Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease

Avtar K Handa, Tahira Fatima, Autar K Mattoo, Avtar K Handa, Tahira Fatima, Autar K Mattoo

Abstract

Biogenic amines-polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants-exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources-vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.

Keywords: biogenic amines; cereals; fruits; meats; metabolism; nutrition; polyamines and human diseases; vegetables.

Figures

Figure 1
Figure 1
Polyamine biosynthetic and the back-conversion pathways in plants.
Figure 2
Figure 2
Positive and negative aspects of polyamine function/role in plants and humans/animals.

References

    1. Agostinelli E., Belli F., Molinari A., Condello M., Palmigiani P., Vedova L. D., et al. . (2006). Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitization by heat and MDL 72527. Biochim. Biophys. Acta 1763, 1040–1050. 10.1016/j.bbamcr.2006.07.014
    1. Ahou A., Martignago D., Alabdallah O., Tavazza R., Stano P., Macone A., et al. . (2014). A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. J. Exp. Bot. 65, 1585–1603. 10.1093/jxb/eru016
    1. Aitken A. (1996). 14-3-3 and its possible role in co-ordinating multiple signaling pathways. Trends Cell Biol. 6, 341–347. 10.1016/0962-8924(96)10029-5
    1. Albert J., Schwartz C., Boerkoel C., Stevenson R. (2013). Snyder-robinson syndrome, in Gene Review (Seattle, WA: University of Washington; ), 1993–2018.
    1. Alcazar R., Altabella T., Marco F., Bortolotti C., Reymond M., Koncz C., et al. . (2010b). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231, 1237–1249. 10.1007/s00425-010-1130-0
    1. Alcázar R., Marco F., Cuevas J. C., Patron M., Ferrando A., Carrasco P., et al. . (2006). Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 28, 1867–1876. 10.1007/s10529-006-9179-3
    1. Alcazar R., Planas J., Saxena T., Zarza X., Bortolotti C., Cuevas J., et al. . (2010a). Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants overexpressing the homologous arginine decarboxylase 2 gene. Plant Physiol. Biochem. 48, 547–552. 10.1016/j.plaphy.2010.02.002
    1. Ali M. A., Poortvliet E., Strömberg R., Yngve A. (2011). Polyamines in foods: development of a food database. Food Nutr. Res. 55:5572 10.3402/fnr.v55i0.5572
    1. Anderson D. J., Crossland J., Shaw G. G. (1975). The actions of spermidine and spermine on the central nervous system. Neuropharmacology 14, 571–577. 10.1016/0028-3908(75)90123-9
    1. Andersson G., Heby O. (1972). Polyamine and nucleic acid concentrations in Ehrlich ascites carcinoma cells and liver of tumor-bearing mice at various stages of tumor growth. J. Natl Cancer Inst. 48, 165–172.
    1. Angelini R., Tisi A., Rea G., Chen M. M., Botta M., Federico R., et al. . (2008). Involvement of polyamine oxidase in wound healing. Plant Physiol. 146, 162–177. 10.1104/pp.107.108902
    1. Anwar R., Mattoo A. K., Handa A. K. (2015). Polyamine interactions with plant hormones: crosstalk at several levels, in Polyamines A: Universal Molecular Nexus for Growth, Survival and Specialized Metabolism eds Kusano T., Suzuki H. (New York, NY: Springer; ), 267–302
    1. Artignan X., Miglianico L., Bligny D., Abraham C., Moulinoux J. P., Cipolla B. (2012). Combination of a polyamine-free oral nutritional supplement (ONS) with docetaxel in castrate-resistant prostate cancer (CRPC) patients (pts): A phase II trial.). J. Clin. Oncol. 30, 67–67. 10.1200/jco.2012.30.5_suppl.67
    1. Bacchi C. J., Yarlett N. (2002). Polyamine metabolism as chemotherapeutic target in protozoan parasites. Mini Rev. Med. Chem. 2, 553–563. 10.2174/1389557023405549
    1. Bachrach U., Wang Y. C. (2002). Cancer therapy and prevention by green tea: role of ornithine decarboxylase. Amino Acids 22, 1–13. 10.1007/s726-002-8197-9
    1. Bardócz S., Grant G., Brown D. S., Ralph A., Pusztai A. (1993). Polyamines in food – implications for growth and health. J. Nutr. Biochem. 4, 66–71. 10.1016/0955-2863(93)90001-D
    1. Baronas V. A., Kurata H. T. (2014). Inward rectifiers and their regulation by endogenous polyamines. Front. Physiol. 5:325. 10.3389/fphys.2014.00325
    1. Bauer G. A., Bazzaz F. A., Minocha R., Long S., Magill A., Aber J., et al. (2004). Effects of chronic N additions on tissue chemistry, photosynthetic capacity, and carbon sequestration potential of a red pine (Pinus resinosa Ait.) stand in NE United States. Forest Ecol. Manage. 196, 173–186. 10.1016/j.foreco.2004.03.032
    1. Bitrián M., Zarza X., Altabella T., Tiburcio A. F., Alcázar R. (2012). Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2, 516–528. 10.3390/metabo2030516
    1. Bonini J. S., Da Silva W. C., Da Silveira C. K., Kohler C. A., Izquierdo I., Cammarota M. (2011). Histamine facilitates consolidation of fear extinction. Int. J. Neuropsychopharmacol. 14, 1209–1217. 10.1017/S1461145710001501
    1. Bowie D., Mayer M. L. (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15, 453–462 10.1016/0896-6273(95)90049-7
    1. Bridges D., Moorhead G. B. G. (2004). 14-3-3 proteins: a number of functions for a numbered protein. Sci. STKE 296:re10 10.1126/stke.2422004re10
    1. Brubaker S. W., Bonham K. S., Zanoni I., Kagan J. C. (2015). Innate immune pattern recognition: a cell biological perspective. Annu. Rev. Immunol. 33, 257–290. 10.1146/annurev-immunol-032414-112240
    1. Cai G., Sobieszczuk-Nowicka I. S., Aloisi I., Fattorini L., Serafini-Fracassini D., Del Duca S. (2015). Polyamines are common players in different facets of plant programmed cell death. Amino Acids 47, 27–44. 10.1007/s00726-014-1865-1
    1. Camera K., Mello C. F., Ceretta A. P., Rubin M. A. (2007). Systemic administration of polyaminergic agents modulate fear conditioning in rats. Psychopharmacology (Berl). 192, 457–464. 10.1007/s00213-007-0734-y
    1. Capell T., Bassie L., Christou P. (2004). Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc. Natl. Acad. Sci. U.S.A. 101, 9909–9914. 10.1073/pnas.0306974101
    1. Caraglia M., Park M. H., Wolff E. C., Marra M., Abbruzzese A. (2013). eIF5A isoforms and cancer: two brothers for two functions? Amino Acids 44, 103–109. 10.1007/s00726-011-1182-x
    1. Casero R. A., Jr, Marton L. J. (2007). Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases. Nat. Rev. Drug Disc. 6, 373–390. 10.1038/nrd2243
    1. Cason A. L., Ikeguchi Y., Skinner C., Wood T. C., Holden K. R., Lubs H. A., et al. . (2003). X-Linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur. J. Hum. Genet. 11, 937–944. 10.1038/sj.ejhg.5201072
    1. Cassol T., Mattoo A. K. (2003). Do polyamines and ethylene interact to regulate plant growth, development and senescence?, in Molecular Insight in Plant Biology, eds Nath P., Mattoo A. K., Ranade S. A., Weil J. H. (Enfield, NH: Science Publishers Inc.), 121–132.
    1. Chamaillard L., Catros-Quemener V., Delcros J. G., Bansard J. Y., Havouis R., Desury D., et al. (1997). Polyamine deprivation prevents the development of tumour-induced immunesuppression. Br. J. Cancer 76, 365–370. 10.1038/bjc.1997.391
    1. Chen J., Rao J. N., Zou T., Liu L., Marasa B. S., Xiao L., et al. . (2007). Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 293, 568–576. 10.1152/ajpgi.00201.2007
    1. Cipolla B. G., Havouis R., Moulinoux J. P. (2007). Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its longterm observance and tolerance in prostate carcinoma patients. Amino Acids 33, 203–212. 10.1007/s00726-007-0524-1
    1. Cirilo M. P. G., Coelho A. F. S., Araujo C. M., Goncalves F. R. B., Nogueira F. D., Gloria M. B. A. (2003). Profile and levels of bioactive amines in green and roasted coffee. Food Chem. 82, 397–402. 10.1016/S0308-8146(02)00560-5
    1. Cohen S. S. (1998). A Guide to the Polyamines. New York, NY: Oxford University Press.
    1. Coleman C. S., Hu G., Pegg A. E. (2004). Putrescine biosynthesis in mammalian tissues. Biochem. J. 379, 849–855. 10.1042/bj20040035
    1. Cona A., Cenci F., Cervelli M., Federico R., Mariottini P., Moreno S., et al. . (2003). Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol. 131, 803–813. 10.1104/pp.011379
    1. Cona A., Rea G., Angelini R., Federico R., Tavladoraki P. (2006). Functions of amine oxidases in plant development and defence. Trends Plant Sci. 11, 80–88. 10.1016/j.tplants.2005.12.009
    1. Conway E. L. (1998). Brain lesions and delayed water maze learning deficits after intracerebroventricular spermine. Brain Res. 800, 10–20 10.1016/S0006-8993(98)00487-9
    1. Da Rosa M. M., Mello C. F., Camera K., Ceretta A. P., Ribeiro D. A., Signor C., et al. . (2012). Opioid mechanisms are involved in the disruption of arcaine-induced amnesia by context pre-exposure. Neurobiol. Learn. Mem. 97, 294–300. 10.1016/j.nlm.2012.02.002
    1. Deretic V., Saitoh T., Akira S. (2013). Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–737. 10.1038/nri3532
    1. Dicáková Z., Paulsen P., Bystrický P., Soko J., Laczkóová S. (2003). Determination of biogenic amines and free amino acids in game meat during storage, in Hygiena Alimentorum, Vol. XXIV ed. Bystrický P., Nagy J., Máté D. (Košice: University of Veterinary Medicine; ), 97–99.
    1. DiFiglia M. (1990). Excitotoxic injury of the neostriatum: a model for Huntington's disease. Trends Neurosci. 13, 286–289. 10.1016/0166-2236(90)90111-M
    1. Edwards R. A., Dainty R. H., Hibbard C. M. (1983). The relationship of bacterial numbers and types to diamine concentration in fresh and aerobically stored beef, pork and lamb. J. Food Technol. 18, 777–788. 10.1111/j.1365-2621.1983.tb00316.x
    1. Eisenberg T., Abdellatif M., Schroeder S., Primessnig U., Stekovic S., Pendl T., et al. (2016). Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 12, 1428–1438. 10.1038/nm.4222
    1. Eisenberg T., Knauer H., Schauer A., Buttner S., Ruckenstuhl C., Carmona-Gutierrez D., et al. . (2009). Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314. 10.1038/ncb1975
    1. Eliassen K. A., Reistad R., Risoen U., Ronning H. F. (2002). Dietary polyamines. Food Chem. 78, 273–280. 10.1016/S0308-8146(01)00405-8
    1. Farriol M., Venereo Y., Orta X., Company C., Gomez P., Delgado G., et al. . (2004). Ingestion of antioxidants and polyamines in patients with severe burns. Nutr. Hosp. 19, 300–304.
    1. Fatima T., Sobolev A. P., Teasdale J. R., Kramer M., Bunce J., Handa A. K., et al. . (2016). Fruit metabolite networks in engineered and non-engineered tomato genotypes reveal fluidity in a hormone and agroecosystem specific manner. Metabolomics 12:103. 10.1007/s11306-016-1037-2
    1. Fincato P., Moschou P. N., Spedaletti V., Tavazza R., Angelini R., Federico R., et al. . (2011). Functional diversity inside the Arabidopsis polyamine oxidase gene family. J. Exp. Bot. 62, 1155–1168. 10.1093/jxb/erq341
    1. Foyer C. H., Noctor G. (2002). Photosynthetic Nitrogen Assimilation and Associated Carbon and Respiratory Metabolism. Boston, MA: Kluwer Academic Publlishers.
    1. Frühauf P. K., Ineu R. P., Tomazi L., Duarte T., Mello C., Rubin M. A. (2015). Spermine reverses lipopolysaccharide-induced memory deficit in mice. J. Neuroinflamm. 12, 3. 10.1186/s12974-014-0220-5
    1. Furukawa H., Singh S. K., Mancusso R., Gouaux E. (2005). Subunit arrangement and function in NMDA receptors. Nature 438, 185–192. 10.1038/nature04089
    1. Garufi A., Visconti S., Camoni L., Aducci P. (2007). Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+- ATPase. Plant Cell Physiol. 48, 434–440. 10.1093/pcp/pcm010
    1. Ghuge S. A., Carucci A., Rodrigues Pousada R. A., Tisi A., Franchi S., et al. . (2015). The apoplastic copper AMINE OXIDASE1 mediates jasmonic acid-induced protoxylem differentiation in Arabidopsis roots. Plant Physiol. 168, 690–707. 10.1104/pp.15.00121
    1. Giardiello F. M., Hamilton S. R., Hylind L. M., Yang V. W., Tamez P., Casero R. A., Jr., et al. . (1997). Ornithine decarboxylase and polyamines in familial adenomatous polyposis. Cancer Res. 57, 199–120.
    1. Gilmour S. K. (2007). Polyamines and nonmelanoma skin cancer. Toxicol Appl. Pharmacol. 224, 249–256. 10.1016/j.taap.2006.11.023
    1. Gobert A. P., Wilson K. T. (2017). Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: a blessing in disguise. Free Radic. Biol. Med. 105, 16–27. 10.1016/j.freeradbiomed.2016.09.024
    1. Gomes G. M., Mello C. F., da Rosa M. M., Bochi G. V., Ferreira J., Barron S., et al. . (2010). Polyaminergic agents modulate contextual fear extinction in rats. Neurobiol. Learn. Mem. 93, 589–595. 10.1016/j.nlm.2010.02.007
    1. Goyal R. K., Fatima T., Topuz M., Bernadec A., Sicher R., Handa A. K., et al. . (2016). Pathogenesis-related protein 1b1 (PR1b1) is a major tomato fruit protein responsive to chilling temperature and upregulated in high polyamine transgenic genotypes. Front. Plant Sci. 7:901. 10.3389/fpls.2016.00901
    1. Grimes H. D., Slocum R. D., Boss W. F. (1986). α-Difluoromethylarginine treatment inhibits protoplast fusion in fusogenic wild-carrot protoplasts. Biochim. Biophys. Acta 886, 130–134. 10.1016/0167-4889(86)90218-1
    1. Gross J. A., Fiori L. M., Labonte B., Lopez J. P., Turecki G. (2013). Effects of promotermethylation on increased expression of polyamine biosynthetic genes in suicide. J. Psychiatr. Res. 47 513–519. 10.1016/j.jpsychires.2012.11.016
    1. Guerra G. P., Rubin M. A. (2016). Mello Modulation CF of learning and memory by natural polyamines. Pharmacol. Res. 112, 99–118. 10.1016/j.phrs.2016.03.023
    1. Gupta K., Sengupta A., Chakraborty M., Gupta B. (2016). Hydrogen Peroxide and Polyamines act as double edged swords in plant abiotic stress responses. Front. Plant Sci. 7:1343. 10.3389/fpls.2016.01343
    1. Gupta V. K., Scheunemann L., Eisenberg T., Mertel S., Bhukel A., Koemans T. S., et al. . (2013). Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460. 10.1038/nn.3512
    1. Hamana K., Niitsu M., Samejima K. (1998). Unusual polyamines in aquatic plants: the occurrence of homospermidine, norspermidine, thermospermine, norspermine, aminopropylhomospermidine, bis(aminopropyl)ethanediamine, and methylspermidine. Can. J. Bot. 76, 130–133. 10.1139/b97-175
    1. Handa A. K., Mattoo A. K. (2010). Differential and functional interactions emphasize the multiple roles of polyamines in plants. Plant Physiol. Biochem. 48, 540–546. 10.1016/j.plaphy.2010.02.009
    1. He L., Ban Y., Inoue H., Matsuda N., Liu J., Moriguchi T. (2008). Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots over expressing apples spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69, 2133–2141. 10.1016/j.phytochem.2008.05.015
    1. Hernandez-Jover T., Izquierdo-Pulido M., Veciana-Nogues M. T., Marine-Font A., Vidal-Carou M. C. (1997). Biogenic amine and polyamine contents in meat and meat products. J. Agric. Food Chem. 45, 2098–2102. 10.1021/jf960790p
    1. Hibino H., Inanobe A., Furutani K., Murakami S., Findlay I., Kurachi Y. (2010). Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 90, 291–366. 10.1152/physrev.00021.2009
    1. Liu J-H., Wang W., Wu H., Gong X., Moriguchi T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6:827. 10.3389/fpls.2015.00827
    1. Igarashi K., Kashiwagi K. (2010). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol. Biochem. 48, 506–512. 10.1016/j.plaphy.2010.01.017
    1. Inoue K., Tsutsui H., Akatsu H., Hashizume Y., Matsukawa N., Yamamoto T., et al. . (2013). Metabolic profiling of Alzheimer's disease brains. Sci. Rep. 3:2364. 10.1038/srep02364
    1. Janne J., Alhonen L., Pietila M., Keinanen T. A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877–894. 10.1111/j.1432-1033.2004.04009.x
    1. Jell J., Merali S., Hensen M. L., Mazurchuk R., Spernyak J. A., Diegelman P., et al. (2007). Genetically altered expression of spermidine/spermine N1-acetyl-transferase affects fat metabolism in mice via acetyl-CoA. J. Biol. Chem. 282, 8404–8413. 10.1074/jbc.M610265200
    1. Kalač P. (2014). Health effects and occurrence of dietary polyamines: a review for the period 2005–mid 2013. Food Chem. 161, 27–39. 10.1016/j.foodchem.2014.03.102
    1. Kalac P., Krausova P. (2005). A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem. 90, 219–230. 10.1016/j.foodchem.2004.03.044
    1. Kasinathan V., Wingler A. (2004). Effect of reduced arginine decarboxylate activity on salt tolerance and on polyamine formation during salt stress in Arabidopsis thaliana. Plant Physiol. 121, 101–107. 10.1111/j.0031-9317.2004.00309.x
    1. Kasukabe Y., He L., Nada K., Misawa S., Ihara I., Tachibana S. (2004). Over expression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 45, 712–722. 10.1093/pcp/pch083
    1. Kasukabe Y., He L., Watakabe Y., Otani M., Shimada T., Tachibana S. (2006). Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol. 23, 75–83. 10.5511/plantbiotechnology.23.75
    1. Kaur-Sawhney R., Tiburcio A. F., Altabella T., Galston A. W. (2003). Polyamines in plants: an overview. J. Cell. Mol. Biol. 2, 1–12. 10.4236/ajps.2013.45A013
    1. Kim D. W., Watanabe K., Murayama C., Izawa S., Niitsu M., Michael A. J., et al. (2014). Polyamine oxidase 5 regulates Arabidopsis growth through thermospermine oxidase activity. Plant Physiol. 165, 1575–1590. 10.1104/pp.114.242610
    1. Kim J. H., Ahn H. J., Kim D. H., Jo C., Yook H. S., Park H.-J., et al. (2003). Irradiation effects on biogenic amines in Korean fermented soybean paste during fermentation. J. Food Sci. 68, 80–84. 10.1111/j.1365-2621.2003.tb14118.x
    1. Kishi A., Ohno M., Watanabe S. (1998a). Concurrent activation of hippocampal glycine and polyamine sites of the N-methyl-d-aspartate receptor synergistically reverses working memory deficits in rats. Neurosci. Lett. 257, 131–134 10.1016/S0304-3940(98)00824-6
    1. Kishi A., Ohno M., Watanabe S. (1998b). Spermidine, a polyamine site agonist, attenuates working memory deficits caused by blockade of hippocampal muscarinic receptors and mGluRs in rats. Brain Res. 793, 311–314. 10.1016/S0006-8993(98)00179-6
    1. Klyubin I., Wang Q., Minard N. R., Irving E. A., Upton J., Hofmeister J., et al. . (2011). Protection against Abeta-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol. Aging 32, 614–623. 10.1016/j.neurobiolaging.2009.04.005
    1. Kozova M., Kalac P., Pelikanova T. (2009a). Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food Chem. 116, 419–425. 10.1016/j.foodchem.2009.02.057
    1. Kozova M., Kalac P., Pelikanova T. (2009b). Changes in the content of biologically active polyamines during beef loin storage and cooking. Meat Sci. 81, 607–611. 10.1016/j.meatsci.2008.10.018
    1. Kumar A., Taylor M. A., Arif S. A. M., Davies H. V. (1996). Potato plants expressing antisense and sense S-adenosylmethionine decarboxylase (SAMDC) transgenes show altered levels of polyamines and ethylene: antisense plants display abnormal phenotypes. Plant J. 9, 147–158. 10.1046/j.1365-313X.1996.09020147.x
    1. Kusano T., Berberich T., Tateda C., Takahashi Y. (2008). Polyamines: essential factors for growth and survival. Planta 228, 367–381. 10.1007/s00425-008-0772-7
    1. Kusano T., Suzuki H. (2015). Polyamines: A Universal Molecular Nexus for Growth, Survival, and Specialized Metabolism. New York, NY: Springer.
    1. Kusano T., Yamaguchi K., Berberich T., Takahashi Y. (2007). Advances in polyamine research. Curr. Top. Plant Res. 120, 345–350. 10.1007/s10265-007-0074-3
    1. Lagishetty C. V., Naik S. R. (2008). Polyamines: potential anti-inflammatory agents and their possible mechanism of action. Ind. J. Pharmacol. 40, 121–125. 10.4103/0253-7613.42305
    1. Lamkanfi M., Dixit V. M. (2014). Mechanisms and functions of inflammasomes. Cell 157, 1013–1022. 10.1016/j.cell.2014.04.007
    1. Lavizzari T., Teresa Veciana-Nogues M., Bover-Cid S., Marine-Font A., Carmen Vidal-Carou M. (2006). Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography. J Chromatogr. A. 1129, 67–72. 10.1016/j.chroma.2006.06.090
    1. Lee J., Michael A. J., Martynowski D., Goldsmith E. J., Phillips M. A. (2007). Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J. Biol. Chem. 282, 27115–27125. 10.1074/jbc.M704066200
    1. Lee J., Sperandio V., Frantz D. E., Longgood J., Camilli A., Phillips M. A., et al. . (2009). An alternative polyamine biosynthetic pathway is widespread in bacteria and essential for biofilm formation in Vibrio cholerae. J. Biol Chem. 284, 9899–9907. 10.1074/jbc.M900110200
    1. Lee Y. J., Choi D. Y., Choi I. S., Kim K. H., Kim Y. H., Kim H. M., et al. . (2012). Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J. Neuroinflammat. 9:35. 10.1186/1742-2094-9-35
    1. Lewandowski N. M., Ju S., Verbitsky M., Ross B., Geddie M. L., Rockenstein E., et al. . (2010). Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 107, 16970–16975. 10.1073/pnas.1011751107
    1. Li F., Tsien J. Z. (2009). Memory and the NMDA receptors. N. Engl. J. Med. 361, 302–303. 10.1056/NEJMcibr0902052
    1. Lorenz B., Francis F., Gempel K., Böddrich A., Josten M., Schmahl W., et al. . (1998). Spermine deficiency in Gy mice caused by deletion of the spermine synthase gene. Hum. Mol. Genet. 7, 541–547. 10.1093/hmg/7.3.541
    1. Lyon M. F., Scriver C. R., Baker L. R., Tenenhouse H. S., Kronick J., Mandla S. (1986). The Gy mutation: another cause of X-linked hypophosphatemia in mouse. Proc. Natl. Acad. Sci. U.S.A. 83, 4899–4903 10.1073/pnas.83.13.4899
    1. Mafra D. G., da Silva P. I., Jr., Galhardo C. S., Nassar R., Daffre S., Sato M. N., et al. . (2012). The spider acylpolyamine Mygalin is a potent modulator of innate immune responses. Cell Immunol. 275, 5–11. 10.1016/j.cellimm.2012.04.003
    1. Majumdar R., Shao L., Minocha R., Long S., Minocha S. C. (2013). Ornithine: the overlooked molecule in the regulation of polyamine metabolism. Plant Cell Physiol. 54, 990–1004. 10.1093/pcp/pct053
    1. Mandal A., Mandal S., Park M. H. (2014). Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution. PLoS ONE. 9:e111800. 10.1371/journal.pone.0111800
    1. Manni A., Grove R., Kunselman S., Demers L. (1995). Involvement of the polyamine pathway in breast cancer progression. Cancer Lett. 92, 49–57. 10.1016/0304-3835(95)03763-M
    1. Marina M., Sirera F. V., Rambla J. L., Gonzalez M. E., Blázquez M. A., Carbonell J., et al. . (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. J. Exp. Bot. 64, 1393–1402. 10.1093/jxb/ert012
    1. Martin-Tanguy J. (2001). Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 34, 135–148. 10.1023/A:1013343106574
    1. Mathews M. B., Hershey J. W. (2015). The translation factor eIF5A and human cancer. Biochim. Biophys. Acta 1849, 836–844. 10.1016/j.bbagrm.2015.05.002
    1. Mattoo A. K. (2014). Translational research in agricultural biology—enhancing crop resistivity against environmental stress alongside nutritional quality. Front. Chem. 2:30. 10.3389/fchem.2014.00030
    1. Mattoo A. K., Handa A. K. (2008). Higher polyamines restore and enhance metabolic memory in ripening fruit. Plant Sci. 174, 386–393. 10.1016/j.plantsci.2008.01.011
    1. Mattoo A. K., Minocha S. C., Minocha R., Handa A. K. (2010). Polyamines and cellular metabolism in plants: transgenic approaches reveal different responses to diamine putrescine versus higher polyamines spermidine and spermine. Amino Acids. 38, 405–413. 10.1007/s00726-009-0399-4
    1. Mattoo A. K., Sobolev A. P., Neelam A., Goyal R. K., Handa A. K., Segre A. L. (2006). NMR spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol. 142, 1759–1770. 10.1104/pp.106.084400
    1. Mattoo A. K., Upadhyay R. K., Rudrabhatla S. (2015). Abiotic stress in crops: candidate genes, osmolytes, polyamines, and biotechnological intervention, in Elucidation of Abiotic Stress Signaling in Plants, ed Pandey G. K. (New York, NY: Springer Science+Business Media; ), 415–437.
    1. Medzhitov R. (2001). Toll like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145. 10.1038/35100529
    1. Medzhitov R. (2009). Approaching the asymptote: 20 years later. Immunity 30, 766–775. 10.1016/j.immuni.2009.06.004
    1. Mehta R. A. T., Cassol N., Li N., Ali Handa A. K., Mattoo A. K. (2002). Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality and vine life. Nat. Biotech. 20, 613–618. 10.1038/nbt0602-613
    1. Meyer R. A., Jr., Henley C. M., Meyer M. H., Morgan P. L., McDonald A. G., Mills C., et al. . (1998). Partial deletion of both the spermine synthase gene and the Pex gene in the x-linked hypophosphatemic, Gyro (Gy) mouse. Genomics 48, 289–295 10.1006/geno.1997.5169
    1. Min S. S., Quan H. Y., Ma J., Han J. S., Jeon B. H., Seol G. H. (2009). Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci. Lett. 456, 20–24. 10.1016/j.neulet.2009.03.079
    1. Minocha R., Majumdar R., Minocha S. C. (2014). Polyamines and abiotic stress in plants: a complex relationship. Front. Plant Sci. 5:175. 10.3389/fpls.2014.00175
    1. Minois N. (2014). Molecular basis of the anti-aging effects of spermidine and other natural polyamines - a mini-review. Gerontology 60, 319–326. 10.1159/000356748
    1. Minois N., Carmona-Gutierrez D., Madeo F. (2011). Polyamines in aging and disease. Aging 3, 716–732. 10.18632/aging.100361
    1. Mo H. J., Sun Y. X., Zhu X. L., Wang X. F., Zhang Y., Yang J., et al. . (2016). Cotton S-adenosylmethionine decarboxylase-mediated spermine biosynthesis is required for salicylic acid- and leucine-correlated signaling in the defense response to Verticillium dahliae. Planta 243, 1023–1039. 10.1007/s00425-015-2463-5
    1. Mo H., Wang X., Zhang Y., Zhang G., Zhang J., Ma Z. (2015). Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae. Plant J. 83, 962–975. 10.1111/tpj.12941
    1. Mony L., Zhu S., Carvalho S., Paoletti P. (2011). Molecular basis of positive allosteric modulation of GluN2B NMDA receptors by polyamines. EMBO J. 30, 3134–3146. 10.1038/emboj.2011.203
    1. Morris R. G. M., Anderson E., Lynch G. S., Baudry M. (1986). Selective impairment of learning and blockade of long-term poten- tiation byanN-methyl-D-aspartate receptor antagonists, AP5. Nature 319, 774–776. 10.1038/319774a0
    1. Morrison L. D., Cao X. C., Kish S. J. (1998). Ornithine decarboxylase in human brain: influence of aging, regional distribution, and Alzheimer's disease. J. Neurochem. 71, 288–294. 10.1046/j.1471-4159.1998.71010288.x
    1. Morselli E., Maiuri M. C., Markaki M., Megalou E., Pasparaki A., Palikaras K., et al. . (2010). Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Disease 1:10. 10.1038/cddis.2009.8
    1. Moschou P. N., Paschalidis K. A., Delis I. D., Andriopoulou A. H., Lagiotis G. D., Yakoumakis D. I., et al. . (2008). Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell. 20, 1708–1724. 10.1105/tpc.108.059733
    1. Moschou P. N., Roubelakis-Angelakis K. A. (2014). Polyamines and programmed cell death. J. Exp. Bot. 65, 1285–1296. 10.1093/jxb/ert373
    1. Moschou P. N., Sarris P. F., Skandalis N., Andriopoulou A. H., Paschalidis K. A., Panopoulos N. J., et al. . (2009). Engineered polyamine catabolism preinduces tolerance of tobacco to bacteria and oomycetes. Plant Physiol. 149, 1970–1981. 10.1104/pp.108.134932
    1. Nambeesan S., Abu-Qamar S., Laluk K., Mattoo A. K., Mickelbart M. V., Ferruzzi M. G., et al. . (2012). Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol. 158, 1034–1045. 10.1104/pp.111.188698
    1. Nambeesan S., Datsenka T., Ferruzzi M. G., Malladi A., Mattoo A. K., Handa A. K. (2010). Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato. Plant J. 63, 836–847. 10.1111/j.1365-313X.2010.04286.x
    1. Neelam A., Cassol T., Mehta R. A., Abdul-Baki A. A., Sobolev A., Goyal R. K., et al. . (2008). A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression and agronomic characteristics. J. Exp. Bot. 59:2337–2346. 10.1093/jxb/ern100
    1. Nishibori N., Fujihara S., Akatuki T. (2007). Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem. 100, 491–497. 10.1016/j.foodchem.2005.09.070
    1. Nishimura K., Lee S. B., Park J. H., Park M. H. (2012). Essential role of eIF5A-1 and deoxyhypusine synthase in mouse embryonic development. Amino Acids 42, 703–710. 10.1007/s00726-011-0986-z
    1. Nishimura K., Shiina R., Kashiwagi K., Igarashi K. (2006). Decrease in polyamines with aging and their ingestion from food and drink. J. Biochem. 139, 81–90. 10.1093/jb/mvj003
    1. Noh E. W., Minocha S. C. (1994). Expression of a human S-adenosylmethionine decarboxylase cDNA in transgenic tobacco and its effects on polyamine biosynthesis. Transgenic Res. 3, 26–35. 10.1007/BF01976024
    1. Nowotarski S. L., Woster P. M., Casero R. A., Jr. (2013). Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev. Mol. Med. 15:e3. 10.1017/erm.2013.3
    1. Okamoto A., Sugi E., Koizumi Y., Yanagida F., Udaka S. (1997). Polyamine content of ordinary foodstuffs and various fermented foods. Biosci. Biotechnol. Biochem. 61, 1582–1584. 10.1271/bbb.61.1582
    1. Page A. F., Cseke L. J., Minocha R., Turlapati S. A., Podila G. K., Ulanov A., et al. . (2016). Genetic manipulation of putrescine biosynthesis reprograms the cellular transcriptome and the metabolome. BMC Plant Biol. 16:113. 10.1186/s12870-016-0796-2
    1. Pällmann N., Braig M., Sievert H., et al. . (2015). Biological relevance and therapeutic potential of the hypusine modification system. J. Biol. Chem. 290, 18343–18360. 10.1074/jbc.M115.664490
    1. Pal M., Szalai G., Janda T. (2015). Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 237, 16–23. 10.1016/j.plantsci.2015.05.003
    1. Palm N. W., Medzhitov R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227, 221–233. 10.1111/j.1600-065X.2008.00731.x
    1. Park M. H. (2006). The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139, 161–169. 10.1093/jb/mvj034
    1. Paschalidis K. A., Roubelakis-Angelakis K. A. (2005). Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. Plant Physiol. 138, 142–152. 10.1104/pp.104.055483
    1. Pathak M. R., Teixeira da Silva J. A., Wani S. H. (2014). Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5, 87–96. 10.4161/gmcr.28774
    1. Pegg A. E. (2016). Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912. 10.1074/jbc.R116.731661
    1. Perez-Leal O., Merali S. (2011). Regulation of polyamine metabolism by translational control. Amino acids. 42, 611–617. 10.1007/s00726-011-1036-6
    1. Pfeffer L. M., Yang C. H., Murti A., McCormack S. A., Viar M. J., Ray R. M., et al. (2001). Polyamine depletion induces rapid NF-kB activation in IEC-6 cells. J. Biol. Chem. 276, 45909–45913. 10.1074/jbc.M108097200
    1. Pignatti C., Tantini B., Stefanelli C., Flamigni F. (2004). Signal transduction pathways linking polyamines to apoptosis. Amino Acids 27, 359–365. 10.1007/s00726-004-0115-3
    1. Pirnes-Karhu S., Sironen R., Alhonen L., Uimari A. (2012). Lipopolysaccharide-induced anti-inflammatory acute phase response is enhanced in spermidine /spermine N1-acetyltransferase (SSAT) overexpressing mice. Amino Acids. 42, 473–484. 10.1007/s00726-011-1026-8
    1. Planas-Portell J., Gallart M., Tiburcio A. F., Altabella T. (2013). Copper containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. 13:109. 10.1186/1471-2229-13-109
    1. Prabhavathi V. R., Rajam M. V. (2007). Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol. 24, 273–282. 10.5511/plantbiotechnology.24.273
    1. Proud C. G. (2004). Role of mTOR signalling in the control of translation initiation and elongation by nutrients. Curr. Top. Microbiol. Immunol. 279, 215–244. 10.1007/978-3-642-18930-2_13
    1. Provan F., Aksland L. M., Meyer C., Lillo C. (2000). Deletion of the nitrate reductase N-terminal domain still allows binding of 14-3-3 proteins but affects their inhibitory properties. Plant Physiol. 123, 57–764. 10.1104/pp.123.2.757
    1. Pucciarelli S., Moreschini B., Micozzi D., De Fronzo G. S., Carpi F. M., Polzonetti V., et al. . (2012). Spermidine and spermine are enriched in whole-blood of nona/centenarians. Rejuv. Res. 15, 590–595. 10.1089/rej.2012.1349
    1. Ransom R. W., Stec N. L. (1988). Cooperative modulation of [3H]MK-801 binding to the N-methyl-d-aspartate receptor-ion channel complex by l-glutamate glycine, and polyamines. J. Neurochem. 51, 830–836. 10.1111/j.1471-4159.1988.tb01818.x
    1. Ren M., Venglat P., Qiu S., Feng L. I., Cao Y., Wang E., et al. . (2012). Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24, 4850–4874. 10.1105/tpc.112.107144
    1. Rennenberg H., Kreutzer K., Papen H., Weber P. (1998). Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol. 139, 1–86. 10.1046/j.1469-8137.1998.00181.x
    1. Roberson E. D., Mucke L. (2006). 100 years and counting: prospects for defeating Alzheimer's disease. Science 314, 781–784. 10.1126/science.1132813
    1. Rosenthal S. M., Fisher E. R., Stohlman E. F. (1952). Nephrotoxic action of spermine. Proc. Soc. Exp. Biol. Med. 80, 432–434. 10.3181/00379727-80-19647
    1. Rosi S., Ferguson R., Fishman K., Allen A., Raber J., Fike J. R. (2012). The polyamine inhibitor alpha-difluoromethylornithine modulates hippocampus-dependent function after single and combined injuries. PLoS ONE 7:e31094. 10.1371/journal.pone.0031094
    1. Rubin M. A., Berlese D. B., Stiegemeier J. A., Volkweis M. A., Oliveira D. M., dos Santos T. L., et al. (2004). Mello CF Intra-amygdala administration of polyamines modulates fear conditioning in rats. J. Neurosci. 24, 2328–2334. 10.1523/JNEUROSCI.1622-03.2004
    1. Russell D. H., Snyder S. H. (1968). Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc. Natl. Acad. Sci. U.S.A. 60, 1420–1427. 10.1073/pnas.60.4.1420
    1. Sacaan A. I., Johnson K. M. (1990). Characterization of the stimulatory and inhibitory effects of polyamines on [3H]N-(1-[thienyl]cyclohexyl) piperidine binding to the N-methyl-d-aspartate receptor ionophore complex. Mol. Pharmacol. 37, 572–577.
    1. Seiler N., Sarhan S., Graffel C., Jones R., Knodgen B., Moulinoux J.-P. (1990). Endogenous and exogenous polyamines in support of tumor growth. Cancer Res. 50, 5077–5083.
    1. Seiler N., Schmidt-Glenewinkel T. (1975). Regional distribution of putrescine, spermidine and spermine in relation to the distribution of RNA and DNA in the rat nervous system. J. Neurochem. 24, 791–795. 10.1111/j.1471-4159.1975.tb03866.x
    1. Shaw K. N., Commins S., O'Mara S. M. (2001). Lipopolysaccharide causes deficits in spatial learning in the water maze but not in BDNF expression in the rat dentate gyrus. Behav. Brain Res. 124, 47–54. 10.1016/S0166-4328(01)00232-7
    1. Shen W., Huber S. C. (2006). Polycations globally enhance binding of 14-3-3 to target proteins in spinach leaves. Plant Cell Physiol. 47, 764–771. 10.1093/pcp/pcj050
    1. Shimada A., London E. D., Muhkin A., Spangler E. L., Ingram D. K. (1995). Polyamine modulation of NMDA receptors as a strategy for cognitive enhancement in aged rats. Soc. Neurosci. Abstr. 21:198.
    1. Shukla V., Mattoo A. K. (2013). Developing robust crop plants for sustaining growth and yield under adverse climatic changes, in Climate Change and Plant Abiotic Stress Tolerance, eds Tuteja N., Gill S. (Weinheim: Wiley-VCH Verlag; ), 27–56
    1. Sievert H., Pällmann N., Miller K. K., Hermans-Borgmeyer I., Venz S., Sendoel A., et al. . (2014). A novel mouse model for inhibition of DOHH mediated hypusine modification reveals a crucial function in embryonic development, proliferation and oncogenic transformation. Dis. Model. Mech. 7, 963–976. 10.1242/dmm.014449
    1. Signor C., Mello C. F., Porto G. P., Ribeiro D. A., Rubin M. A. (2014). Spermidine improves fear memory persistence. Eur. J. Pharmacol. 730, 72–76. 10.1016/j.ejphar.2014.02.035
    1. Silva C. M. G., Gloria M. B. A. (2002). Bioactive amines in chicken breast and thigh after slaughter and during storage at 4 ± 1°C and in chicken-based meat products. Food Chem. 78, 241–248. 10.1016/S0308-8146(01)00404-6
    1. Simon-Sarkadi L., Holzapfel W. L., Halasz A. (1994). Biogenic amine content and microbial contamination of leafy vegetables during storage at 50 C. J. Food Biochem. 17, 407–418. 10.1111/j.1745-4514.1993.tb00483.x
    1. Singh A., Ansari M. W., Raul V., Singh C. P., Shukla A., Pant R. C., et al. (2014). First evidence of putrescine involvement in mitigating the floral malformation in mangoes: a scanning electron microscopy study. Protoplasma 251, 1255–1261. 10.1007/s00709-014-0611-6
    1. Slocum R. D., Flores H. E. (1991). Biochemistry and Physiology of Polyamines in Plants. Boca Raton, FL: CRC Press.
    1. Sobieszczuk-Nowicka E. (2017). Polyamine catabolism adds fuel to leaf senescence. Amino Acids 49, 49–56. 10.1007/s00726-016-2377-y
    1. Sobolev A., Neelam A., Fatima T., Shukla V., Handa A. K., Mattoo A. K. (2014). Genetic introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on the primary metabolome. Front. Plant Sci. 5:632. 10.3389/fpls.2014.00632
    1. Soda K., Dobashi Y., Kano Y., Tsujinaka S., Konishi F. (2009b). Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp. Gerontol. 44, 727–732. 10.1016/j.exger.2009.08.013
    1. Soda K., Kano Y., Sakuragi M., Takao K., Lefor A., Konishi F. (2009a). Long-term oral polyamine intake increases blood polyamines concentrations. J. Nutr. Sci. Vitaminol. 55, 361–366. 10.3177/jnsv.55.361
    1. Soulet D., Rivest S. (2003). Polyamines play a critical role in the control of the innate immune response in the mouse central nervous system. J. Cell Biol. 62, 257–268. 10.1083/jcb.200301097
    1. Sriva A., Chung S. H., Fatima T., Datsenka T., Handa A. K., Mattoo A. K. (2007). Polyamines as anabolic growth regulators revealed by transcriptome analysis and metabolite profiles of tomato fruits engineered to accumulate spermidine and spermine. Plant Biotechnol. 24, 57–70. 10.5511/plantbiotechnology.24.57
    1. Srivenugopal K. S., Adiga P. R. (1980). Coexistence of two pathways of spermidine biosynthesis in Lathyrus sativus seedlings. FEBS Lett. 112, 260–264. 10.1016/0014-5793(80)80193-1
    1. Tadano T., Hozumi S., Yamadera F., Murata A., Niijima F., Tan-No K., et al. . (2004). Effects of NMDA receptor-related agonists on learning and memory impairment in olfactory bulbectomized mice. Methods Find Exp. Clin. Pharmacol. 26:93. 10.1358/mf.2004.26.2.800060
    1. Takano A., Kakehi J.-I., Takahashi T. (2012). Thermospermine is not a minor polyamine in the plant kingdom. Plant Cell Physiol. 53, 606–616. 10.1093/pcp/pcs019
    1. Tang W., Newton J. R. (2005). Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine. Plant Cell Rep. 24, 581–589. 10.1007/s00299-005-0021-5
    1. Tavernarakis N. (2008). Ageing and the regulation of protein synthesis: a balancing act? Trends Cell Biol. 18, 228–235 10.1016/j.tcb.2008.02.004
    1. Tavladoraki P., Cona A., Federico R., Tempera G., Viceconte N., Saccoccio S., et al. . (2012). Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42, 411–426. 10.1007/s00726-011-1012-1
    1. Tiburcio A. F., Altabella T., Bitrián M., Alcázar R. (2014). The roles of polyamines during the lifespan of plants: from development to stress. Planta 240, 1–18. 10.1007/s00425-014-2055-9
    1. Tiburcio A. F., Kaur-Sawhney R., Galston A. W. (1993). Spermidine biosynthesis as affected by osmotic stress in oat leaves. Plant Growth Regul. 13, 103–109. 10.1007/BF00207599
    1. Tisi A., Angelini R., Cona A. (2011a). Does polyamine catabolism influence root development and xylem differentiation under stress conditions? Plant Signal. Behav. 11, 1844–1847. 10.4161/psb.6.11.17640
    1. Tisi A., Federico R., Moreno S., Lucretti S., Moschou P. N., Roubelakis-Angelakis K. A., et al. (2011b). Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. Plant Physiol. 57, 200–215. 10.1104/pp.111.173153
    1. Tolbert D. W., Ekstrom J. L., Mathews I. I., Secrist J. A., III., Kapoor P., Pegg A. E., et al. . (2001). The structural basis for substrate specificity and inhibition of human S-adenosylmethionine decarboxylase. Biochemistry 40, 9484–9494. 10.1021/bi010735w
    1. Tomitori H., Usui T. N., Saeki N., Ueda S., Kase H., Nishimura K., et al. . (2005). Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36, 2609–2613. 10.1161/01.STR.0000190004.36793.2d
    1. Uemura T., Tachihara K., Tomitori H., Kashiwagi K., Igarashi K. (2005). Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J. Biol. Chem. 280, 9646–9652. 10.1074/jbc.M410274200
    1. Upp J. R., Jr., Saydjari R., Townsend C. M., Jr., Singh P., Barranco S. C., Thompson J. C. (1988). Polyamine levels and gastrin receptors in colon cancers. Ann. Surg. 207, 662–669. 10.1097/00000658-198806000-00004
    1. Urano K., Yoshiba Y., Nanjo T., Ito T., Yamaguchi-Shinozaki K., Shinozaki K. (2004). Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem. Biophys. Res. Commun. 313, 369–375. 10.1016/j.bbrc.2003.11.119
    1. Veciana-Nogues M. T., Marine-Font A., Vidal-Carou M. C. (1997). Changes in biogenic amines during the storage of Mediterranean anchovies immersed in oil. J. Agric. Food Chem. 45, 1385–1389. 10.1021/jf9605714
    1. Velloso N. A., Dalmolin G. D., Gomes G. M., Rubin M. A., Canas P. M., Cunha R. A., et al. . (2009). Spermine improves recognition memory deficit in a rodent model of Huntington's disease. Neurobiol. Learn. Mem. 92, 574–580. 10.1016/j.nlm.2009.07.006
    1. Wallace H. M., Caslake R. (2001). Polyamines and colon cancer. Eur. J. Gastroenterol. Hepatol. 13, 1033–1039. 10.1097/00042737-200109000-00006
    1. Wallace H. M., Fraser A., Hughes A. (2003). A perspective of polyamine metabolism. Biochem. J. 376, 1–14. 10.1042/bj20031327
    1. Watson M. B., Emory K. K., Piatak R. M., Malmberg R. L. (1998). Arginine decarboxylase (polyamine synthesis) mutants of Arabidopsis thaliana exhibit altered root growth. Plant J. 13, 231–239. 10.1046/j.1365-313X.1998.00027.x
    1. Wen X. P., Pang X. M., Matsuda N., Kita M., Inoue M., Hao Y. J., et al. (2008). Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res. 17, 251–263. 10.1007/s11248-007-9098-7
    1. Wi S. J., Kim W. T., Park K. Y. (2006). Over expression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rp. 25, 1111–1121. 10.1007/s00299-006-0160-3
    1. Williams K. (1997). Interactions of polyamines with ion channels. Biochem. J. 325 289–297 10.1042/bj3260943
    1. Williams K., Romano C., Molinoff P. B. (1989). Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-D-aspartate receptor: pharmacological evidence for the existence of a polyamine recognition site. Mol. Pharmacol. 36, 575–581.
    1. Williams K., Zappia A. M., Pritchett D. B., Shen Y. M., Molinoff P. B. (1994). Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809.
    1. Yamaguchi K., Takahashi Y., Berberich T., Imai A., Miyazaki A., Takahashi T., et al. . (2006). The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 580, 6783–6788. 10.1016/j.febslet.2006.10.078
    1. Yamaguchi O., Otsu K. (2012). Role of autophagy in aging. J. Cardiovasc. Pharmacol. 60, 242–247. 10.1097/FJC.0b013e31824cc31c
    1. Yano Y., Kataho N., Watanabe M., Nakamura T., Asano Y. (1995). Changes in the concentration of biogenic amines and application of tyramine sensor during storage of beef. Food Chem. 54, 155–159. 10.1016/0308-8146(94)00161-W
    1. Yatin S. M., Yatin M., Varadarajan S., Ain K. B., Butterfield D. A. (2001). Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J. Neurosci. Res. 63, 395–401. 10.1002/1097-4547(20010301)63:5<395::AID-JNR1034>;2-Q
    1. Yoshimoto K., Takamura H., Kadota I., Motose H., Takahashi T. (2016). Chemical control of xylem differentiation by thermospermine, xylemin, and auxin. Sci. Rep. 6:21487. 10.1038/srep21487
    1. Zabala-Letona A., Arruabarrena-Aristorena A., Martín-Martín N., Fernandez-Ruiz S., Sutherland J. D., Clasquin M., et al. (2017). mTORC1-dependent AMDI regulation sustains polyamine metabolism in prostrate cancer. Nature 547, 109–113. 10.1038/nature22964
    1. Ziegler W., Hahn M., Wallnöfer P. R. (1994). Changes in biogenic amine contents during processing of several plant foods. Deutsche Lebensmittel Rundschau. 90, 108–112.
    1. Zwighaft A., Aviram R., Shalev M., Rousso-Noori L., Kraut-Cohen J., Golik M., et al. . (2015). Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab. 22, 874–885. 10.1016/j.cmet.2015.09.011

Source: PubMed

3
Abonnieren