Peritumoral/vascular expression of PSMA as a diagnostic marker in hepatic lesions

Wei Chen, Zhenghong Lee, Amad Awadallah, Lan Zhou, Wei Xin, Wei Chen, Zhenghong Lee, Amad Awadallah, Lan Zhou, Wei Xin

Abstract

Background: The differential diagnosis between primary cholangiocarcinoma and metastatic pancreatobiliary adenocarcinoma is histologically challenging due to lack of distinct morphological features and reliable molecular markers. Prostate-specific membrane antigen (PSMA) is expressed in prostate epithelium and upregulated on the surface of prostatic adenocarcinoma cells. Studies have shown PSMA enzymatic activity is involved in malignancy-driven neoangiogenesis in the endothelium of tumor-associated neovasculature in breast, lung, thyroid, hepatocellular carcinoma (HCC) and urothelial cancer. Recently, PSMA-targeted imaging technology (PSMA PET-CT) detected the presence of PSMA in primary cholangiocarcinoma. However histological correlation with PSMA expression other mass lesions in the liver has not yet been studied.

Methods: 72 cases of liver mass resection were collected at a tertiary hospital from 2011 to 2019. Immunohistochemical stains for PSMA and CD34 were performed. The expression of PSMA in tumor cells and associated neovascular endothelium were analyzed separately and the locations of vascular structures were confirmed by CD34 expression.

Results: Among 72 cases, 28 cases (22/72, 38.9%) showed PSMA peritumoral/vascular expression only, 3 cases (3/72, 4.2%) showed tumor cell expression only, and 2 cases (2/72, 2.8%) showed both tumor cell and peritumoral/vascular expression. The remainder (39/72, 54.2%) showed no expression. Particularly, most of primary cholangiocarcinoma showed PSMA vascular expression (13/15, 86.7%), while none of the 18 cases of metastatic pancreatobiliary adenocarcinoma were positive for PSMA (0/18, 0%) (p < 0.01). Outside of pancreatobiliary adenocarcinoma, none of the metastatic tumors, including colon and lung cancers, expressed PSMA. In 8 cases of metastatic prostate carcinoma, 3 showed PSMA expressions in tumor cells only (3/8, 37.5%) and 2 expressed PMSA in both tumor cells and neovasculature (2/8, 25.0%). Out of 22 HCC cases, 15 (15/22, 68.2%) were positive for PSMA in tumor vasculature. None of the 5 hepatic adenoma expressed PSMA (0/5, 0%).

Conclusion: Significantly enhanced tumor-associated neovascular PSMA expression was identified in primary cholangiocarcinoma, compared to metastatic pancreatobiliary adenocarcinoma. Our findings potentially provide a sensitive marker in differential diagnosis between otherwise morphologically indistinguishable cases.

Keywords: Cholangiocarcinoma; Diagnostic marker; Metastatic pancreatic ductal adenocarcinoma; PSMA; Peritumoral expression.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Prostate adenocarcinoma showed PSMA positivity in tumor cell pattern. a. Primary prostate adenocarcinoma (PSMA, 200x); b. Metastatic prostate adenocarcinoma (PSMA, 200x); c, d. Metastatic prostate adenocarcinoma (C. HE, 200x; D. PSMA, 200x)
Fig. 2
Fig. 2
Primary cholangiocarcinoma and metastatic pancreatic ductal adenocarcinoma. a. Primary cholangiocarcinoma (HE, 100x); b. CD34 expression in cholangiocarcinoma (CD34, 200x); c. PSMA peritumoral/vascular expression in cholangiocarcinoma (PSMA, 200x). d. Metastatic pancreatic ductal adenocarcinoma in liver (HE, 100x) e. CD34 expression in pancreatic ductal adenocarcinoma (CD34, 200x); f. PSMA is negative in metastatic pancreatic ductal adenocarcinoma (PSMA, 200x)

References

    1. Howlader N, Noone A, Krapcho M, Miller D, Brest A, Yu M, et al. SEER Cancer Statistics Review, 1975–2016 Bethesda, MD: National Cancer Institute; 2019 [, based on November 2018 SEER data submission, posted to the SEER web site, April 2019.] Last acessed: 12/2019.
    1. Antwi SO, Mousa OY, Patel T. Racial, ethnic, and age disparities in incidence and survival of intrahepatic Cholangiocarcinoma in the United States; 1995-2014. Ann Hepatol. 2018;17(4):604–614.
    1. Pinto JT, Suffoletto BP, Berzin TM, Qiao CH, Lin S, Tong WP, et al. Prostate-specific membrane antigen: a novel folate hydrolase in human prostatic carcinoma cells. Clin Cancer Res. 1996;2(9):1445–1451.
    1. Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate Cancer staging: a systematic review of the literature. Eur Urol. 2016;70(1):161–175.
    1. Kratochwil C, Giesel FL, Stefanova M, Benešová M, Bronzel M, Afshar-Oromieh A, et al. PSMA-targeted radionuclide therapy of metastatic castration-resistant prostate Cancer with 177Lu-labeled PSMA-617. J Nucl Med. 2016;57(8):1170–1176.
    1. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59(13):3192–3198.
    1. Mhawech-Fauceglia P, Zhang S, Terracciano L, Sauter G, Chadhuri A, Herrmann FR, et al. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: an immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology. 2007;50(4):472–483.
    1. Marafi F, Usmani S, Esmail A. 68Ga-prostate-specific membrane antigen PET/CT in Cholangiocarcinoma: a potential biomarker for targeted Radioligand therapy? Clin Nucl Med. 2019;44(7):e439–ee41.
    1. Kinoshita Y, Kuratsukuri K, Landas S, Imaida K, Rovito PM, Wang CY, et al. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J Surg. 2006;30(4):628–636.
    1. Tolkach Y, Goltz D, Kremer A, Ahmadzadehfar H, Bergheim D, Essler M, et al. Prostate-specific membrane antigen expression in hepatocellular carcinoma: potential use for prognosis and diagnostic imaging. Oncotarget. 2019;10(41):4149–4160.
    1. Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH. Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol. 2006;26(14):5310–5324.
    1. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016;15:3.
    1. Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett. 2014;343(2):147–155.
    1. Jiao D, Li Y, Yang F, Han D, Wu J, Shi S, et al. Expression of prostate-specific membrane antigen in tumor-associated vasculature predicts poor prognosis in hepatocellular carcinoma. Clin Transl Gastroenterol. 2019;10(5):1–7.
    1. Haffner MC, Kronberger IE, Ross JS, Sheehan CE, Zitt M, Mühlmann G, et al. Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum Pathol. 2009;40(12):1754–1761.
    1. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–85.
    1. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 1997;57(17):3629–3634.
    1. Mahalingam D, Peguero J, Cen P, Arora SP, Sarantopoulos J, Rowe J, et al. A Phase II, Multicenter, Single-Arm Study of Mipsagargin (G-202) as a Second-Line Therapy Following Sorafenib for Adult Patients with Progressive Advanced Hepatocellular Carcinoma. Cancers (Basel). 2019;11(6).

Source: PubMed

3
Abonnieren