tiphaine M., Yaqoob P., Ouwehand A.C., Rastall R.A. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes. J. Nutr. Sci. 2014;2:e44. doi: 10.1017/jns.2013.31.
    1. Kimoto-Nira H., Suzuki C., Kobayashi M., Sasaki K., Kurisaki J., Mizumachi K. Anti-ageing effect of a lactococcal strain: Analysis using senescence-accelerated mice. Br. J. Nutr. 2007;98:1178–1186. doi: 10.1017/S0007114507787469.
    1. Grompone G., Martorell P., Llopis S., González N., Genovés S., Mulet A.P., Fernández-Calero T., Tiscornia I., Bollati-Fogolín M., Chambaud I., et al. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans. PLoS ONE. 2012;7:e52493. doi: 10.1371/journal.pone.0052493.
    1. Zhao Y., Zhao L., Zheng X., Fu T., Guo H., Ren F. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. J. Microbiol. 2013;51:183–188. doi: 10.1007/s12275-013-2076-2.
    1. Vargas-Mendoza N., Morales-González Á., Madrigal-Santillán E.O., Madrigal-Bujaidar E., Álvarez-González I., García-Melo L.F., Anguiano-Robledo L., Fregoso-Aguilar T., Morales-Gonzalez J.A. Antioxidant and Adaptative Response Mediated by Nrf2 during Physical Exercise. Antioxidants. 2019;8:196. doi: 10.3390/antiox8060196.
    1. Pierre N., Appriou Z., Gratas-Delamarche A., Derbré F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic. Biol. Med. 2016;98:197–207. doi: 10.1016/j.freeradbiomed.2015.12.028.
    1. Thirupathi A., Pinho R.A., Ugbolue U.C., He Y., Meng Y., Gu Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 2021;11:610112. doi: 10.3389/fphys.2020.610112.
    1. Cerqueira É., Marinho D.A., Neiva H.P., Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Front. Physiol. 2020;10:1550. doi: 10.3389/fphys.2019.01550.
    1. Przewłócka K., Folwarski M., Kaźmierczak-Siedlecka K., Skonieczna-Żydecka K., Kaczor J.J. Gut-Muscle Axis Exists and May Affect Skeletal Muscle Adaptation to Training. Nutrients. 2020;12:1451. doi: 10.3390/nu12051451.
    1. Gleeson M., Nieman D.C., Pedersen B.K. Exercise, nutrition and immune function. J. Sports Sci. 2004;22:115–125. doi: 10.1080/0264041031000140590.
    1. Radak Z., Chung H.Y., Koltai E., Taylor A.W., Goto S. Exercise, oxidative stress and hormesis. Ageing Res. Rev. 2008;7:34–42. doi: 10.1016/j.arr.2007.04.004.
    1. Jin C.H., Paik I.Y., Kwak Y.S., Jee Y.S., Kim J.Y. Exhaustive submaximal endurance and resistance exercises induce temporary immunosuppression via physical and oxidative stress. J. Exerc. Rehabil. 2015;11:198–203. doi: 10.12965/jer.150221.
    1. Yuan X., Xu S., Huang H., Liang J., Wu Y., Li C., Yuan H., Zhao X., Lai X., Hou S. Influence of excessive exercise on immunity, metabolism, and gut microbial diversity in an overtraining mice model. Scand. J. Med. Sci. Sports. 2018;28:1541–1551. doi: 10.1111/sms.13060.
    1. Scartoni F.R., Sant’Ana L.O., Murillo-Rodriguez E., Yamamoto T., Imperatori C., Budde H., Vianna J.M., Machado S. Physical Exercise and Immune System in the Elderly: Implications and Importance in COVID-19 Pandemic Period. Front. Psychol. 2020;11:593903. doi: 10.3389/fpsyg.2020.593903.
    1. Scheffer D.D.L., Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866:165823. doi: 10.1016/j.bbadis.2020.165823.
    1. Radak Z., Chung H.Y., Goto S. Exercise and hormesis: Oxidative stress-related adaptation for successful aging. Biogerontology. 2005;6:71–75. doi: 10.1007/s10522-004-7386-7.
    1. De la Fuente M., Cruces J., Hernandez O., Ortega E. Strategies to improve the functions and redox state of the immune system in aged subjects. Curr. Pharm. Des. 2011;17:3966–3993. doi: 10.2174/138161211798764861.
    1. Rebelo-Marques A., De Sousa Lages A., Andrade R., Ribeiro C.F., Mota-Pinto A., Carrilho F., Espregueira-Mendes J. Aging Hallmarks: The Benefits of Physical Exercise. Front. Endocrinol. 2018;9:258. doi: 10.3389/fendo.2018.00258.
    1. Carapeto P.V., Aguayo-Mazzucato C. Effects of exercise on cellular and tissue aging. Aging. 2021;13:14522–14543. doi: 10.18632/aging.203051.
    1. Pedersen B.K., Hoffman-Goetz L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 2000;80:1055–1081. doi: 10.1152/physrev.2000.80.3.1055.
    1. De la Fuente M., Hernanz A., Vallejo M.C. The immune system in the oxidative stress conditions of aging and hypertension: Favorable effects of antioxidants and physical exercise. Antioxid. Redox Signal. 2005;7:1356–1366. doi: 10.1089/ars.2005.7.1356.
    1. Giraldo E., Martin-Cordero L., Garcia J.J. Gerhmann, M.; Multhoff, G.; Ortega, E. Exercise-induced extracellular 72 kDa heat shock protein (Hsp72) stimulates neutrophil phagocytic and fungicidal capacities via TLR-2. Eur. J. Appl. Physiol. 2010;108:217–225. doi: 10.1007/s00421-009-1201-8.
    1. De Souza Teixeira A.A., Lira F.S., Rosa-Neto J.C. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci. 2020;261:118453. doi: 10.1016/j.lfs.2020.118453.
    1. Ludlow A.T., Roth S.M. Physical activity and telomere biology: Exploring the link with aging-related disease prevention. J. Aging Res. 2011;2011:790378. doi: 10.4061/2011/790378.
    1. Petersen A.M., Pedersen B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005;98:1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Gleeson M., Bishop N.C., Stensel D.J., Lindley M.R., Mastana S.S., Nimmo M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011;11:607–615. doi: 10.1038/nri3041.
    1. Sallam N., Laher I. Exercise Modulates Oxidative Stress and Inflammation in Aging and Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2016;2016:7239639. doi: 10.1155/2016/7239639.
    1. Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:S4–S9. doi: 10.1093/gerona/glu057.
    1. Bauer M.E., De La Fuente M. The role of oxidative and inflammatory stress and persistent viral infections in immunosenescence. Mech. Ageing Dev. 2016;158:27–37. doi: 10.1016/j.mad.2016.01.001.
    1. Fulop T., Larbi A., Dupuis G., Le Page A., Frost E.H., Cohen A.A., Witkowski J.M., Franceschi C. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front. Immunol. 2018;8:1960. doi: 10.3389/fimmu.2017.01960.
    1. Vida C., Martinez de Toda I., Garrido A., Carro E., Molina J.A., De la Fuente M. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress. Front. Immunol. 2018;8:1974. doi: 10.3389/fimmu.2017.01974.
    1. Vida C., Kobayashi H., Garrido A., Martínez de Toda I., Carro E., Molina J.A., De la Fuente M. Lymphoproliferation Impairment and Oxidative Stress in Blood Cells from Early Parkinson’s Disease Patients. Int. J. Mol. Sci. 2019;20:771. doi: 10.3390/ijms20030771.
    1. Martínez de Toda I., Miguélez L., Vida C., Carro E., De la Fuente M. Altered Redox State in Whole Blood Cells from Patients with Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimers Dis. 2019;71:153–163. doi: 10.3233/JAD-190198.
    1. Maté I., Martínez de Toda I., Arranz L., Álvarez-Sala J.L., De la Fuente M. Accelerated immunosenescence, oxidation and inflammation lead to a higher biological age in COPD patients. Exp. Gerontol. 2021;154:111551. doi: 10.1016/j.exger.2021.111551.
    1. Franceschi C., Garagnani P., Morsiani C., Conte M., Santoro A., Grignolio A., Monti D., Capri M., Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front. Med. 2018;5:61. doi: 10.3389/fmed.2018.00061.

Source: PubMed

3
Abonnieren