How Reliable Are Gene Expression-Based and Immunohistochemical Biomarkers Assessed on a Core-Needle Biopsy? A Study of Paired Core-Needle Biopsies and Surgical Specimens in Early Breast Cancer

Hani Saghir, Srinivas Veerla, Martin Malmberg, Lisa Rydén, Anna Ehinger, Lao H Saal, Johan Vallon-Christersson, Åke Borg, Cecilia Hegardt, Christer Larsson, Alaa Haidar, Ingrid Hedenfalk, Niklas Loman, Siker Kimbung, Hani Saghir, Srinivas Veerla, Martin Malmberg, Lisa Rydén, Anna Ehinger, Lao H Saal, Johan Vallon-Christersson, Åke Borg, Cecilia Hegardt, Christer Larsson, Alaa Haidar, Ingrid Hedenfalk, Niklas Loman, Siker Kimbung

Abstract

In early breast cancer, a preoperative core-needle biopsy (CNB) is vital to confirm the malignancy of suspected lesions and for assessing the expression of treatment predictive and prognostic biomarkers in the tumor to choose the optimal treatments, emphasizing the importance of obtaining reliable results when biomarker status is assessed on a CNB specimen. This study aims to determine the concordance between biomarker status assessed as part of clinical workup on a CNB compared to a medically untreated surgical specimen. Paired CNB and surgical specimens from 259 patients that were part of the SCAN-B cohort were studied. The concordance between immunohistochemical (IHC) and gene expression (GEX) based biomarker status was investigated. Biomarkers of interest included estrogen receptor (ER; specifically, the alpha variant), progesterone receptor (PgR), Ki67, HER2, and tumor molecular subtype. In general, moderate to very good correlation in biomarker status between the paired CNB and surgical specimens was observed for both IHC assessment (83-99% agreement, kappa range 0.474-0.917) and GEX assessment (70-97% agreement, kappa range 0.552-0.800), respectively. However, using IHC, 52% of cases with low Ki67 status in the CNB shifted to high Ki67 status in the surgical specimen (McNemar's p = 0.011). Similarly, when using GEX, a significant shift from negative to positive ER (47%) and from low to high Ki67 (16%) was observed between the CNB and surgical specimen (McNemar's p = 0.027 and p = 0.002 respectively). When comparing biomarker status between different techniques (IHC vs. GEX) performed on either CNBs or surgical specimens, the agreement in ER, PgR, and HER2 status was generally over 80% in both CNBs and surgical specimens (kappa range 0.395-0.708), but Ki67 and tumor molecular subtype showed lower concordance levels between IHC and GEX (48-62% agreement, kappa range 0.152-0.398). These results suggest that both the techniques used for collecting tissue samples and analyzing biomarker status have the potential to affect the results of biomarker assessment, potentially also impacting treatment decisions and patient survival outcomes.

Keywords: breast cancer; core-needle biopsy; genomic profiling; immunohistochemistry.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart showing the selection of the study specific cohort (n = 259) from the SCAN-B cohort.
Figure 2
Figure 2
Concordance of St Gallen subtypes (A) and PAM50 subtypes (B) between paired core-needle biopsies and surgical specimens.
Figure 3
Figure 3
Gene Set Enrichment Analysis (GSEA) for RNAseq profiles between paired CNBs and surgical specimens. Examples of histograms showing the distribution of the Hallmark of cancer pathways enriched among genes showing significantly higher expression in CNBs compared with the paired surgical specimens. Refer to Supplementary Table S3 for the full list of the enriched Hallmark of cancer pathways among the genes with higher expression in CNBs compared with surgical specimens.
Figure 4
Figure 4
Gene Set Enrichment Analysis (GSEA) of RNAseq profiles between paired CNBs and surgical specimens. Examples of histograms showing the distribution of the Hallmark of cancer pathways enriched among genes showing significantly lower expression in CNBs compared with the paired surgical specimens. Refer to Supplementary Table S3 for the full list of the enriched Hallmark of cancer pathways among the genes with lower expression in CNBs compared with surgical specimens.

References

    1. Kooistra B., Wauters C., Strobbe L., Wobbes T. Preoperative cytological and histological diagnosis of breast lesions: A critical review. Eur. J. Surg. Oncol. 2010;36:934–940. doi: 10.1016/j.ejso.2010.06.014.
    1. Parker S.H., Burbank F., Jackman R.J., Aucreman C.J., Cardenosa G., Cink T.M., Coscia J.L., Jr., Eklund G.W., Evans W.P., Garver P.R., III, et al. Percutaneous large-core breast biopsy: A multi-institutional study. Radiology. 1994;193:359–364. doi: 10.1148/radiology.193.2.7972743.
    1. Dahlstrom J.E., Jain S., Sutton T., Sutton S. Diagnostic accuracy of stereotactic core biopsy in a mammographic breast cancer screening programme. Histopathology. 1996;28:421–427. doi: 10.1046/j.1365-2559.1996.332376.x.
    1. Verkooijen H.M., Peeters P.H., Buskens E., Koot V.C., Borel Rinkes I.H., Mali W.P., van Vroonhoven T.J. Diagnostic accuracy of large-core needle biopsy for nonpalpable breast disease: A meta-analysis. Br. J. Cancer. 2000;82:1017–1021. doi: 10.1054/bjoc.1999.1036.
    1. Hoorntje L.E., Peeters P.H., Borel Rinkes I.H., Verkooijen H.M., Pijnappel R.M., Mali W.P. Stereotactic large core needle biopsy for all nonpalpable breast lesions? Breast Cancer Res. Treat. 2002;73:177–182. doi: 10.1023/A:1015289903352.
    1. Verkooijen H.M. Diagnostic accuracy of stereotactic large-core needle biopsy for nonpalpable breast disease: Results of a multicenter prospective study with 95% surgical confirmation. Int. J. Cancer. 2002;99:853–859. doi: 10.1002/ijc.10419.
    1. Dillon M.F., Hill A.D., Quinn C.M., O’Doherty A., McDermott E.W., O’Higgins N. The accuracy of ultrasound, stereotactic, and clinical core biopsies in the diagnosis of breast cancer, with an analysis of false-negative cases. Ann. Surg. 2005;242:701–707. doi: 10.1097/01.sla.0000186186.05971.e0.
    1. Cancercentrum: Nationellt Kvalitetsregister för Bröstcancer (NKBC) 2020. [(accessed on 10 October 2021)]. Available online:
    1. Burstein H.J., Curigliano G., Loibl S., Dubsky P., Gnant M., Poortmans P., Colleoni M., Denkert C., Piccart-Gebhart M., Regan M., et al. Estimating the benefits of therapy for early-stage breast cancer: The St. Gallen International Consensus Guidelines for the primary therapy of early breast cancer 2019. Ann. Oncol. 2019;30:1541–1557. doi: 10.1093/annonc/mdz235.
    1. Masuda N., Lee S.J., Ohtani S., Im Y.H., Lee E.S., Yokota I., Kuroi K., Im S.A., Park B.W., Kim S.B., et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017;376:2147–2159. doi: 10.1056/NEJMoa1612645.
    1. von Minckwitz G., Huang C.S., Mano M.S., Loibl S., Mamounas E.P., Untch M., Wolmark N., Rastogi P., Schneeweiss A., Redondo A., et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019;380:617–628. doi: 10.1056/NEJMoa1814017.
    1. Tutt A.N.J., Garber J.E., Kaufman B., Viale G., Fumagalli D., Rastogi P., Gelber R.D., de Azambuja E., Fielding A., Balmaña J., et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021;384:2394–2405. doi: 10.1056/NEJMoa2105215.
    1. EBCTCG Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis of individual patient data from ten randomised trials. Lancet Oncol. 2018;19:27–39. doi: 10.1016/S1470-2045(17)30777-5.
    1. Robertson S., Rönnlund C., de Boniface J., Hartman J. Re-testing of predictive biomarkers on surgical breast cancer specimens is clinically relevant. Breast Cancer Res. Treat. 2019;174:795–805. doi: 10.1007/s10549-018-05119-2.
    1. Greer L.T., Rosman M., Mylander W.C., Hooke J., Kovatich A., Sawyer K., Buras R.R., Shriver C.D., Tafra L. Does breast tumor heterogeneity necessitate further immunohistochemical staining on surgical specimens? J. Am. Coll. Surg. 2013;216:239–251. doi: 10.1016/j.jamcollsurg.2012.09.007.
    1. Zell J.A., Tsang W.Y., Taylor T.H., Mehta R.S., Anton-Culver H. Prognostic impact of human epidermal growth factor-like receptor 2 and hormone receptor status in inflammatory breast cancer (IBC): Analysis of 2,014 IBC patient cases from the California Cancer Registry. Breast Cancer Res. 2009;11:R9. doi: 10.1186/bcr2225.
    1. Denkert C., Loibl S., Müller B.M., Eidtmann H., Schmitt W.D., Eiermann W., Gerber B., Tesch H., Hilfrich J., Huober J., et al. Ki67 levels as predictive and prognostic parameters in pretherapeutic breast cancer core biopsies: A translational investigation in the neoadjuvant GeparTrio trial. Ann. Oncol. 2013;24:2786–2793. doi: 10.1093/annonc/mdt350.
    1. Harris L.N., Ismaila N., McShane L.M., Andre F., Collyar D.E., Gonzalez-Angulo A.M., Hammond E.H., Kuderer N.M., Liu M.C., Mennel R.G., et al. Use of Biomarkers to Guide Decisions on Adjuvant Systemic Therapy for Women with Early-Stage Invasive Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016;34:1134–1150. doi: 10.1200/JCO.2015.65.2289.
    1. Roepman P., Horlings H.M., Krijgsman O., Kok M., Bueno-de-Mesquita J.M., Bender R., Linn S.C., Glas A.M., van de Vijver M.J. Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer. Clin. Cancer Res. 2009;15:7003–7011. doi: 10.1158/1078-0432.CCR-09-0449.
    1. Wilson T.R., Xiao Y., Spoerke J.M., Fridlyand J., Koeppen H., Fuentes E., Huw L.Y., Abbas I., Gower A., Schleifman E.B., et al. Development of a robust RNA-based classifier to accurately determine ER, PR, and HER2 status in breast cancer clinical samples. Breast Cancer Res. Treat. 2014;148:315–325. doi: 10.1007/s10549-014-3163-8.
    1. Rantalainen M., Klevebring D., Lindberg J., Ivansson E., Rosin G., Kis L., Celebioglu F., Fredriksson I., Czene K., Frisell J., et al. Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers. Sci. Rep. 2016;6:38037. doi: 10.1038/srep38037.
    1. Bastani M., Vos L., Asgarian N., Deschenes J., Graham K., Mackey J., Greiner R. A machine learned classifier that uses gene expression data to accurately predict estrogen receptor status. PLoS ONE. 2013;8:e82144. doi: 10.1371/journal.pone.0082144.
    1. Brueffer C., Vallon-Christersson J., Grabau D., Ehinger A., Häkkinen J., Hegardt C., Malina J., Chen Y., Bendahl P.O., Manjer J., et al. Clinical Value of RNA Sequencing-Based Classifiers for Prediction of the Five Conventional Breast Cancer Biomarkers: A Report from the Population-Based Multicenter Sweden Cancerome Analysis Network-Breast Initiative. JCO Precis. Oncol. 2018;2:PO.17.00135. doi: 10.1200/PO.17.00135.
    1. Cardoso F., van’t Veer L.J., Bogaerts J., Slaets L., Viale G., Delaloge S., Pierga J.Y., Brain E., Causeret S., DeLorenzi M., et al. 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. N. Engl. J. Med. 2016;375:717–729. doi: 10.1056/NEJMoa1602253.
    1. Gnant M., Filipits M., Greil R., Stoeger H., Rudas M., Bago-Horvath Z., Mlineritsch B., Kwasny W., Knauer M., Singer C., et al. Predicting distant recurrence in receptor-positive breast cancer patients with limited clinicopathological risk: Using the PAM50 Risk of Recurrence score in 1478 postmenopausal patients of the ABCSG-8 trial treated with adjuvant endocrine therapy alone. Ann. Oncol. 2014;25:339–345. doi: 10.1093/annonc/mdt494.
    1. Filipits M., Nielsen T.O., Rudas M., Greil R., Stöger H., Jakesz R., Bago-Horvath Z., Dietze O., Regitnig P., Gruber-Rossipal C., et al. The PAM50 risk-of-recurrence score predicts risk for late distant recurrence after endocrine therapy in postmenopausal women with endocrine-responsive early breast cancer. Clin. Cancer Res. 2014;20:1298–1305. doi: 10.1158/1078-0432.CCR-13-1845.
    1. Sparano J.A., Gray R.J., Ravdin P.M., Makower D.F., Pritchard K.I., Albain K.S., Hayes D.F., Geyer C.E., Dees E.C., Jr., Goetz M.P., et al. Clinical and Genomic Risk to Guide the Use of Adjuvant Therapy for Breast Cancer. N. Engl. J. Med. 2019;380:2395–2405. doi: 10.1056/NEJMoa1904819.
    1. Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F.L., Walker M.G., Watson D., Park T., et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588.
    1. Parker J.S., Mullins M., Cheang M.C., Leung S., Voduc D., Vickery T., Davies S., Fauron C., He X., Hu Z., et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol. 2009;27:1160–1167. doi: 10.1200/JCO.2008.18.1370.
    1. Saal L.H., Vallon-Christersson J., Häkkinen J., Hegardt C., Grabau D., Winter C., Brueffer C., Tang M.H., Reuterswärd C., Schulz R., et al. The Sweden Cancerome Analysis Network—Breast (SCAN-B) Initiative: A large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine. Genome Med. 2015;7:20. doi: 10.1186/s13073-015-0131-9.
    1. Rydén L., Loman N., Larsson C., Hegardt C., Vallon-Christersson J., Malmberg M., Lindman H., Ehinger A., Saal L.H., Borg Å. Minimizing inequality in access to precision medicine in breast cancer by real-time population-based molecular analysis in the SCAN-B initiative. Br. J. Surg. 2018;105:e158–e168. doi: 10.1002/bjs.10741.
    1. Cancercentrum R: Kvalitetsbilaga för Bröstpatologi (KVAST-bilaga) 2020. [(accessed on 5 October 2021)]. Available online:
    1. Goldhirsch A., Winer E.P., Coates A.S., Gelber R.D., Piccart-Gebhart M., Thürlimann B., Senn H.J. Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol. 2013;24:2206–2223. doi: 10.1093/annonc/mdt303.
    1. Nielsen T.O., Leung S.C.Y., Rimm D.L., Dodson A., Acs B., Badve S., Denkert C., Ellis M.J., Fineberg S., Flowers M., et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021;113:808–819. doi: 10.1093/jnci/djaa201.
    1. Tusher V.G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 2001;98:5116–5121. doi: 10.1073/pnas.091062498.
    1. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102.
    1. Usami S., Moriya T., Kasajima A., Suzuki A., Ishida T., Sasano H., Ohuchi N. Pathological aspects of core needle biopsy for non-palpable breast lesions. Breast Cancer. 2005;12:272–278. doi: 10.2325/jbcs.12.272.
    1. Cahill R.A., Walsh D., Landers R.J., Watson R.G. Preoperative profiling of symptomatic breast cancer by diagnostic core biopsy. Ann. Surg. Oncol. 2006;13:45–51. doi: 10.1245/ASO.2006.03.047.
    1. Usami S., Moriya T., Amari M., Suzuki A., Ishida T., Sasano H., Ohuchi N. Reliability of prognostic factors in breast carcinoma determined by core needle biopsy. Jpn. J. Clin. Oncol. 2007;37:250–255. doi: 10.1093/jjco/hym021.
    1. Burge C.N., Chang H.R., Apple S.K. Do the histologic features and results of breast cancer biomarker studies differ between core biopsy and surgical excision specimens? Breast. 2006;15:167–172. doi: 10.1016/j.breast.2005.06.004.
    1. Connor C.S., Tawfik O.W., Joyce A.J., Davis M.K., Mayo M.S., Jewell W.R. A comparison of prognostic tumor markers obtained on image-guided breast biopsies and final surgical specimens. Am. J. Surg. 2002;184:322–324. doi: 10.1016/S0002-9610(02)00953-4.
    1. Di Loreto C., Puglisi F., Rimondi G., Zuiani C., Anania G., Della Mea V., Beltrami C.A. Large core biopsy for diagnostic and prognostic evaluation of invasive breast carcinomas. Eur. J. Cancer. 1996;32:1693–1700. doi: 10.1016/0959-8049(96)00192-X.
    1. Mann G.B., Fahey V.D., Feleppa F., Buchanan M.R. Reliance on hormone receptor assays of surgical specimens may compromise outcome in patients with breast cancer. J. Clin. Oncol. 2005;23:5148–5154. doi: 10.1200/JCO.2005.02.076.
    1. Romero Q., Bendahl P.O., Klintman M., Loman N., Ingvar C., Rydén L., Rose C., Grabau D., Borgquist S. Ki67 proliferation in core biopsies versus surgical samples—A model for neo-adjuvant breast cancer studies. BMC Cancer. 2011;11:341. doi: 10.1186/1471-2407-11-341.
    1. Hadad S.M., Jordan L.B., Roy P.G., Purdie C.A., Iwamoto T., Pusztai L., Moulder-Thompson S.L., Thompson A.M. A prospective comparison of ER, PR, Ki67 and gene expression in paired sequential core biopsies of primary, untreated breast cancer. BMC Cancer. 2016;16:745. doi: 10.1186/s12885-016-2788-x.
    1. Orozco J.I.J., Chang S.C., Matsuba C., Ensenyat-Mendez M., Grunkemeier G.L., Marzese D.M., Grumley J.G. Is the 21-Gene Recurrence Score on Core Needle Biopsy Equivalent to Surgical Specimen in Early-Stage Breast Cancer? A Comparison of Gene Expression Between Paired Core Needle Biopsy and Surgical Specimens. Ann. Surg. Oncol. 2021;28:5588–5596. doi: 10.1245/s10434-021-10457-5.
    1. Qi P., Yang Y., Bai Q.M., Xue T., Ren M., Yao Q.L., Yang W.T., Zhou X.Y. Concordance of the 21-gene assay between core needle biopsy and resection specimens in early breast cancer patients. Breast Cancer Res. Treat. 2021;186:327–342. doi: 10.1007/s10549-020-06075-6.
    1. Valachis A., Mauri D., Polyzos N.P., Chlouverakis G., Mavroudis D., Georgoulias V. Trastuzumab combined to neoadjuvant chemotherapy in patients with HER2-positive breast cancer: A systematic review and meta-analysis. Breast. 2011;20:485–490. doi: 10.1016/j.breast.2011.06.009.
    1. Gianni L., Eiermann W., Semiglazov V., Manikhas A., Lluch A., Tjulandin S., Zambetti M., Vazquez F., Byakhow M., Lichinitser M., et al. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): A randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet. 2010;375:377–384.
    1. Korde L.A., Somerfield M.R., Carey L.A., Crews J.R., Denduluri N., Hwang E.S., Khan S.A., Loibl S., Morris E.A., Perez A., et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021;39:1485–1505. doi: 10.1200/JCO.20.03399.
    1. Cancercentrum R: Nationellt Vårdprogram Bröstcancer. 2020. [(accessed on 7 October 2021)]. Available online:
    1. Acs B., Leung S.C.Y., Kidwell K.M., Arun I., Augulis R., Badve S.S., Bai Y., Bane A.L., Bartlett J.M.S., Bayani J., et al. Systematically higher Ki67 scores on core biopsy samples compared to corresponding resection specimen in breast cancer: A multi-operator and multi-institutional study. Mod. Pathol. 2022 doi: 10.1038/s41379-022-01104-9.
    1. Smith I., Robertson J., Kilburn L., Wilcox M., Evans A., Holcombe C., Horgan K., Kirwan C., Mallon E., Sibbering M., et al. Long-term outcome and prognostic value of Ki67 after perioperative endocrine therapy in postmenopausal women with hormone-sensitive early breast cancer (POETIC): An open-label, multicentre, parallel-group, randomised, phase 3 trial. Lancet Oncol. 2020;21:1443–1454. doi: 10.1016/S1470-2045(20)30458-7.
    1. Vallon-Christersson J. RNA Sequencing-Based Single Sample Predictors of Molecular Subtype and Risk of Recurrence for Clinical Assessment of Early-Stage Breast Cancer. Mendeley Data V1. 2022. [(accessed on 10 October 2021)]. Available online: .

Source: PubMed

3
Abonnieren