Vitamin D Endocrine System and COVID-19

Roger Bouillon, José Manuel Quesada-Gomez, Roger Bouillon, José Manuel Quesada-Gomez

Abstract

Preclinical data strongly suggest that the vitamin D endocrine system (VDES) may have extraskeletal effects. Cells of the immune and cardiovascular systems and lungs can express the vitamin D receptor, and overall these cells respond in a coherent fashion when exposed to 1,25-dihydroxyvitamin D, the main metabolite of the VDES. Supplementation of vitamin D-deficient subjects may decrease the risk of upper respiratory infections. The VDES also has broad anti-inflammatory and anti-thrombotic effects, and other mechanisms argue for a potential beneficial effect of a good vitamin D status on acute respiratory distress syndrome, a major complication of this SARS-2/COVID-19 infection. Activation of the VDES may thus have beneficial effects on the severity of COVID-19. Meta-analysis of observational data show that a better vitamin D status decreased the requirement of intensive care treatment or decreased mortality. A pilot study in Cordoba indicated that admission to intensive care was drastically reduced by administration of a high dose of calcifediol early after hospital admission for COVID-19. A large observational study in Barcelona confirmed that such therapy significantly decreased the odds ratio (OR) of mortality (OR = 0.52). This was also the conclusion of a retrospective study in five hospitals of Southern Spain. A retrospective study on all Andalusian patients hospitalized because of COVID-19, based on real-world data from the health care system, concluded that prescription of calcifediol (hazard ratio [HR] = 0.67) or vitamin D (HR = 0.75), 15 days before hospital admission decreased mortality within the first month. In conclusion, a good vitamin D status may have beneficial effects on the course of COVID-19. This needs to be confirmed by large, randomized trials, but in the meantime, we recommend (rapid) correction of 25 hydroxyvitamin D (25OHD) deficiency in subjects exposed to this coronavirus. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Keywords: ACUTE RESPIRATORY DISTRESS SYNDROME; CALCIFEDIOL; COVID‐19; INTENSIVE CARE TREATMENT; MORTALITY; VITAMIN D.

Conflict of interest statement

RB received small lecture fees from Abiogen (Italy), FAES‐Farma (Spain), and Fresenius (Germany). JMQG received small lecture fees from Amgen (Spain) and FAES‐Farma (Spain).

© 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

Figures

Fig. 1
Fig. 1
Schematic presentation of the immune modulating activity of the vitamin D endocrine system. 1,25(OH)2D modulates dendritic cells (DC) toward a less mature and more tolerogenic phenotype with changes in both morphology (more adherent spindle cells), cytokine production, and surface markers with a negative regulation of their antigen‐presenting function. 1,25(OH)2D exerts its effect through direct binding to the vitamin D receptor (VDR) of the antigen‐presenting cell (APC) and to activated T lymphocytes. T‐cell receptor (TCR) signaling induces upregulation in the vitamin D receptor (VDR). 1,25(OH)2D exerts on DC a direct inhibition of APC and a negative regulation of its antigen presentation function. The DC‐derived cytokines will alter the T‐helper (Th) lymphocyte balance from a Th1 and Th17 predominance toward a Th2 phenotype. The direct effect of 1,25(OH)2D on the T lymphocytes creates a change toward a more tolerogenic state with an induction of Thelper‐2 (Th2) lymphocytes and regulatory T lymphocytes (Tregs); depicted in green arrow, together with a downregulation of the pro‐inflammatory Thelper‐1 (Th1) lymphocytes, Thelper‐17 (Th17) lymphocytes, and Thelper‐9 (Th9) lymphocytes (depicted in red arrow). APC = antigen‐presenting cell; DC = dendritic cell; naïve T cells MHC = membrane histocompatibility complex; cluster of differentiation (CD) 80 = CD86 (co‐stimulatory molecules), and CD54 (adhesion molecule); PD‐L1 = programmed death‐ligand 1; ILT‐3 = immunoglobulin‐like transcript, T lymphocytes; TH1 = T helper 1; TH2 = T helper 2; TH17 = T helper 17; Treg = regulatory T cell; IL = interleukin; TNF‐α = tumor necrosis factor‐α; FoxP3 = forkhead box P3 (master gene controlling the development and function of regulatory cells); CTLA‐4 = cytotoxic T lymphocyte‐associated Ag‐4).
Fig. 2
Fig. 2
The vitamin D endocrine system tapers down the acute respiratory distress syndrome (ARDS). The vitamin D receptor (VDR) and enzymes of the vitamin D endocrine system are expressed in the cuboidal alveolar type 2 cells (ACII) and monocyte/macrophages/granulocytes and activated lymphocytes. The availability of 25OHD3 (calcidiol) is critical for synthesizing 1,25(OH)2D (calcitriol), which through endocrine, auto/paracrine action on VDR: (1) decreases the intensity of cytokine and chemokine storm, (2) modulates neutrophil activity, (3) maintains the integrity of the pulmonary epithelial barrier, (4) stimulates epithelial repair, and (5) decreases directly and indirectly the risk of hypercoagulability and pulmonary or systemic thrombosis. SARS‐CoV‐2 = severe acute respiratory syndrome coronavirus 2; IFN‐α, IFN‐γ = interferon gamma α and γ; IL‐1β, IL‐6, IL‐12, IL‐18, IL‐33 = interleukin‐1β, 6, 12, 18, 33; TNF‐α = tumor necrosis factor‐α; TGFβ = transforming growth factor α and β; CCL2, CCL3, CCL5 Chemokine = C‐C motif ligand 2, 3, 5; CXCL8, CXCL9, CXCL10 = C‐X‐C (motif chemokine ligand 8, 9, 10).
Fig. 3
Fig. 3
Vitamin D endocrine system and the renin‐angiotensin system. Local or systemic inflammatory reactions may activate the renin‐angiotensin system (RAS) and ACE, thereby generating angiotensin II, which via its receptor (ATR) is able to induce lung damage. During SARS‐CoV‐2 invasion, ACE2 is downregulated in type II alveolar epithelial cells, thereby decreasing the conversion of Ang II to Ang‐(1–7). This prevents the protective action of the Ang‐(1–7) acting on its receptor (Mas R) and all aspects of ARDS. 1,25(OH)2D/VDR is a powerful negative regulator of the RAS, inhibiting renin and the ACE/Ang II/AT1R cascade and inducing ACE2/Ang‐(1–7) axis activity. ACII = cuboidal alveolar type II cells; SARS‐CoV‐2 = severe acute respiratory syndrome coronavirus 2; Ang I = angiotensin I; Ang II = angiotensin II; Ang‐(1–7) = angiotensin 1–7; MasR = G protein‐coupled Mas receptor; AT1R and AT2R = angiotensin II receptor 1 and 2.
Fig. 4
Fig. 4
Retrospective, multicenter cohort study of calcifediol treatment and outcome of COVID‐19 infection.( 116 ) Patients (n = 537) hospitalized because of COVID‐19 infections received the best available treatment for SARS‐CoV‐2 infection and standard care for preexisting comorbidities. Treatment groups based on having received from admission: (1) oral calcifediol (25OH D3) in soft gelatin capsules (0.532 mg), then oral calcifediol (0.266 mg) on days 3 and 7, and then weekly until discharge or ICU admission (n = 79); (2) no treatment with calcifediol (n = 458). Cumulative distribution of patients presenting in‐hospital death according to treatment groups. Patients hospitalized with COVID‐19, treatment with calcifediol, compared with those not receiving calcifediol showed a significantly lower in‐hospital mortality during the first 30 days (5% versus 20%, p < 0.01).

References

    1. Bouillon R, Marcocci C, Carmeliet G, et al. Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev. 2019;40(4):1109‐1151.
    1. Rosen CJ, Adams JS, Bikle DD, et al. The nonskeletal effects of vitamin D: an Endocrine Society Scientific statement. Endocr Rev. 2012;33(3):456‐492.
    1. Dimitrov V, Barbier C, Ismailova A, et al. Vitamin D‐regulated gene expression profiles: species‐specificity and cell‐specific effects on metabolism and immunity. Endocrinology. 2021;162(2):1‐18.
    1. Bishop EL, Ismailova A, Dimeloe S, Hewison M, White JH. Vitamin D and immune regulation: antibacterial, antiviral, anti‐inflammatory. JBMR Plus. 2021;5(1):e10505.
    1. Gayan‐Ramirez G, Janssens WA. Vitamin D actions: the lung is a major target for vitamin D and FGF23. JBMR Plus. 2021. 10.1002/jbm4.10569.
    1. Pilz S, Verheyen N, Grübler MR, Tomaschitz A, März W. Vitamin D and cardiovascular disease prevention. Nat Rev Cardiol. 2016;13(7):404‐417.
    1. Mohammad S, Mishra A, Ashraf MZ. Emerging role of vitamin D and its associated molecules in pathways related to pathogenesis of thrombosis. Biomolecules. 2019;9(11):649.
    1. Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID‐19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021;9(6):622‐642.
    1. Hilger J, Friedel A, Herr R, et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014;111(1):23‐45.
    1. Giustina A, Adler RA, Binkley N, et al. Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020;21(1):89‐116.
    1. Khademvatani K, Seyyed‐Mohammadzad MH, Akbari M, Rezaei Y, Eskandari R, Rostamzadeh A. The relationship between vitamin D status and idiopathic lower‐extremity deep vein thrombosis. Int J Gen Med. 2014;7:303‐309.
    1. Martens PJ, Gysemans C, Verstuyf A, Mathieu C. Vitamin D's effect on immune function. Nutrients. 2020;12(5):1248.
    1. Hewison M, Freeman L, Hughes SV, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte‐derived dendritic cells. J Immunol. 2003;170(11):5382‐5390.
    1. Chun RF, Lauridsen AL, Suon L, et al. Vitamin D‐binding protein directs monocyte responses to 25‐hydroxy‐ and 1,25‐dihydroxyvitamin D. J Clin Endocrinol Metab. 2010;95(7):3368‐3376.
    1. Liu PT, Stenger S, Li H, et al. Toll‐like receptor triggering of a vitamin D‐mediated human antimicrobial response. Science. 2006;311(5768):1770‐1773.
    1. Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection. Microb Pathog. 2021;155:104930.
    1. Scheenstra MR, van Harten RM, Veldhuizen EJA, Haagsman HP, Coorens M. Cathelicidins modulate TLR‐activation and inflammation. Front Immunol. 2020;11:1137.
    1. Schauber J, Dorschner RA, Coda AB, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D‐dependent mechanism. J Clin Invest. 2007;117(3):803‐811.
    1. Verway M, Bouttier M, Wang TT, et al. Vitamin D induces interleukin‐1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection. PLoS Pathog. 2013;9(6):e1003407.
    1. Liu PT, Schenk M, Walker VP, et al. Convergence of IL‐1β and VDR activation pathways in human TLR2/1‐induced antimicrobial responses. PLoS One. 2009;4(6):e5810.
    1. Bacchetta J, Zaritsky JJ, Sea JL, et al. Suppression of iron‐regulatory hepcidin by vitamin D. J Am Soc Nephrol. 2014;25(3):564‐572.
    1. Jain SK, Micinski D. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP‐1 and IL‐8 secretion in high‐glucose exposed U937 monocytes. Biochem Biophys Res Commun. 2013;437(1):7‐11.
    1. Stoffels K, Overbergh L, Giulietti A, Verlinden L, Bouillon R, Mathieu C. Immune regulation of 25‐hydroxyvitamin‐D3‐1α‐hydroxylase in human monocytes. J Bone Miner Res. 2006;21(1):37‐47.
    1. Colotta F, Jansson B, Bonelli F. Modulation of inflammatory and immune responses by vitamin D. J Autoimmun. 2017;85:78‐97.
    1. Ferreira GB, van Etten E, Verstuyf A, et al. 1,25‐Dihydroxyvitamin D 3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab Res Rev. 2011;27(8):933‐941.
    1. Kleijwegt FS, Laban S, Duinkerken G, et al. Critical role for TNF in the induction of human antigen‐specific regulatory T cells by tolerogenic dendritic cells. J Immunol. 2010;185(3):1412‐1418.
    1. Unger WWJ, Laban S, Kleijwegt FS, Van Der Slik AR, Roep BO. Induction of Treg by monocyte‐derived DC modulated by vitamin D3 or dexamethasone: differential role for PD‐L1. Eur J Immunol. 2009;39(11):3147‐3159.
    1. Takahashi K, Nakayama Y, Horiuchi H, et al. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1α,25‐dihydroxyvitamin D3. Immunopharmacol Immunotoxicol. 2002;24(3):335‐347.
    1. Wang T‐T, Nestel FP, Bourdeau V, et al. Cutting edge: 1,25‐Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909‐2912.
    1. Agraz‐Cibrian JM, Giraldo DM, Urcuqui‐Inchima S. 1,25‐Dihydroxyvitamin D3 induces formation of neutrophil extracellular trap‐like structures and modulates the transcription of genes whose products are neutrophil extracellular trap‐associated proteins: a pilot study. Steroids. 2019;141:14‐22.
    1. Handono K, Sidarta YO, Pradana BA, et al. Vitamin D prevents endothelial damage induced by increased neutrophil extracellular traps formation in patients with systemic lupus erythematosus. Acta Med Indones. 2014;46(3):189‐198.
    1. von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Ødum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11(4):344‐349.
    1. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482‐496.
    1. Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011‐3021.
    1. Mocanu V, Oboroceanu T, Zugun‐Eloae F. Current status in vitamin D and regulatory T cells—immunological implications. Med‐Surg J. 2013;117(4):965‐973.
    1. Vanherwegen AS, Gysemans C, Mathieu C. Vitamin D endocrinology on the cross‐road between immunity and metabolism. Mol Cell Endocrinol. 2017;453:52‐67.
    1. Lemire JM, Adams JS, Sakai R, Jordan SC. 1α,25‐Dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657‐661.
    1. Geldmeyer‐Hilt K, Heine G, Hartmann B, Baumgrass R, Radbruch A, Worm M. 1,25‐dihydroxyvitamin D3 impairs NF‐κB activation in human naïve B cells. Biochem Biophys Res Commun. 2011;407(4):699‐702.
    1. Heine G, Niesner U, Chang HD, et al. 1,25‐dihydroxyvitamin D3 promotes IL‐10 production in human B cells. Eur J Immunol. 2008;38(8):2210‐2218.
    1. Nguyen M, Trubert CL, Rizk‐Rabin M, et al. 1,25‐Dihydroxyvitamin D3 and fetal lung maturation: immunogold detection of VDR expression in pneumocytes type II cells and effect on fructose 1,6 bisphosphatase. J Steroid Biochem Mol Biol. 2004;89–90(1–5):93‐97.
    1. Mathyssen C, Aelbrecht C, Serré J, et al. Local expression profiles of vitamin D‐related genes in airways of COPD patients. Respir Res. 2020;21(1):137.
    1. Marin L, Dufour ME, Tordet C, Nguyen M. 1,25(OH)2D3 stimulates phospholipid biosynthesis and surfactant release in fetal rat lung explants. Biol Neonate. 1990;57(3–4):257‐260.
    1. Saadoon A, Ambalavanan N, Zinn K, et al. Effect of prenatal versus postnatal vitamin D deficiency on pulmonary structure and function in mice. Am J Respir Cell Mol Biol. 2017;56(3):383‐392.
    1. Mandell EW, Ryan S, Seedorf GJ, et al. Maternal vitamin D deficiency causes sustained impairment of lung structure and function and increases susceptibility to hyperoxia‐induced lung injury in infant rats. Am J Respir Cell Mol Biol. 2020;63(1):79‐91.
    1. Zosky GR, Hart PH, Whitehouse AJO, et al. Vitamin D deficiency at 16 to 20 weeks’ gestation is associated with impaired lung function and asthma at 6 years of age. Ann Am Thorac Soc. 2014;11(4):571‐577.
    1. Brustad N, Eliasen AU, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. High‐dose vitamin D supplementation during pregnancy and asthma in offspring at the age of 6 years. JAMA. 2019;321(10):1003‐1005.
    1. Hartmann B, Riedel R, Jör K, et al. Vitamin D receptor activation improves allergen‐triggered eczema in mice. J Invest Dermatol. 2012;132(2):330‐336.
    1. Yin Z, Pintea V, Lin Y, Hammock BD, Watsky MA. Vitamin D enhances corneal epithelial barrier function. Investig Ophthalmol Vis Sci. 2011;52(10):7359‐7364.
    1. Kong J, Zhang Z, Musch MW, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2007;294(1):G208‐G216.
    1. Chen H, Lu R, Zhang YG, Sun J. Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers. 2018;6(4):1‐13.
    1. Kose M, Bastug O, Sonmez MF, et al. Protective effect of vitamin D against hyperoxia‐induced lung injury in newborn rats. Pediatr Pulmonol. 2017;52(1):69‐76.
    1. Zheng SX, Yang JX, Hu X, et al. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits TGF‐β induced epithelial to mesenchymal transition. Biochem Pharmacol. 2020;177:113955.
    1. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta‐analysis of individual participant data. BMJ. 2017;356:i6583.
    1. Jolliffe DA, Camargo CA, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta‐analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276‐292.
    1. Quesada‐Gomez JM, Entrenas‐Castillo M, Bouillon R. Vitamin D receptor stimulation to reduce acute respiratory distress syndrome (ARDS) in patients with coronavirus SARS‐CoV‐2 infections: Revised Ms SBMB 2020_166. J Steroid Biochem Mol Biol. 2020;202:105719.
    1. Bilezikian JP, Bikle D, Hewison M, et al. Mechanisms in endocrinology vitamin D and COVID‐19. Eur J Endocrinol. 2020;183(5):R133‐R147.
    1. Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID‐19 infections and deaths. Nutrients. 2020;12(4):988.
    1. Roth A, Lütke S, Meinberger D, et al. LL‐37 fights SARS‐CoV‐2: the vitamin D‐inducible peptide LL‐37 inhibits binding of SARS‐CoV‐2 spike protein to its cellular receptor angiotensin converting enzyme 2 in vitro. BioRxiv. 2020. 10.1101/2020.12.02.408153.
    1. Yuk JM, Shin DM, Lee HM, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231‐243.
    1. Campbell GR, Spector SA. Vitamin D inhibits human immunodeficiency virus type 1 and mycobacterium tuberculosis infection in macrophages through the induction of autophagy. PLoS Pathog. 2012;8(5):e1002689.
    1. Jang W, Kim HJ, Li H, et al. 1,25‐Dyhydroxyvitamin D3 attenuates rotenone‐induced neurotoxicity in SH‐SY5Y cells through induction of autophagy. Biochem Biophys Res Commun. 2014;451(1):142‐147.
    1. Wang J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy. 2008;4(7):947‐948.
    1. McNab F, Mayer‐Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15(2):87‐103.
    1. Kopecky‐Bromberg SA, Martínez‐Sobrido L, Frieman M, Baric RA, Palese P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol. 2007;81(2):548‐557.
    1. Onofrio L, Caraglia M, Facchini G, Margherita V, de Placido S, Buonerba C. Toll‐like receptors and COVID‐19: a two‐faced story with an exciting ending. Future Sci OA. 2020;6(8):FSO605.
    1. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID‐19 patients. Science. 2020;369(6504):718‐724.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID‐19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033‐1034.
    1. Wilson JG, Simpson LJ, Ferreira AM, et al. Cytokine profile in plasma of severe COVID‐19 does not differ from ARDS and sepsis. JCI Insight. 2020;5(17):e140289.
    1. Leisman DE, Ronner L, Pinotti R, et al. Assessing the importance of interleukin‐6 in COVID‐19 – Authors’ reply. Lancet Respir Med. 2021;9(2):e14‐e15.
    1. McGregor R, Chauss D, Freiwald T, et al. An autocrine vitamin D‐driven Th1 shutdown program can be exploited for COVID‐19. bioRxiv. 2020.
    1. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233‐247.
    1. Miyata M, Lee JY, Susuki‐Miyata S, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator Irak‐M. Nat Commun. 2015;6:6062.
    1. Imai Y, Kuba K, Rao S, et al. Angiotensin‐converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112‐116.
    1. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814‐820.
    1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270‐273.
    1. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J. Vitamin D: a negative endocrine regulator of the renin‐angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90(1–5):387‐392.
    1. Shi YY, Liu TJ, Fu JH, et al. Vitamin D/VDR signaling attenuates lipopolysaccharide‐induced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep. 2016;13(2):1186‐1194.
    1. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium‐independent and 1,25(OH)2D3‐dependent regulation of the renin‐angiotensin system in 1α‐hydroxylase knockout mice. Kidney Int. 2008;74(2):170‐179.
    1. Chen LN, Yang XH, Nissen DH, et al. Dysregulated renin‐angiotensin system contributes to acute lung injury caused by hind‐limb ischemia‐reperfusion in mice. Shock. 2013;40(5):420‐429.
    1. Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharide‐induced acute lung injury via regulation of the renin‐angiotensin system. Mol Med Rep. 2017;16(5):7432‐7438.
    1. Yang ES, Burnstein KL. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J Biol Chem. 2003;278(47):46862‐46868.
    1. Liu D, Fang YX, Wu X, et al. 1,25‐(OH)2D3/vitamin D receptor alleviates systemic lupus erythematosus by downregulating Skp2 and upregulating p27. Cell Commun Signal. 2019;17(1):163.
    1. Gassen NC, Niemeyer D, Muth D, et al. SKP2 attenuates autophagy through Beclin1‐ubiquitination and its inhibition reduces MERS‐coronavirus infection. Nat Commun. 2019;10(1):5770.
    1. Fernández ÁF, Sebti S, Wei Y, et al. Disruption of the beclin 1‐BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 2018;558(7708):136‐140.
    1. Corley MJ, Pang APS, Dody K, et al. Genome‐wide DNA methylation profiling of peripheral blood reveals an epigenetic signature associated with severe COVID‐19. J Leukoc Biol. 2021;110(1):21‐26.
    1. Liu J, Liu Y, Xiang P, et al. Neutrophil‐to‐lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020;18(1):206.
    1. Borges L, Pithon‐Curi TC, Curi R, Hatanaka E. COVID‐19 and neutrophils: the relationship between hyperinflammation and neutrophil extracellular traps. Mediators Inflamm. 2020;2020:8829674.
    1. Ackermann M, Anders HJ, Bilyy R, et al. Patients with COVID‐19: in the dark‐NETs of neutrophils. Cell Death Differ. 2021;28(11):3125‐3139.
    1. Leppkes M, Knopf J, Naschberger E, et al. Vascular occlusion by neutrophil extracellular traps in COVID‐19. EBioMedicine. 2020;58:102925.
    1. Cavalcante‐Silva LHA, Carvalho DCM, Lima É d A, et al. Neutrophils and COVID‐19: the road so far. Int Immunopharmacol. 2021;90:107233.
    1. Belen‐Apak FB, Sarıalioğlu F. Pulmonary intravascular coagulation in COVID‐19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020;50(2):278‐280.
    1. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844‐847.
    1. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID‐19. N Engl J Med. 2020;383(2):120‐128.
    1. Ohsawa M, Koyama T, Yamamoto K, Hirosawa S, Kamei S, Kamiyama R. 1α,25‐Dihydroxyvitamin D3 and its potent synthetic analogs downregulate tissue factor and upregulate thrombomodulin expression in monocytic cells, counteracting the effects of tumor necrosis factor and oxidized LDL. Circulation. 2000;102(23):2867‐2872.
    1. Aihara KI, Azuma H, Akaike M, et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J Biol Chem. 2004;279(34):35798‐35802.
    1. Martinez‐Moreno JM, Herencia C, de Oca AM, et al. Vitamin D modulates tissue factor and protease‐activated receptor 2 expression in vascular smooth muscle cells. FASEB J. 2016;30(3):1367‐1376.
    1. Wu WX, He DR. Low vitamin D levels are associated with the development of deep venous thromboembolic events in patients with ischemic stroke. Clin Appl Thromb. 2018;24(9_suppl):69S‐75S.
    1. Topaloglu O, Arslan MS, Karakose M, et al. Is there any association between thrombosis and tissue factor pathway inhibitor levels in patients with vitamin D deficiency? Clin Appl Thromb. 2015;21(5):428‐433.
    1. Eapen MS, Lu W, Gaikwad AV, et al. Endothelial to mesenchymal transition: a precursor to post‐COVID‐19 interstitial pulmonary fibrosis and vascular obliteration? Eur Respir J. 2020;56(4):2003167.
    1. Chen W. A potential treatment of COVID‐19 with TGF‐β blockade. Int J Biol Sci. 2020;16(11):1954‐1955.
    1. Jiang F, Yang Y, Xue L, Li B, Zhang Z. 1α, 25‐dihydroxyvitamin D3 attenuates TGF‐β‐induced pro‐fibrotic effects in human lung epithelial cells through inhibition of epithelial‐mesenchymal transition. Nutrients. 2017;9(9):1‐13.
    1. Wang J, Chen L, Chen B, et al. Chronic activation of the renin‐angiotensin system induces lung fibrosis. Sci Rep. 2015;5:15561.
    1. Uhal BD, Li X, Piasecki CC, Molina‐Molina M. Angiotensin signalling in pulmonary fibrosis. Int J Biochem Cell Biol. 2012;44(3):465‐468.
    1. Mirković K, de Borst MH. Beyond the RAAS: dissecting the antifibrotic effects of vitamin D analogues. Lab Invest. 2012;92(12):1666‐1669.
    1. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID‐19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420‐422.
    1. Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome advances in diagnosis and treatment. JAMA. 2018;319(7):698‐710.
    1. Standiford TJ, Ward PA. Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res. 2016;167(1):183‐191.
    1. Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS‐CoV‐2 positivity rates associated with circulating 25‐hydroxyvitamin D levels. PLoS One. 2020;15(9):e0239252.
    1. Merzon E, Tworowski D, Gorohovski A, et al. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID‐19 infection: an Israeli population‐based study. FEBS J. 2020;287(17):3693‐3702.
    1. Hernández JL, Nan D, Fernandez‐Ayala M, et al. Vitamin D status in hospitalized patients with SARS‐CoV‐2 infection. J Clin Endocrinol Metab. 2021;106(3):E1343‐E1353.
    1. Diaz‐Curiel M, Cabello A, Arboiro‐Pinel R, et al. The relationship between 25(OH) vitamin D levels and COVID‐19 onset and disease course in Spanish patients. J Steroid Biochem Mol Biol. 2021;212:105928.
    1. Maghbooli Z, Sahraian MA, Ebrahimi M, et al. Vitamin D sufficiency, a serum 25‐hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID‐19 infection. PLoS One. 2020;15(9):e0239799.
    1. Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID‐19 infection in UKbiobank. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):561‐565.
    1. Bassatne A, Basbous M, Chakhtoura M, El Zein O, Rahme M, Fuleihan GE. The link between COVID‐19 and vitamin D (VIVID): a systematic review and meta‐analysis. Metabolism. 2021;119:154753.
    1. Wang Z, Joshi A, Leopold K, et al. Association of vitamin D deficiency with COVID‐19 infection severity: systematic review and meta‐analysis. Clin Endocrinol. 2021. 10.1111/cen.14540.
    1. Alcala‐Diaz JF, Limia‐perez L, Gomez‐Huelgas R, et al. Calcifediol treatment and hospital mortality due to COVID‐19: a cohort study. Nutrients. 2021;13(6):1760.
    1. Nogues X, Ovejero D, Pineda‐Moncusí M, et al. Calcifediol treatment and COVID‐19‐related outcomes. J Clin Endocrinol Metab. 2021;106(10):e4017‐e4027.
    1. Loucera C, Peña‐Chilet M, Esteban‐Medina M, et al. Real world evidence of calcifediol prescription and mortality rate of COVID‐19 in a retrospective cohort of hospitalized Andalusian patients. MedRxiv. 2021. 10.1101/2021.04.27.21255937.
    1. Oristrell J, Oliva JC, Casado E, et al. Vitamin D supplementation and COVID‐19 risk: a population‐based, cohort study. J Endocrinol Invest. 2021;17:1‐13.
    1. Oristrell J, Oliva JC, Subirana I, et al. Association of calcitriol supplementation with reduced COVID‐19 mortality in patients with chronic kidney disease: a population‐based study. Biomedicines. 2021;9(5):509.
    1. Murai IH, Fernandes AL, Sales LP, et al. Effect of a single high dose of vitamin D3 on hospital length of stay in patients with moderate to severe COVID‐19: a randomized clinical trial. JAMA. 2021;325(11):1053‐1060.
    1. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID‐19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751.
    1. Johns Hopkins Coronavirus Resource Center. COVID‐19 map [Internet]. Available at: .
    1. Rochwerg B, Agarwal A, Siemieniuk RA, et al. A living WHO guideline on drugs for COVID‐19. BMJ. 2020;370:m3379.
    1. World Health Organization. COVID‐19 landscape of experimental treatments [Internet]. Available at: .
    1. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID‐19‐related death using OpenSAFELY. Nature. 2020;584(7821):430‐436.
    1. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266‐281.
    1. George B, Amjesh R, Paul AM, Santhoshkumar TR, Pillai MR, Kumar R. Evidence of a dysregulated vitamin D endocrine system in SARS‐CoV‐2 infected patient's lung cells. Sci Rep. 2021;11(1):8570.
    1. Loucera C, Esteban‐Medina M, Rian K, Falco MM, Dopazo J, Peña‐Chilet M. Drug repurposing for COVID‐19 using machine learning and mechanistic models of signal transduction circuits related to SARS‐CoV‐2 infection. Signal Transduct Target Ther. 2020;5(1):290.
    1. Jiang X, Ge T, Chen CY. The causal role of circulating vitamin D concentrations in human complex traits and diseases: a large‐scale Mendelian randomization study. Sci Rep. 2021;11(1):184.
    1. Lee MD, Lin CH, Lei WT, et al. Does vitamin D deficiency affect the immunogenic responses to influenza vaccination? A systematic review and meta‐analysis. Nutrients. 2018;10(4):409.

Source: PubMed

3
Abonnieren