Evaluation of Laser Speckle Contrast Imaging for the Assessment of Oral Mucosal Blood Flow following Periodontal Plastic Surgery: An Exploratory Study

Eszter Molnár, Bálint Molnár, Zsolt Lohinai, Zsuzsanna Tóth, Zoltán Benyó, Laszló Hricisák, Péter Windisch, János Vág, Eszter Molnár, Bálint Molnár, Zsolt Lohinai, Zsuzsanna Tóth, Zoltán Benyó, Laszló Hricisák, Péter Windisch, János Vág

Abstract

The laser speckle contrast imaging (LSCI) is proved to be a reliable tool in flap monitoring in general surgery; however, it has not been evaluated in oral surgery yet. We applied the LSCI to compare the effect of a xenogeneic collagen matrix (Geistlich Mucograft®) to connective tissue grafts (CTG) on the microcirculation of the modified coronally advanced tunnel technique (MCAT) for gingival recession coverage. Gingival microcirculation and wound fluid were measured before and after surgery for six months at twenty-seven treated teeth. In males, the flap microcirculation was restored within 3 days for both grafts followed by a hyperemic response. During the first 8 days the blood flow was higher at xenogeneic graft comparing to the CTG. In females, the ischemic period lasted for 7-12 days depending on the graft and no hyperemic response was observed. Females had more intense and prolonged wound fluid production. The LSCI method is suitable to capture the microcirculatory effect of the surgical intervention in human oral mucosa. The application of xenogeneic collagen matrices as a CTG substitute does not seem to restrain the recovery of graft bed circulation. Gender may have an effect on postoperative circulation and inflammation.

Conflict of interest statement

All authors declare that they have no conflict of interests.

Figures

Figure 1
Figure 1
Representative photographs and LSCI images of a male (a, b, e, f) and a female (c, d, g, h) subjects. Combination of the modified coronally advanced tunnel and Geistlich Mucograft in both cases. (a, b, c, d) Images representing the preoperative perfusion. (e, f, g, h) Images showing the wound healing and perfusion 3 days postoperatively. Capital letters (A, B, and C) indicate the regions of interest for the blood flow evaluation.
Figure 2
Figure 2
Time-course of the changes of gingival blood flow (BF) in zone A, expressed in Laser Speckle Perfusion Unit (LSPU). Time points include preoperative data (bsl.) and postoperative days (1 to 180). Data are presented as means ± SE. In (a, b), statistically significant differences in the postoperative values versus bsl. are indicated by × in Geistlich Mucograft (n = 14) and by + in CTG (n = 13). The differences between grafts at the respective time points are indicated by #. In (c, d), the same data are shown in a different grouping as gender differences are depicted separately for Geistlich Mucograft and for CTG. indicates significantly different time points between the genders. ×, +, #, and mark significance levels of p < 0.05 after being adjusted by the Benjamini and Hochberg method.
Figure 3
Figure 3
Time-course of the changes of gingival blood flow (BF) in zone B, expressed in Laser Speckle Perfusion Unit (LSPU). Time points include preoperative data (bsl.) and postoperative days (1 to 180). Data are presented as means ± SE. In (a, b), statistically significant differences of the postoperative values versus bsl. are indicated by × in Geistlich Mucograft (n = 14) and by + in CTG (n = 13). The differences between grafts at the respective time points are indicated by #. In (c, d), the same data are shown in a different grouping as gender differences are depicted separately for Geistlich Mucograft and for CTG. indicates significantly different time points between the genders. ×, +, #, and mark significance levels of p < 0.05 after being adjusted by the Benjamini and Hochberg method.
Figure 4
Figure 4
Time-course of the changes of gingival blood flow (BF) in zone C, expressed in Laser Speckle Perfusion Unit (LSPU). Time points include preoperative data (bsl.) and postoperative days (1 to 180). Data are presented as means ± SE. In (a, b), statistically significant differences of the postoperative values versus bsl. are indicated by × in Geistlich Mucograft (n = 14) and by + in CTG (n = 13). The differences between grafts at the respective time points are indicated by #. In (c, d), the same data are shown in a different grouping as gender differences are depicted separately for Geistlich Mucograft and for CTG. There were no significant differences observed between the genders. ×, +, and # indicate significance levels of p < 0.05 after being adjusted by the Benjamini and Hochberg method.
Figure 5
Figure 5
The effect of time, graft, and gender on wound fluid (WF) production. The two upper graphs (a and b) show the interaction between graft and gender in wound fluid (WF) production during the whole period, expressed in Periotron Scores (PS). The lower plot (c) shows the changes of WF production over time when the graft data were grouped. Time points include preoperative data (bsl.) and postoperative days (1 to 180). Data are presented as means ± SE. Statistically significant differences of the postoperative values versus bsl. are indicated by × in females and by + in males. The differences between the genders are indicated by (p < 0.05, adjusted by the Benjamini and Hochberg method).

References

    1. Park S.-H., Wang H.-L. Clinical significance of incision location on guided bone regeneration: human study. Journal of Periodontology. 2007;78(1):47–51. doi: 10.1902/jop.2007.060125.
    1. Kleinheinz J., Büchter A., Kruse-Lösler B., Weingart D., Joos U. Incision design in implant dentistry based on vascularization of the mucosa. Clinical Oral Implants Research. 2005;16(5):518–523. doi: 10.1111/j.1600-0501.2005.01158.x.
    1. Burkhardt R., Lang N. P. Fundamental principles in periodontal plastic surgery and mucosal augmentation—a narrative review. Journal of Clinical Periodontology. 2014;41(15):S98–S107. doi: 10.1111/jcpe.12193.
    1. Allen A. L. Use of the supraperiosteal envelope in soft tissue grafting for root coverage. I. Rationale and technique. The International Journal of Periodontics & Restorative Dentistry. 1994;14(3):216–227.
    1. Andrade P. F., Grisi M. F. M., Marcaccini A. M., et al. Comparison between micro- and macrosurgical techniques for the treatment of localized gingival recessions using coronally positioned flaps and enamel matrix derivative. Journal of Periodontology. 2010;81(11):1572–1579. doi: 10.1902/jop.2010.100155.
    1. Tonetti M. S., Jepsen S. Clinical efficacy of periodontal plastic surgery procedures: consensus Report of Group 2 of the 10th European Workshop on Periodontology. Journal of Clinical Periodontology. 2014;41:S36–S43. doi: 10.1111/jcpe.12219.
    1. Burkhardt R., Hämmerle C. H. F., Lang N. P. Self-reported pain perception of patients after mucosal graft harvesting in the palatal area. Journal of Clinical Periodontology. 2015;42(3):281–287. doi: 10.1111/jcpe.12357.
    1. Soileau K. M., Brannon R. B. A histologic evaluation of various stages of palatal healing following subepithelial connective tissue grafting procedures: a comparison of eight cases. Journal of Periodontology. 2006;77(7):1267–1273. doi: 10.1902/jop.2006.050129.
    1. Camelo M., Nevins M., Nevins M. L., Schupbach P., Kim D. M. Treatment of gingival recession defects with xenogenic collagen matrix: a histologic report. The International journal of periodontics & restorative dentistry. 2012;32(2):167–173.
    1. Cardaropoli D., Tamagnone L., Roffredo A., Gaveglio L. Treatment of gingival recession defects using coronally advanced flap with a porcine collagen matrix compared to coronally advanced flap with connective tissue graft: a randomized controlled clinical trial. Journal of Periodontology. 2012;83(3):321–328. doi: 10.1902/jop.2011.110215.
    1. Jepsen K., Jepsen S., Zucchelli G., et al. Treatment of gingival recession defects with a coronally advanced flap and a xenogeneic collagen matrix: a multicenter randomized clinical trial. Journal of Clinical Periodontology. 2013;40(1):82–89. doi: 10.1111/jcpe.12019.
    1. Ghanaati S., Schlee M., Webber M. J., et al. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic. Biomedical Materials. 2011;6(1) doi: 10.1088/1748-6041/6/1/015010.015010
    1. Aroca S., Molnár B., Windisch P., et al. Treatment of multiple adjacent Miller class I and II gingival recessions with a Modified Coronally Advanced Tunnel (MCAT) technique and a collagen matrix or palatal connective tissue graft: a randomized, controlled clinical trial. Journal of Clinical Periodontology. 2013;40(7):713–720. doi: 10.1111/jcpe.12112.
    1. Wang X., Zhang Y., Han C. Topical negative pressure improves autograft take by altering nutrient diffusion: a hypothesis. Medical Science Monitor. 2014;20:61–63. doi: 10.12659/msm.889861.
    1. Shaterian A., Borboa A., Sawada R., et al. Real-time analysis of the kinetics of angiogenesis and vascular permeability in an animal model of wound healing. Burns. 2009;35(6):811–817. doi: 10.1016/j.burns.2008.12.012.
    1. Oliver R. C., Löe H., Karring T. Microscopic evaluation of the healing and revascularization of free gingival grafts. Journal of Periodontal Research. 1968;3(2):84–95. doi: 10.1111/j.1600-0765.1968.tb01908.x.
    1. Briers J. D., Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. Journal of Biomedical Optics. 1996;1(2):174–179. doi: 10.1117/12.231359.
    1. Eriksson S., Nilsson J., Lindell G., Sturesson C. Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: a clinical pilot study. Medical Devices: Evidence and Research. 2014;7(1):257–261. doi: 10.2147/mder.s63393.
    1. Hecht N., Woitzik J., Dreier J. P., Vajkoczy P. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurgical Focus. 2009;27(4):p. E11. doi: 10.3171/2009.8.focus09148.
    1. Yuan L., Li Y., Li H., Lu H., Tong S. Intraoperative laser speckle contrast imaging improves the stability of rodent middle cerebral artery occlusion model. Journal of Biomedical Optics. 2015;20(9) doi: 10.1117/1.jbo.20.9.096012.096012
    1. Lindahl F., Tesselaar E., Sjöberg F. Assessing paediatric scald injuries using laser speckle contrast imaging. Burns. 2013;39(4):662–666. doi: 10.1016/j.burns.2012.09.018.
    1. Milstein D. M. J., Ince C., Gisbertz S. S., et al. Laser speckle contrast imaging identifies ischemic areas on gastric tube reconstructions following esophagectomy. Medicine. 2016;95(25) doi: 10.1097/md.0000000000003875.e3875
    1. Molnár B., Aroca S., Keglevich T., et al. Treatment of multiple adjacent Miller Class I and II gingival recessions with collagen matrix and the modified coronally advanced tunnel technique. Quintessence international (Berlin, Germany : 1985) 2013;44(1):17–24.
    1. Tew G. A., Klonizakis M., Crank H., Briers J. D., Hodges G. J. Comparison of laser speckle contrast imaging with laser Doppler for assessing microvascular function. Microvascular Research. 2011;82(3):326–332. doi: 10.1016/j.mvr.2011.07.007.
    1. Rousseau P., Mahé G., Haj-Yassin F., et al. Increasing the “region of interest” and “time of interest”, both reduce the variability of blood flow measurements using laser speckle contrast imaging. Microvascular Research. 2011;82(1):88–91. doi: 10.1016/j.mvr.2011.03.009.
    1. Mahé G., Haj-Yassin F., Rousseau P., et al. Distance between laser head and skin does not influence skin blood flow values recorded by laser speckle imaging. Microvascular Research. 2011;82(3):439–442. doi: 10.1016/j.mvr.2011.06.014.
    1. McLean T. N., Smith B. A., Morrison E. C., Nasjleti C. E., Caffesse R. G. Vascular changes following mucoperiosteal flap surgery: a fluorescein angiography study in dogs. Journal of Periodontology. 1995;66(3):205–210. doi: 10.1902/jop.1995.66.3.205.
    1. Retzepi M., Tonetti M., Donos N. Comparison of gingival blood flow during healing of simplified papilla preservation and modified Widman flap surgery: a clinical trial using laser Doppler flowmetry. Journal of Clinical Periodontology. 2007;34(10):903–911. doi: 10.1111/j.1600-051x.2007.01119.x.
    1. Cutright D. E. The proliferation of blood vessels in gingival wounds. Journal of Periodontology. 1969;40(3):137–141. doi: 10.1902/jop.1969.40.3.137.
    1. Caffesse R. G., Castelli W. A., Nasjleti C. E. Vascular response to modified Widman flap surgery in monkeys. Journal of Periodontology. 1981;52(1):1–7. doi: 10.1902/jop.1981.52.1.1.
    1. Lindeboom J. A. H., Mathura K. R., Aartman I. H. A., Kroon F. H. M., Milstein D. M. J., Ince C. Influence of the application of platelet-enriched plasma in oral mucosal wound healing. Clinical Oral Implants Research. 2007;18(1):133–139. doi: 10.1111/j.1600-0501.2006.01288.x.
    1. Milstein D. M. J., Lindeboom J. A. H., Ince C. Intravital sidestream dark-field (SDF) imaging is used in a rabbit model for continuous noninvasive monitoring and quantification of mucosal capillary regeneration during wound healing in the oral cavity: a pilot study. Archives of Oral Biology. 2010;55(5):343–349. doi: 10.1016/j.archoralbio.2010.03.007.
    1. Milstein D. M. J., Mathura K. R., Lindeboom J. A. H., Ramsoekh D., Lindeboom R., Ince C. The temporal course of mucoperiosteal flap revascularization at guided bone regeneration-treated implant sites: a pilot study. Journal of Clinical Periodontology. 2009;36(10):892–897. doi: 10.1111/j.1600-051x.2009.01470.x.
    1. Laschke M. W., Menger M. D. Vascularization in tissue engineering: angiogenesis versus inosculation. European Surgical Research. 2012;48(2):85–92. doi: 10.1159/000336876.
    1. Schwarz F., Rothamel D., Herten M., Sager M., Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clinical Oral Implants Research. 2006;17(4):403–409. doi: 10.1111/j.1600-0501.2005.01225.x.
    1. Vergara J. A., Quiñones C. R., Nasjleti C. E., Caffesse R. G. Vascular response to guided tissue regeneration procedures using nonresorbable and bioabsorbable membranes in dogs. Journal of Periodontology. 1997;68(3):217–224. doi: 10.1902/jop.1997.68.3.217.
    1. Burkhardt R., Lang N. P. Coverage of localized gingival recessions: comparison of micro- and macrosurgical techniques. Journal of Clinical Periodontology. 2005;32(3):287–293. doi: 10.1111/j.1600-051x.2005.00660.x.
    1. Nizam N., Bengisu O., Sönmez Ş. Micro- and macrosurgical techniques in the coverage of gingival recession using connective tissue graft: 2 years follow-up. Journal of Esthetic and Restorative Dentistry. 2015;27(2):71–83. doi: 10.1111/jerd.12124.
    1. McGuire M. K., Scheyer E. T. Xenogeneic collagen matrix with coronally advanced flap compared to connective tissue with coronally advanced flap for the treatment of dehiscence-type recession defects. Journal of Periodontology. 2010;81(8):1108–1117. doi: 10.1902/jop.2010.090698.
    1. Conrad S. M., Blakey G. H., Shugars D. A., Marciani R. D., Phillips C., White R. P., Jr. Patients' perception of recovery after third molar surgery. Journal of Oral and Maxillofacial Surgery. 1999;57(11):1288–1294. doi: 10.1016/s0278-2391(99)90861-3.
    1. Phillips C., White R. P., Jr., Shugars D. A., Zhou X. Risk factors associated with prolonged recovery and delayed healing after third molar surgery. Journal of Oral and Maxillofacial Surgery. 2003;61(12):1436–1448. doi: 10.1016/j.joms.2003.08.003.
    1. Benediktsdóttir I. S., Wenzel A., Petersen J. K., Hintze H. Mandibular third molar removal: risk indicators for extended operation time, postoperative pain, and complications. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics. 2004;97(4):438–446. doi: 10.1016/j.tripleo.2003.10.018.
    1. Adeyemo W. L., Ladeinde A. L., Ogunlewe M. O. Clinical evaluation of post-extraction site wound healing. Journal of Contemporary Dental Practice. 2006;7(3):40–49.
    1. Engeland C. G., Bosch J. A., Cacioppo J. T., Marucha P. T. Mucosal wound healing: the roles of age and sex. Archives of Surgery. 2006;141(12):1193–1198. doi: 10.1001/archsurg.141.12.1193.
    1. Rakobowchuk M., Parsloe E. R., Gibbins S. E., Harris E., Birch K. M. Prolonged low flow reduces reactive hyperemia and augments low flow mediated constriction in the brachial artery independent of the menstrual cycle. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0055385.e55385
    1. Levenson J., Pessana F., Gariepy J., Armentano R., Simon A. Gender differences in wall shear–mediated brachial artery vasoconstriction and vasodilation. Journal of the American College of Cardiology. 2001;38(6):1668–1674. doi: 10.1016/s0735-1097(01)01604-7.
    1. Merz K., Schweizer R., Schlosser S., Giovanoli P., Erni D., Plock J. A. Distinct microhemodynamic efficacy of arteriogenesis and angiogenesis in critically ischemic skin flaps. Microvascular Research. 2012;83(2):249–256. doi: 10.1016/j.mvr.2011.10.005.
    1. Peng X., Wang J., Lassance-Soares R. M., et al. Gender differences affect blood flow recovery in a mouse model of hindlimb ischemia. American Journal of Physiology—Heart and Circulatory Physiology. 2011;300(6):H2027–H2034. doi: 10.1152/ajpheart.00004.2011.
    1. Shen Y., Ding F. H., Zhang R. Y., Zhang Q., Lu L., Shen W. F. Serum cystatin c reflects angiographic coronary collateralization in stable coronary artery disease patients with chronic total occlusion. PLoS ONE. 2015;10(9) doi: 10.1371/journal.pone.0137253.e0137253
    1. Dedkov E. I., Oak K., Christensen L. P., Tomanek R. J. Coronary vessels and cardiac myocytes of middle-aged rats demonstrate regional sex-specific adaptation in response to postmyocardial infarction remodeling. Biology of Sex Differences. 2014;5(1, article 1) doi: 10.1186/2042-6410-5-1.
    1. Kennedy J. E. Effect of inflammation on collateral circulation of the gingiva. Journal of Periodontal Research. 1974;9(3):147–152. doi: 10.1111/j.1600-0765.1974.tb00666.x.
    1. Soderholm G., Egelberg J. Morphological changes in gingival blood vessels during developing gingivitis in dogs. Journal of Periodontal Research. 1973;8(1):16–20.
    1. Zoellner H., Chapple C. C., Hunter N. Microvasculature in gingivitis and chronic periodontitis: disruption of vascular networks with protracted inflammation. Microscopy Research and Technique. 2002;56(1):15–31. doi: 10.1002/jemt.10009.

Source: PubMed

3
Abonnieren