Effect of Hesperidin on Cardiovascular Disease Risk Factors: The Role of Intestinal Microbiota on Hesperidin Bioavailability

Anna Mas-Capdevila, Joan Teichenne, Cristina Domenech-Coca, Antoni Caimari, Josep M Del Bas, Xavier Escoté, Anna Crescenti, Anna Mas-Capdevila, Joan Teichenne, Cristina Domenech-Coca, Antoni Caimari, Josep M Del Bas, Xavier Escoté, Anna Crescenti

Abstract

Recently, hesperidin, a flavonone mainly present in citrus fruits, has emerged as a new potential therapeutic agent able to modulate several cardiovascular diseases (CVDs) risk factors. Animal and in vitro studies demonstrate beneficial effects of hesperidin and its derived compounds on CVD risk factors. Thus, hesperidin has shown glucose-lowering and anti-inflammatory properties in diabetic models, dyslipidemia-, atherosclerosis-, and obesity-preventing effects in CVDs and obese models, and antihypertensive and antioxidant effects in hypertensive models. However, there is still controversy about whether hesperidin could contribute to ameliorate glucose homeostasis, lipid profile, adiposity, and blood pressure in humans, as evidenced by several clinical trials reporting no effects of treatments with this flavanone or with orange juice on these cardiovascular parameters. In this review, we focus on hesperidin's beneficial effects on CVD risk factors, paying special attention to the high interindividual variability in response to hesperidin-based acute and chronic interventions, which can be partly attributed to differences in gut microbiota. Based on the current evidence, we suggest that some of hesperidin's contradictory effects in human trials are partly due to the interindividual hesperidin variability in its bioavailability, which in turn is highly dependent on the α-rhamnosidase activity and gut microbiota composition.

Keywords: bioavailability; cardiovascular diseases; dysbiosis; gut microbiota; hesperetin; hesperidin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of hesperidin metabolization in the colon. Enzymatic deglycosylation of hesperidin to yield hesperetin: via hesperetin-7-O-glucoside by two specific monoglycosidases, α-rhamnosidase and β-glucosidase, and via one-step deglycosylation through α-rhamnosyl-β-glucosidase (αRβGl).
Figure 2
Figure 2
Summary of the most representative effects of hesperidin consumption and its derivatives on cardiovascular risk factors, including glucose homeostasis, blood pressure and endothelial function, and lipid profile and adiposity. SBP: systolic blood pressure; DBP: diastolic blood pressure; NO: nitric oxide; FFA: free fatty acids; TG: triglycerides; Chol: cholesterol.
Figure 3
Figure 3
Illustrative diagram of hesperidin absorption in the colon. The flavones present in oranges reach the colon almost unchanged in their structure. In the lumen of the colon, hesperidin is converted to its active form by the α-rhamnosidase activity of the microbiota (Bifidobacterium pseudocatenulatum), releasing the rutinose moiety and hesperetin for further absorption by the colonocytes. In the colon, hesperidin promotes the growth of some beneficial bacteria species, with a key role in the SCFA production (Bifidobacterium spp., Lactobacillus spp., or Akkermansia muciniphila). SCFAs are absorbed with healthy effects in the permeability of the gut barrier and in distal organs and tissues. Moreover, hesperidin has other beneficial effects by inhibiting the proliferation of detrimental bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Prevotella spp., Porphyromonas gingivalis, and Fusobacterium nucleatum, among others. SCFAs: short chain fatty acids.

References

    1. World Health Organization (WHO) A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis: World Health Day 2013. [(accessed on 12 March 2020)]; Available online: .
    1. Roberts C.K., Hevener A.L., Barnard R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013;3:1–58.
    1. Peluso I., Romanelli L., Palmery M. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: Diet or supplementation for metabolic syndrome prevention? Int. J. Food Sci. Nutr. 2014;65:259–267. doi: 10.3109/09637486.2014.880670.
    1. Asrih M., Jornayvaz F.R. Metabolic syndrome and nonalcoholic fatty liver disease: Is insulin resistance the link? Mol. Cell. Endocrinol. 2015;418:55–65. doi: 10.1016/j.mce.2015.02.018.
    1. Mendis S., Puska P., Norrving B. Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization; Geneva, Switzerland: 2011. pp. 2–14.
    1. Alissa E.M., Ferns G.A. Dietary fruits and vegetables and cardiovascular diseases risk. Crit. Rev. Food Sci. Nutr. 2017;57:1950–1962. doi: 10.1080/10408398.2015.1040487.
    1. Kahleova H., Salas-Salvadó J., Rahelić D., Kendall C.W.C., Rembert E., Sievenpiper J.L. Dietary patterns and cardiometabolic outcomes in diabetes: A summary of systematic reviews and meta-analyses. Nutrients. 2019;11:2209. doi: 10.3390/nu11092209.
    1. Mahmoud A.M., Hernández Bautista R.J., Sandhu M.A., Hussein O.E. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid. Med. Cell. Longev. 2019;2019 doi: 10.1155/2019/5484138.
    1. Corrêa T.A.F., Rogero M.M., Hassimotto N.M.A., Lajolo F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019;6:188. doi: 10.3389/fnut.2019.00188.
    1. Williamson G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017;42:226–235. doi: 10.1111/nbu.12278.
    1. Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581.
    1. Zamora-Ros R., Andres-Lacueva C., Lamuela-Raventós R.M., Berenguer T., Jakszyn P., Barricarte A., Ardanaz E., Amiano P., Dorronsoro M., Larrañaga N., et al. Estimation of Dietary Sources and Flavonoid Intake in a Spanish Adult Population (EPIC-Spain) J. Am. Diet. Assoc. 2010;110:390–398. doi: 10.1016/j.jada.2009.11.024.
    1. European Fruit Juice Association (AIJN) Liquid Fruit Market Report. European Fruit Juice Association; Brussels, Belgium: 2018.
    1. Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr. Res. 2004;24:851–874. doi: 10.1016/j.nutres.2004.07.005.
    1. Khan M.K., Zill-E-Huma, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols. J. Food Compos. Anal. 2014;33:85–104. doi: 10.1016/j.jfca.2013.11.004.
    1. Tomas-Barberan F.A., Clifford M.N. Flavanones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000;80:1073–1080. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1073::AID-JSFA568>;2-B.
    1. Hajialyani M., Farzaei M.H., Echeverría J., Nabavi S.M., Uriarte E., Eduardo S.S. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules. 2019;24:648. doi: 10.3390/molecules24030648.
    1. Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Laganà G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors. 2017;43:495–506. doi: 10.1002/biof.1363.
    1. Kumar S., Pandey A.K., Lu K.P., Sastre J. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013;2013:16. doi: 10.1155/2013/162750.
    1. Li C., Schluesener H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 2017;57:613–631. doi: 10.1080/10408398.2014.906382.
    1. Kim J., Wie M.B., Ahn M., Tanaka A., Matsuda H., Shin T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol. 2019;52:369–377. doi: 10.5115/acb.19.119.
    1. Dhanya R., Jayamurthy P. In vitro evaluation of antidiabetic potential of hesperidin and its aglycone hesperetin under oxidative stress in skeletal muscle cell line. Cell Biochem. Funct. 2020 doi: 10.1002/cbf.3478.
    1. Xuguang H., Aofei T., Tao L., Longyan Z., Weijian B., Jiao G. Hesperidin ameliorates insulin resistance by regulating the IRS1-GLUT2 pathway via TLR4 in HepG2 cells. Phyther. Res. PTR. 2019;33:1697–1705. doi: 10.1002/ptr.6358.
    1. Yamamoto M., Suzuki A., Hase T. Short-term effects of glucosyl hesperidin and hesperetin on blood pressure and vascular endothelial function in spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2008;54:95–98. doi: 10.3177/jnsv.54.95.
    1. Wang X., Hasegawa J., Kitamura Y., Wang Z., Matsuda A., Shinoda W., Miura N., Kimura K. Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J. Pharmacol. Sci. 2011;117:129–138. doi: 10.1254/jphs.11097FP.
    1. Yamamoto M., Jokura H., Hashizume K., Ominami H., Shibuya Y., Suzuki A., Hase T., Shimotoyodome A. Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct. 2013;4:1346–1351. doi: 10.1039/c3fo60030k.
    1. Nielsen I.L.F., Chee W.S.S., Poulsen L., Offord-Cavin E., Rasmussen S.E., Frederiksen H., Enslen M., Barron D., Horcajada M.-N., Williamson G. Bioavailability Is Improved by Enzymatic Modification of the Citrus Flavonoid Hesperidin in Humans: A Randomized, Double-Blind, Crossover Trial. J. Nutr. 2006;136:404–408. doi: 10.1093/jn/136.2.404.
    1. Piñuel L., Breccia J.D., Guisán J.M., López-Gallego F. Production of hesperetin using a covalently multipoint immobilized diglycosidase from acremonium sp. DSM24697. J. Mol. Microbiol. Biotechnol. 2013;23:410–417. doi: 10.1159/000353208.
    1. Kobayashi S., Konishi Y. Transepithelial transport of flavanone in intestinal Caco-2 cell monolayers. Biochem. Biophys. Res. Commun. 2008;368:23–29. doi: 10.1016/j.bbrc.2007.12.185.
    1. Pereira-Caro G., Polyviou T., Ludwig I.A., Nastase A.M., Moreno-Rojas J.M., Garcia A.L., Malkova D., Crozier A. Bioavailability of orange juice (poly)phenols: The impact of short-term cessation of training by male endurance athletes. Am. J. Clin. Nutr. 2017;106:791–800. doi: 10.3945/ajcn.116.149898.
    1. Aschoff J.K., Riedl K.M., Cooperstone J.L., Högel J., Bosy-Westphal A., Schwartz S.J., Carle R., Schweiggert R.M. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Mol. Nutr. Food Res. 2016;60:2602–2610. doi: 10.1002/mnfr.201600315.
    1. Ozdal T., Sela D.A., Xiao J., Boyacioglu D., Chen F., Capanoglu E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients. 2016;8:78. doi: 10.3390/nu8020078.
    1. Alvarez C.A., Lingvay I., Vuylsteke V., Koffarnus R.L., Mcguire D.K. Cardiovascular risk in diabetes mellitus: Complication of the disease or of antihyperglycemic medications. Clin. Pharmacol. Ther. 2015;98:145–161. doi: 10.1002/cpt.143.
    1. Zhang J., Sun C., Yan Y., Chen Q., Luo F., Zhu X., Li X., Chen K. Purification of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects on glucose consumption in human HepG2 cells. Food Chem. 2012;135:1471–1478. doi: 10.1016/j.foodchem.2012.06.004.
    1. Irshad Z., Xue M., Ashour A., Larkin J.R., Thornalley P.J., Rabbani N. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci. Rep. 2019;9:7889. doi: 10.1038/s41598-019-44358-1.
    1. Akiyama S., Katsumata S.-I., Suzuki K., Ishimi Y., Wu J., Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. J. Clin. Biochem. Nutr. 2010;46:87–92. doi: 10.3164/jcbn.09-82.
    1. Kumar B., Gupta S.K., Srinivasan B.P., Nag T.C., Srivastava S., Saxena R. Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats. Vascul. Pharmacol. 2012;57:201–207. doi: 10.1016/j.vph.2012.02.007.
    1. Visnagri A., Kandhare A.D., Chakravarty S., Ghosh P., Bodhankar S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol. 2014;52:814–828. doi: 10.3109/13880209.2013.870584.
    1. Hanchang W., Khamchan A., Wongmanee N., Seedadee C. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sci. 2019;235:116858. doi: 10.1016/j.lfs.2019.116858.
    1. Sundaram R., Nandhakumar E., Haseena Banu H. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Toxicol. Mech. Methods. 2019;29:644–653. doi: 10.1080/15376516.2019.1646370.
    1. Dokumacioglu E., Iskender H., Sen T.M., Ince I., Dokumacioglu A., Kanbay Y., Erbas E., Saral S. The Effects of Hesperidin and Quercetin on Serum Tumor Necrosis Factor-Alpha and Interleukin-6 Levels in Streptozotocin-induced Diabetes Model. Pharmacogn. Mag. 2018;14:167–173.
    1. Jung U.J., Lee M.-K., Jeong K.-S., Choi M.-S. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. J. Nutr. 2004;134:2499–2503. doi: 10.1093/jn/134.10.2499.
    1. Jung U.J., Lee M.-K., Park Y.B., Kang M.A., Choi M.-S. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int. J. Biochem. Cell Biol. 2006;38:1134–1145. doi: 10.1016/j.biocel.2005.12.002.
    1. Akiyama S., Katsumata S., Suzuki K., Nakaya Y., Ishimi Y., Uehara M. Hypoglycemic and hypolipidemic effects of hesperidin and cyclodextrin-clathrated hesperetin in Goto-Kakizaki rats with type 2 diabetes. Biosci. Biotechnol. Biochem. 2009;73:2779–2782. doi: 10.1271/bbb.90576.
    1. Mahmoud A.M., Ashour M.B., Abdel-Moneim A., Ahmed O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complicat. 2012;26:483–490. doi: 10.1016/j.jdiacomp.2012.06.001.
    1. Jia S., Hu Y., Zhang W., Zhao X., Chen Y., Sun C., Li X., Chen K. Hypoglycemic and hypolipidemic effects of neohesperidin derived from Citrus aurantium L. in diabetic KK-A(y) mice. Food Funct. 2015;6:878–886. doi: 10.1039/C4FO00993B.
    1. Sun Y.-Z., Chen J.-F., Shen L.-M., Zhou J., Wang C.-F. Anti-atherosclerotic effect of hesperidin in LDLr-/- mice and its possible mechanism. Eur. J. Pharmacol. 2017;815:109–117. doi: 10.1016/j.ejphar.2017.09.010.
    1. Mayneris-Perxachs J., Alcaide-Hidalgo J.M., de la Hera E., del Bas J.M., Arola L., Caimari A. Supplementation with biscuits enriched with hesperidin and naringenin is associated with an improvement of the Metabolic Syndrome induced by a cafeteria diet in rats. J. Funct. Foods. 2019;61:103504. doi: 10.1016/j.jff.2019.103504.
    1. Rehman K., Munawar S.M., Akash M.S.H., Buabeid M.A., Chohan T.A., Tariq M., Jabeen K., Arafa E.-S.A. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS ONE. 2020;15:e0227637.
    1. Pu P. Protection mechanisms of hesperidin on mouse with insulin resistance. Zhongguo Zhong Yao Za Zhi. 2016;41:3290–3295.
    1. Wu H., Liu Y., Chen X., Zhu D., Ma J., Yan Y., Si M., Li X., Sun C., Yang B., et al. Neohesperidin Exerts Lipid-Regulating Effects in vitro and in vivo via Fibroblast Growth Factor 21 and AMP-Activated Protein Kinase/Sirtuin Type 1/Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α Signaling Axis. Pharmacology. 2017;100:115–126. doi: 10.1159/000452492.
    1. Yari Z., Movahedian M., Imani H., Alavian S.M., Hedayati M., Hekmatdoost A. The effect of hesperidin supplementation on metabolic profiles in patients with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Nutr. 2019 doi: 10.1007/s00394-019-02105-2.
    1. Ribeiro C., Dourado G., Cesar T. Orange juice allied to a reduced-calorie diet results in weight loss and ameliorates obesity-related biomarkers: A randomized controlled trial. Nutrition. 2017;38:13–19. doi: 10.1016/j.nut.2016.12.020.
    1. Lima A.C.D., Cecatti C., Fidélix M.P., Adorno M.A.T., Sakamoto I.K., Cesar T.B., Sivieri K. Effect of Daily Consumption of Orange Juice on the Levels of Blood Glucose, Lipids, and Gut Microbiota Metabolites: Controlled Clinical Trials. J. Med. Food. 2019;22:202–210. doi: 10.1089/jmf.2018.0080.
    1. Cheraghpour M., Imani H., Ommi S., Alavian S.M., Karimi-Shahrbabak E., Hedayati M., Yari Z., Hekmatdoost A. Hesperidin improves hepatic steatosis, hepatic enzymes, and metabolic and inflammatory parameters in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled, double-blind clinical trial. Phyther. Res. PTR. 2019;33:2118–2125. doi: 10.1002/ptr.6406.
    1. Homayouni F., Haidari F., Hedayati M., Zakerkish M., Ahmadi K. Hesperidin Supplementation Alleviates Oxidative DNA Damage and Lipid Peroxidation in Type 2 Diabetes: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Phyther. Res. PTR. 2017;31:1539–1545. doi: 10.1002/ptr.5881.
    1. Rizza S., Muniyappa R., Iantorno M., Kim J.A., Chen H., Pullikotil P., Senese N., Tesauro M., Lauro D., Cardillo C., et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011;96:782–792. doi: 10.1210/jc.2010-2879.
    1. Salden B.N., Troost F.J., De Groot E., Stevens Y.R., Garcés-Rimón M., Possemiers S., Winkens B., Masclee A.A. Randomized clinical trial on the efficacy of hesperidin 2S on validated cardiovascular biomarkers in healthy overweight individuals. Am. J. Clin. Nutr. 2016;104:1523–1533. doi: 10.3945/ajcn.116.136960.
    1. Constans J., Bennetau-Pelissero C., Martin J.-F., Rock E., Mazur A., Bedel A., Morand C., Bérard A.M. Marked antioxidant effect of orange juice intake and its phytomicronutrients in a preliminary randomized cross-over trial on mild hypercholesterolemic men. Clin. Nutr. 2015;34:1093–1100. doi: 10.1016/j.clnu.2014.12.016.
    1. Morand C., Dubray C., Milenkovic D., Lioger D., Martin J.F., Scalbert A., Mazur A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011;93:73–80. doi: 10.3945/ajcn.110.004945.
    1. Rangel-Huerta O.D., Aguilera C.M., Martin M.V., Soto M.J., Rico M.C., Vallejo F., Tomas-Barberan F., Perez-de-la-Cruz A.J., Gil A., Mesa M.D. Normal or High Polyphenol Concentration in Orange Juice Affects Antioxidant Activity, Blood Pressure, and Body Weight in Obese or Overweight Adults. J. Nutr. 2015;145:1808–1816. doi: 10.3945/jn.115.213660.
    1. Isomaa B., Almgren P., Tuomi T., Forsén B., Lahti K., Nissén M., Taskinen M.R., Groop L. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care. 2001;24:683–689. doi: 10.2337/diacare.24.4.683.
    1. Stewart J., Manmathan G., Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017;6:2048004016687211. doi: 10.1177/2048004016687211.
    1. Reyes-Soffer G., Rondon-Clavo C., Ginsberg H.N. Combination therapy with statin and fibrate in patients with dyslipidemia associated with insulin resistance, metabolic syndrome and type 2 diabetes mellitus. Expert Opin. Pharmacother. 2011;12:1429–1438. doi: 10.1517/14656566.2011.563506.
    1. Assini J.M., Mulvihill E.E., Huff M.W. Citrus flavonoids and lipid metabolism. Curr. Opin. Lipidol. 2013;24:34–40. doi: 10.1097/MOL.0b013e32835c07fd.
    1. Xiong H., Wang J., Ran Q., Lou G., Peng C., Gan Q., Hu J., Sun J., Yao R., Huang Q. Hesperidin: A therapeutic agent for obesity. Drug Des. Devel. Ther. 2019;13:3855–3866. doi: 10.2147/DDDT.S227499.
    1. Simpson E.J., Mendis B., Macdonald I.A. Orange juice consumption and its effect on blood lipid profile and indices of the metabolic syndrome; a randomised, controlled trial in an at-risk population. Food Funct. 2016;7:1884–1891. doi: 10.1039/C6FO00039H.
    1. Aptekmann N.P., Cesar T.B. Orange juice improved lipid profile and blood lactate of overweight middle-aged women subjected to aerobic training. Maturitas. 2010;67:343–347. doi: 10.1016/j.maturitas.2010.07.009.
    1. Mulvihill E.E., Huff M.W. Citrus Flavonoids and the Prevention of Atherosclerosis. Cardiovasc. Hematol. Disord. Targets. 2013;12:84–91. doi: 10.2174/1871529X11202020084.
    1. Gómez-Zorita S., Lasa A., Abendaño N., Fernández-Quintela A., Mosqueda-Solís A., Garcia-Sobreviela M.P., Arbonés-Mainar J.M., Portillo M.P. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes. J. Transl. Med. 2017;15:237. doi: 10.1186/s12967-017-1343-0.
    1. Mosqueda-Solís A., Lasa A., Gómez-Zorita S., Eseberri I., Picó C., Portillo M.P. Screening of potential anti-adipogenic effects of phenolic compounds showing different chemical structure in 3T3-L1 preadipocytes. Food Funct. 2017;8:3576–3586. doi: 10.1039/C7FO00679A.
    1. Kim J.K., Jeong H.W., Kim A.Y., Hong Y.D., Lee J.H., Choi J.K., Hwang J.S. Green satsuma mandarin orange (Citrus unshiu) extract reduces adiposity and induces uncoupling protein expression in skeletal muscle of obese mice. Food Sci. Biotechnol. 2019;28:873–879. doi: 10.1007/s10068-018-0503-1.
    1. Miwa Y., Mitsuzumi H., Sunayama T., Yamada M., Okada K., Kubota M., Chaen H., Mishima Y., Kibata M. Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J. Nutr. Sci. Vitaminol. (Tokyo) 2005;51:460–470. doi: 10.3177/jnsv.51.460.
    1. Demonty I., Lin Y., Zebregs Y.E.M.P., Vermeer M.A., van der Knaap H.C.M., Jäkel M., Trautwein E.A. The Citrus Flavonoids Hesperidin and Naringin Do Not Affect Serum Cholesterol in Moderately Hypercholesterolemic Men and Women. J. Nutr. 2010;140:1615–1620. doi: 10.3945/jn.110.124735.
    1. Longo M., Zatterale F., Naderi J., Parrillo L., Formisano P., Raciti G.A., Beguinot F., Miele C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Mol. Sci. 2019;20:2358. doi: 10.3390/ijms20092358.
    1. Wells J.C.K. The evolution of human adiposity and obesity: Where did it all go wrong? DMM Dis. Model. Mech. 2012;5:595–607. doi: 10.1242/dmm.009613.
    1. Serino A., Salazar G. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients. 2019;11:53. doi: 10.3390/nu11010053.
    1. Mosqueda-Solís A., Sánchez J., Portillo M.P., Palou A., Picó C. Combination of Capsaicin and Hesperidin Reduces the Effectiveness of Each Compound To Decrease the Adipocyte Size and To Induce Browning Features in Adipose Tissue of Western Diet Fed Rats. J. Agric. Food Chem. 2018;66:9679–9689. doi: 10.1021/acs.jafc.8b02611.
    1. Ohara T., Muroyama K., Yamamoto Y., Murosaki S. Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: A randomized double-blind placebo-controlled trial. Nutr. J. 2016;15:6. doi: 10.1186/s12937-016-0123-7.
    1. Franklin S.S. Systolic blood pressure: It’s time to take control. Am. J. Hypertens. 2004;17:S49–S54. doi: 10.1016/j.amjhyper.2004.08.020.
    1. Zanchetti A. Hypertension: Lower or higher blood-pressure targets for high-risk patients? Nat. Rev. Cardiol. 2016;13:637–638. doi: 10.1038/nrcardio.2016.165.
    1. Ohtsuki K., Abe A., Mitsuzumi H., Kondo M., Uemura K., Iwasaki Y., Kondo Y. Effects of long-term administration of hesperidin and glucosyl hesperidin to spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2002;48:420–422. doi: 10.3177/jnsv.48.420.
    1. Ikemura M., Sasaki Y., Giddings J.C., Yamamoto J. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive Rats. Phyther. Res. 2012;26:1272–1277. doi: 10.1002/ptr.3724.
    1. Guirro M., Gual-Grau A., Gibert-Ramos A., Alcaide-Hidalgo J.M., Canela N., Mayneris-Perxachs J. Metabolomics Elucidates Dose-Dependent Molecular Beneficial E ff ects of Hesperidin Supplementation in Rats Fed an Obesogenic Diet. Antioxidants. 2020;9:79. doi: 10.3390/antiox9010079.
    1. Wunpathe C., Potue P., Maneesai P., Bunbupha S., Prachaney P., Kukongviriyapan U., Kukongviriyapan V., Pakdeechote P. Hesperidin Suppresses Renin-Angiotensin System Mediated NOX2 Over-Expression and Sympathoexcitation in 2K-1C Hypertensive Rats. Am. J. Chin. Med. 2018;46:751–767. doi: 10.1142/S0192415X18500398.
    1. Dobiaš L., Petrová M., Vojtko R., Kristová V. Long-term Treatment with Hesperidin Improves Endothelium-dependent Vasodilation in Femoral Artery of Spontaneously Hypertensive Rats: The Involvement of NO-synthase and Kv Channels. Phyther. Res. 2016:1665–1671. doi: 10.1002/ptr.5670.
    1. Liu L., Xu D.M., Cheng Y.Y. Distinct effects of naringenin and hesperetin on nitric oxide production from endothelial cells. J. Agric. Food Chem. 2008;56:824–829. doi: 10.1021/jf0723007.
    1. Pons Z., Guerrero L., Margalef M., Arola L., Arola-Arnal A., Muguerza B. Effect of low molecular grape seed proanthocyanidins on blood pressure and lipid homeostasis in cafeteria diet-fed rats. J. Physiol. Biochem. 2014;70:629–637. doi: 10.1007/s13105-014-0329-0.
    1. Wilmsen P.K., Spada D.S., Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 2005;53:4757–4761. doi: 10.1021/jf0502000.
    1. Yamamoto M., Suzuki A., Jokura H., Yamamoto N., Hase T. Glucosyl hesperidin prevents endothelial dysfunction and oxidative stress in spontaneously hypertensive rats. Nutrition. 2008;24:470–476. doi: 10.1016/j.nut.2008.01.010.
    1. Yousefian M., Shakour N., Hosseinzadeh H., Hayes A.W., Hadizadeh F., Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine. 2019;55:200–213. doi: 10.1016/j.phymed.2018.08.002.
    1. Asgary S., Keshvari M. Effects of citrus sinensis juice on blood pressure. ARYA Atheroscler. 2013;9:98–101.
    1. Homayouni F., Haidari F., Hedayati M., Zakerkish M., Ahmadi K. Blood pressure lowering and anti-inflammatory effects of hesperidin in type 2 diabetes; a randomized double-blind controlled clinical trial. Phyther. Res. 2018;32:1073–1079. doi: 10.1002/ptr.6046.
    1. Mohammadi M., Ramezani-Jolfaie N., Lorzadeh E., Khoshbakht Y., Salehi-Abargouei A. Hesperidin, a major flavonoid in orange juice, might not affect lipid profile and blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Phyther. Res. 2019;33:534–545. doi: 10.1002/ptr.6264.
    1. Pla-Pagà L., Companys J., Calderón-Pérez L., Llauradó E., Solà R., Valls R.M., Pedret A. Effects of hesperidin consumption on cardiovascular risk biomarkers: A systematic review of animal studies and human randomized clinical trials. Nutr. Rev. 2019;77:845–864. doi: 10.1093/nutrit/nuz036.
    1. Jin M.J., Kim U., Kim I.S., Kim Y., Kim D.H., Han S.B., Kwon O.S., Yoo H.H. Effects of gut microflora on pharmacokinetics of hesperidin: A study on non-antibiotic and pseudo-germ-free rats. J. Toxicol. Environ. Heal. A. 2010;73:1441–1450. doi: 10.1080/15287394.2010.511549.
    1. Jiao Q., Xu L., Jiang L., Jiang Y., Zhang J., Liu B. Metabolism study of hesperetin and hesperidin in rats by UHPLC-LTQ-Orbitrap MS n. Xenobiotica. 2019;18:1–27. doi: 10.1080/00498254.2019.1567956.
    1. Habauzit V., Sacco S.M., Gil-Izquierdo A., Trzeciakiewicz A., Morand C., Barron D., Pinaud S., Offord E., Horcajada M.N. Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone. 2011;49:1108–1116. doi: 10.1016/j.bone.2011.07.030.
    1. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T., Creasy H.H., Earl A.M., Fitzgerald M.G., Fulton R.S., et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
    1. Lozupone C.A., Stombaugh J.I., Gordon J.I., Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–230. doi: 10.1038/nature11550.
    1. Lourens-Hattingh A., Viljoen B.C. Yogurt as probiotic carrier food. Int. Dairy J. 2001;11:1–17. doi: 10.1016/S0958-6946(01)00036-X.
    1. Danneskiold-Samsøe N.B., Dias de Freitas Queiroz Barros H., Santos R., Bicas J.L., Cazarin C.B.B., Madsen L., Kristiansen K., Pastore G.M., Brix S., Maróstica Júnior M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int. 2019;115:23–31. doi: 10.1016/j.foodres.2018.07.043.
    1. Anhê F.F., Nachbar R.T., Varin T.V., Trottier J., Dudonné S., Le Barz M., Feutry P., Pilon G., Barbier O., Desjardins Y., et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2019;68:453–464. doi: 10.1136/gutjnl-2017-315565.
    1. Chávez-Carbajal A., Nirmalkar K., Pérez-Lizaur A., Hernández-Quiroz F., Ramírez-Del-Alto S., García-Mena J., Hernández-Guerrero C. Gut microbiota and predicted metabolic pathways in a sample of Mexican women affected by obesity and obesity plus metabolic syndrome. Int. J. Mol. Sci. 2019;20:438. doi: 10.3390/ijms20020438.
    1. Wan M.L.Y., Ling K.H., El-Nezami H., Wang M.F. Influence of functional food components on gut health. Crit. Rev. Food Sci. Nutr. 2019;59:1927–1936. doi: 10.1080/10408398.2018.1433629.
    1. Cardona F., Andrés-Lacueva C., Tulipani S., Tinahones F.J., Queipo-Ortuño M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 2013;24:1415–1422. doi: 10.1016/j.jnutbio.2013.05.001.
    1. Cushnie T.P.T., Hamilton V.E.S., Chapman D.G., Taylor P.W., Lamb A.J. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 2007;103:1562–1567. doi: 10.1111/j.1365-2672.2007.03393.x.
    1. Saavedra M., Borges A., Dias C., Aires A., Bennett R., Rosa E., Simões M. Antimicrobial Activity of Phenolics and Glucosinolate Hydrolysis Products and their Synergy with Streptomycin against Pathogenic Bacteria. Med. Chem. 2010;6:174–183. doi: 10.2174/1573406411006030174.
    1. Tzounis X., Vulevic J., Kuhnle G.G.C., George T., Leonczak J., Gibson G.R., Kwik-Uribe C., Spencer J.P.E. Flavanol monomer-induced changes to the human faecal microflora. Br. J. Nutr. 2008;99:782–792. doi: 10.1017/S0007114507853384.
    1. Masco L., Huys G., De Brandt E., Temmerman R., Swings J. Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int. J. Food Microbiol. 2005;102:221–230. doi: 10.1016/j.ijfoodmicro.2004.11.018.
    1. Den Besten G., Van Eunen K., Groen A.K., Venema K., Reijngoud D.J., Bakker B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013;54:2325–2340. doi: 10.1194/jlr.R036012.
    1. Liu Z., Chen H., Li C. Novel role of hesperidin improve obesity in HFD mice by modulating the composition of the gut microbiota. Gen. Microbiol. 2020 Preprint.
    1. Estruel-Amades S., Massot-Cladera M., Pérez-Cano F.J., Franch À., Castell M., Camps-Bossacoma M. Hesperidin effects on gut microbiota and gut-associated lymphoid tissue in healthy rats. Nutrients. 2019;11:324. doi: 10.3390/nu11020324.
    1. Russell D.A., Ross R.P., Fitzgerald G.F., Stanton C. Metabolic activities and probiotic potential of bifidobacteria. Int. J. Food Microbiol. 2011;149:88–105. doi: 10.1016/j.ijfoodmicro.2011.06.003.
    1. Saad M.J.A., Santos A., Prada P.O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31:283–293. doi: 10.1152/physiol.00041.2015.
    1. Jin T., Song Z., Weng J., Fantus I.G. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. Am. J. Physiol. Endocrinol. Metab. 2018;314:E201–E205. doi: 10.1152/ajpendo.00285.2017.
    1. Tomás-Barberán F.A., Selma M.V., Espín J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:471–476. doi: 10.1097/MCO.0000000000000314.
    1. Carrera-Quintanar L., Roa R.I.L., Quintero-Fabián S., Sánchez-Sánchez M.A., Vizmanos B., Ortuño-Sahagún D. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat. Inflamm. 2018;2018:1–18. doi: 10.1155/2018/9734845.
    1. Dao M.C., Clément K. Gut microbiota and obesity: Concepts relevant to clinical care. Eur. J. Intern. Med. 2018;48:18–24. doi: 10.1016/j.ejim.2017.10.005.
    1. Cani P.D., Van Hul M., Lefort C., Depommier C., Rastelli M., Everard A. Microbial regulation of organismal energy homeostasis. Nat. Metab. 2019;1:34–46. doi: 10.1038/s42255-018-0017-4.
    1. Canfora E.E., Meex R.C.R., Venema K., Blaak E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019;15:261–273. doi: 10.1038/s41574-019-0156-z.
    1. Al-Assal K., Martinez A.C., Torrinhas R.S., Cardinelli C., Waitzberg D. Gut microbiota and obesity. Clin. Nutr. Exp. 2018;20:60–64. doi: 10.1016/j.yclnex.2018.03.001.
    1. Vrieze A., Van Nood E., Holleman F., Salojärvi J., Kootte R.S., Bartelsman J.F.W.M., Dallinga-Thie G.M., Ackermans M.T., Serlie M.J., Oozeer R., et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916. doi: 10.1053/j.gastro.2012.06.031.
    1. Cani P.D., Bibiloni R., Knauf C., Neyrinck A.M., Delzenne N.M. Changes in gut microbiota control metabolic diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Gérard P. Gut microbiota and obesity. Cell. Mol. Life Sci. 2016;73:147–162. doi: 10.1007/s00018-015-2061-5.
    1. Meijnikman A.S., Gerdes V.E., Nieuwdorp M., Herrema H. Evaluating causality of gut microbiota in obesity and diabetes in humans. Endocr. Rev. 2018;39:133–153. doi: 10.1210/er.2017-00192.
    1. Cianci R., Pagliari D., Piccirillo C.A., Fritz J.H., Gambassi G. The microbiota and immune system crosstalk in health and disease. Mediat. Inflamm. 2018;2018:10–13. doi: 10.1155/2018/2912539.
    1. Stevens Y., Van Rymenant E., Grootaert C., Van Camp J., Possemiers S., Masclee A., Jonkers D. The intestinal fate of citrus flavanones and their effects on gastrointestinal health. Nutrients. 2019;11:1464. doi: 10.3390/nu11071464.
    1. Garg A., Garg S., Zaneveld L.J.D., Singla A.K. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res. 2001;15:655–669. doi: 10.1002/ptr.1074.
    1. Amaretti A., Raimondi S., Leonardi A., Quartieri A., Rossi M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients. 2015;7:2788–2800. doi: 10.3390/nu7042788.
    1. Van Duynhoven J., Vaughan E.E., Jacobs D.M., Kemperman R.A., Van Velzen E.J.J., Gross G., Roger L.C., Possemiers S., Smilde A.K., Doré J., et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA. 2011;108:4531–4538. doi: 10.1073/pnas.1000098107.
    1. Pereira-Caro G., Oliver C.M., Weerakkody R., Singh T., Conlon M., Borges G., Sanguansri L., Lockett T., Roberts S.A., Crozier A., et al. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Radic. Biol. Med. 2015;84:206–214. doi: 10.1016/j.freeradbiomed.2015.03.010.
    1. Ooi L.G., Liong M.T. Cholesterol-lowering effects of probiotics and prebiotics: A review of in Vivo and in Vitro Findings. Int. J. Mol. Sci. 2010;11:2499–2522. doi: 10.3390/ijms11062499.
    1. Tomás-Navarro M., Vallejo F., Borrego F., Tomás-Barberán F.A. Encapsulation and micronization effectively improve orange beverage flavanone bioavailability in humans. J. Agric. Food Chem. 2014;62:9458–9462. doi: 10.1021/jf502933v.
    1. Erlund I., Meririnne E., Alfthan G., Aro A. Human Nutrition and Metabolism Plasma Kinetics and Urinary Excretion of the Flavanones Naringenin and Hesperetin in Humans after Ingestion of Orange Juice and Grapefruit Juice. J. Nutr. 2001;131:235–241. doi: 10.1093/jn/131.2.235.
    1. Manach C., Morand C., Gil-Izquierdo A., Bouteloup-Demange C., Rémésy C. ORIGINAL COMMUNICATION Bioavailability in humans of the flavanones hesperidin and narirutin after the ingestion of two doses of orange juice. Eur. J. Clin. Nutr. 2003;57:235–242. doi: 10.1038/sj.ejcn.1601547.
    1. Bao W., Bowers K., Tobias D.K., Olsen S.F., Chavarro J., Vaag A., Kiely S.A., Zhang C. Prepregnancy low-carbohydrate dietary pattern and risk of gestational diabetes mellitus: A prospective cohort study. Am. J. Clin. Nutr. 2014;99:1378–1384. doi: 10.3945/ajcn.114.090282.
    1. Brett G.M., Hollands W., Needs P.W., Teucher B., Dainty J.R., Davis B.D., Brodbelt J.S., Kroon P.A. Absorption, metabolism and excretion of flavanones from single portions of orange fruit and juice and effects of anthropometric variables and contraceptive pill use on flavanone excretion. Br. J. Nutr. 2009;101:664–675. doi: 10.1017/S000711450803081X.
    1. Vallejo F., Larrosa M., Escudero E., Zafrilla M.P., Cerdá B., Boza J., García-Conesa M.T., Espín J.C., Tomás-Barberán F.A. Concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agric. Food Chem. 2010;58:6516–6524. doi: 10.1021/jf100752j.
    1. Mullen W., Archeveque M.A., Edwards C.A., Matsumoto H., Crozier A. Bioavailability and metabolism of orange juice flavanones in humans: Impact of a full-fat yogurt. J. Agric. Food Chem. 2008;56:11157–11164. doi: 10.1021/jf801974v.
    1. Tomás-Navarro M., Vallejo F., Sentandreu E., Navarro J.L., Tomás-Barberán F.A. Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability. J. Agric. Food Chem. 2014;62:24–27. doi: 10.1021/jf4048989.
    1. Silveira J.Q., Cesar T.B., Manthey J.A., Baldwin E.A., Bai J., Raithore S. Pharmacokinetics of flavanone glycosides after ingestion of single doses of fresh-squeezed orange juice versus commercially processed orange juice in healthy humans. J. Agric. Food Chem. 2014;62:12576–12584. doi: 10.1021/jf5038163.
    1. Actis-Goretta L., Dew T.P., Lévèques A., Pereira-Caro G., Rein M., Teml A., Schäfer C., Hofmann U., Schwab M., Eichelbaum M., et al. Gastrointestinal absorption and metabolism of hesperetin-7-O-rutinoside and hesperetin-7-O-glucoside in healthy humans. Mol. Nutr. Food Res. 2015;59:1651–1662. doi: 10.1002/mnfr.201500202.
    1. Borges G., Lean M.E.J., Roberts S.A., Crozier A. Bioavailability of dietary (poly)phenols: A study with ileostomists to discriminate between absorption in small and large intestine. Food Funct. 2013;4:754–762. doi: 10.1039/c3fo60024f.
    1. Lévèques A., Actis-Goretta L., Rein M.J., Williamson G., Dionisi F., Giuffrida F. UPLC-MS/MS quantification of total hesperetin and hesperetin enantiomers in biological matrices. J. Pharm. Biomed. Anal. 2012;57:1–6. doi: 10.1016/j.jpba.2011.08.031.
    1. Donovan J.L., Crespy V., Oliveira M., Cooper K.A., Gibson B.B., Williamson G. (1)-Catechin is more bioavailable than (2)-catechin: Relevance to the bioavailability of catechin from cocoa. Free Radic. Res. 2006;40:1029–1034. doi: 10.1080/10715760600868545.
    1. Teng X.W., Roupe K.A., Davies N.M., Jaime A.Y. Stereospecific high-performance liquid chromatographic analysis of hesperetin in biological matrices. J. Pharm. Biomed. Anal. 2005;37:591–595.
    1. Yáñez J.A., Remsberg C.M., Miranda N.D., Vega-Villa K.R., Andrews P.K., Davies N.M. Pharmacokinetics of selected chiral flavonoids: Hesperitin, naringenin and eriodictyol in rats and their content in fruit juices. Biopharm. Drug Dispos. 2008;29:63–82. doi: 10.1002/bdd.588.
    1. Brand W., Shao J., Hoek-Van Den Hil E.F., Van Elk K.N., Spenkelink B., De Haan L.H.J., Rein M.J., Dionisi F., Williamson G., Van Bladeren P.J., et al. Stereoselective conjugation, transport and bioactivity of S- and R-hesperetin enantiomers in vitro. J. Agric. Food Chem. 2010;58:6119–6125. doi: 10.1021/jf1008617.
    1. Majumdar S., Srirangam R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid. Pharm. Res. 2009;26:1217–1225. doi: 10.1007/s11095-008-9729-6.
    1. Aschoff J.K., Kaufmann S., Kalkan O., Neidhart S., Carle R., Schweiggert R.M. In vitro bioaccessibility of carotenoids, flavonoids, and vitamin C from differently processed oranges and orange juices (Citrus sinensis (L.) osbeck) J. Agric. Food Chem. 2015;63:578–587. doi: 10.1021/jf505297t.
    1. Gil-Izquierdo A., Gil M.I., Tomás-Barberán F.A., Ferreres F. Influence of industrial processing on orange juice flavanone solubility and transformation to chalcones under gastrointestinal conditions. J. Agric. Food Chem. 2003;51:3024–3028. doi: 10.1021/jf020986r.
    1. Bai J., Manthey J.A., Ford B.L., Luzio G., Cameron R.G., Narciso J., Baldwin E.A. Effect of extraction, pasteurization and cold storage on flavonoids and other secondary metabolites in fresh orange juice. J. Sci. Food Agric. 2013;93:2771–2781. doi: 10.1002/jsfa.6097.
    1. Gil-Izquierdo A., Gil M.I., Ferreres F. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds. J. Agric. Food Chem. 2002;50:5107–5114. doi: 10.1021/jf020162+.
    1. Santos A.C., Pereira I., Pereira-Silva M., Ferreira L., Caldas M., Collado-González M., Magalhães M., Figueiras A., Ribeiro A.J., Veiga F. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf. B Biointerfaces. 2019;180:127–140. doi: 10.1016/j.colsurfb.2019.04.030.
    1. Hu B., Liu X., Zhang C., Zeng X. Food macromolecule based nanodelivery systems for enhancing the bioavailability of polyphenols. J. Food Drug Anal. 2017;25:3–15. doi: 10.1016/j.jfda.2016.11.004.
    1. Gasa-Falcon A., Odriozola-Serrano I., Oms-Oliu G., Martín-Belloso O. Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds. Foods. 2020;9:325. doi: 10.3390/foods9030325.
    1. Li T., Teng D., Mao R., Hao Y., Wang X., Wang J. Recent progress in preparation and agricultural application of microcapsules. J. Biomed. Mater. Res. A. 2019;107:2371–2385. doi: 10.1002/jbm.a.36739.
    1. Ordovas J.M., Ferguson L.R., Tai E.S., Mathers J.C. Personalised nutrition and health. BMJ. 2018;361:1–7. doi: 10.1136/bmj.k2173.
    1. Palmnäs M., Brunius C., Shi L., Rostgaard-Hansen A., Torres N.E., González-Domínguez R., Zamora-Ros R., Ye Y.L., Halkjær J., Tjønneland A., et al. Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv. Nutr. 2019:1–9. doi: 10.1093/advances/nmz121.
    1. González-Peña D., Brennan L. Recent Advances in the Application of Metabolomics for Nutrition and Health. Annu. Rev. Food Sci. Technol. 2019;10:479–519. doi: 10.1146/annurev-food-032818-121715.
    1. Selma M.V., Romo-Vaquero M., García-Villalba R., González-Sarrías A., Tomás-Barberán F.A., Espín J.C. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food Funct. 2016;7:1769–1774. doi: 10.1039/C5FO01100K.
    1. Tomás-Barberán F.A., García-Villalba R., González-Sarrías A., Selma M.V., Espín J.C. Ellagic acid metabolism by human gut microbiota: Consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J. Agric. Food Chem. 2014;62:6535–6538. doi: 10.1021/jf5024615.

Source: PubMed

3
Abonnieren