Recent Advances in Pathophysiology of Traumatic Brain Injury

Parmeet Kaur, Saurabh Sharma, Parmeet Kaur, Saurabh Sharma

Abstract

Background: Traumatic brain injury (TBI) constitutes the primary reason for mortality and morbidity in persons worldwide below 45 years of age. 1.7 million Traumatic events occur yearly in the United States alone, considering for 50,000 deaths. In severe traumatic brain injury sufferers, a considerable achievement attained in treating short-term consequences; but till date, huge failures are occurring in researcher's capability to render severe traumatic brain injury sufferers to an elevated degree of performing.

Methods: Initial damage force results in Primary brain injury, causing tissue destruction and distortion in the early post-injury period. These secondary injuries from TBI cause changes in cell performance and dissemination of trauma via activities like free-radical generation, depolarization, and formation of edema, excitotoxicity, and disruption of blood brain barrier, calcium homeostasis, and intracranial hematoma. The expectation for developing effect in TBI sufferers is the best knowledge of these activities and enhancement of remedies that restrict secondary brain damage.

Results: The focal point of this study is on knowing the complex outburst of secondary impairments and studying the pathophysiology of TBI which provides alternative treatment benefits.

Conclusion: While injured persons demonstrate dissimilar levels of harm and every case is novel with specific recovery profiles, this article strengthens the recent pathophysiological sight of TBI mainly attention on oxidative stress, excitotoxicity, cerebral oxygenation and cerebral blood flow (CBF), development of edema, and inflammatory activities. For initial research acknowledgment of these recurring factors could permit clarification of possible beneficial targets.

Keywords: Traumatic brain injury; excitotoxicity; inflammation; oxidative stress; primary brain injury; secondary injury..

Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

Figures

Fig. (1)
Fig. (1)
Pathophysiology of Primary Brain Injury.
Fig. (2)
Fig. (2)
Contributing events in the pathophysiology of Secondary Brain Injury.
Fig. (3)
Fig. (3)
Free radical generation that leads to oxidative stress. (The color version of the figure is available in the electronic copy of the article).

References

    1. Langlois J.A., Rutland-Brown W., Wald M.M. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 2006;21(5):375–378. [ 00001199-200609000-00001]. [PMID: 16983222].
    1. Thurman D. Traumatic Brain Injury in the United States: A Report to Congress. Centers for Disease Control and Prevention; 1999.
    1. Freire M.A. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J. 2012;61(7):751–755. [PMID: 23620976].
    1. Thurman D.J., Alverson C., Browne D., Dunn K.A., Guerrero J., Johnson R., Johnson V., Langlois J., Pilkey D., Sniezek J.E.
    1. Nolan S. Traumatic brain injury: a review. Crit. Care Nurs. Q. 2005;28(2):188–194. []. [PMID: 15875448].
    1. Scholten A.C., Haagsma J.A., Panneman M.J., van Beeck E.F., Polinder S. Traumatic brain injury in the Netherlands: incidence, costs and disability-adjusted life years. PLoS One. 2014;9(10):e110905. []. [PMID: 25343447].
    1. Gubata M.E., Packnett E.R., Blandford C.D., Piccirillo A.L., Niebuhr D.W., Cowan D.N. Trends in the epidemiology of disability related to traumatic brain injury in the US Army and Marine Corps: 2005 to 2010. J. Head Trauma Rehabil. 2014;29(1):65–75. []. [PMID: 23756433].
    1. Werner C., Engelhard K. Pathophysiology of traumatic brain injury. Br. J. Anaesth. 2007;99(1):4–9. [ bja/aem131]. [PMID: 17573392].
    1. Prins M., Greco T., Alexander D., Giza C.C. The pathophysiology of traumatic brain injury at a glance. Dis. Model. Mech. 2013;6(6):1307–1315. []. [PMID: 24046353].
    1. Marshall L.F. Head injury: recent past, present, and future. Neurosurgery. 2000;47(3):546–561. [PMID: 10981741].
    1. Nortje J., Menon D.K. Traumatic brain injury: physiology, mechanisms, and outcome. Curr. Opin. Neurol. 2004;17(6):711–718. []. [PMID: 15542980].
    1. Baethmann A., Eriskat J., Stoffel M., Chapuis D., Wirth A., Plesnila N. Special aspects of severe head injury: recent developments. Curr. Opin. Anaesthesiol. 1998;11(2):193–200. [http://dx. ]. [PMID: 17013219].
    1. Mustafa A.G., Alshboul O.A. Pathophysiology of traumatic brain injury. Neurosciences (Riyadh) 2013;18(3):222–234. [PMID: 23887212].
    1. Smith-Seemiller L., Lovell M.R., Smith S., Markosian N., Townsend R.N. Impact of skull fracture on neuropsychological functioning following closed head injury. Brain Inj. 1997;11(3):191–196. []. [PMID: 9058000].
    1. Langlois J.A., Rutland-Brown W., Thomas K.E. The incidence of traumatic brain injury among children in the United States: differences by race. J. Head Trauma Rehabil. 2005;20(3):229–238. []. [PMID: 15908823].
    1. Dawodu S., Kishner S. 2016.
    1. Niedzwecki C.M., Marwitz J.H., Ketchum J.M., Cifu D.X., Dillard C.M., Monasterio E.A. Traumatic brain injury: a comparison of inpatient functional outcomes between children and adults. J. Head Trauma Rehabil. 2008;23(4):209–219. [ 10.1097/01.HTR.0000327253.61751.29]. [PMID: 18650765].
    1. Haring R.S., Narang K., Canner J.K., Asemota A.O., George B.P., Selvarajah S., Haider A.H., Schneider E.B. Traumatic brain injury in the elderly: morbidity and mortality trends and risk factors. J. Surg. Res. 2015;195(1):1–9. [ j.jss.2015.01.017]. [PMID: 25724764].
    1. Steyerberg E.W., Mushkudiani N., Perel P., Butcher I., Lu J., McHugh G.S., Murray G.D., Marmarou A., Roberts I., Habbema J.D.F., Maas A.I. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 2008;5(8):e165. []. [PMID: 18684008].
    1. Hellewell S. C., Ziebell J. M., Lifshitz J., Morganti-Kossmann M. C. Impact acceleration model of diffuse traumatic brain injury. 2016.
    1. Yellinek S., Cohen A., Merkin V., Shelef I., Benifla M. Clinical significance of skull base fracture in patients after traumatic brain injury. J. Clin. Neurosci. 2016;25:111–115. [ 10.1016/j.jocn.2015.10.012]. [PMID: 26724846].
    1. Rosenfeld J.V., Maas A.I., Bragge P., Morganti-Kossmann M.C., Manley G.T., Gruen R.L. Early management of severe traumatic brain injury. Lancet. 2012;380(9847):1088–1098. [http:// ]. [PMID: 22998718].
    1. Ommaya A.K., Grubb R.L., Jr, Naumann R.A. Coup and contre-coup injury: observations on the mechanics of visible brain injuries in the rhesus monkey. J. Neurosurg. 1971;35(5):503–516. []. [PMID: 5000943].
    1. Yan E.B., Johnstone V.P., Alwis D.S., Morganti-Kossmann M-C., Rajan R. Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury. Neuroscience. 2013;248:17–29. [. 2013.05.045]. [PMID: 23735754].
    1. Harish G., Mahadevan A., Pruthi N., Sreenivasamurthy S.K., Puttamallesh V.N., Keshava Prasad T.S., Shankar S.K., Srinivas Bharath M.M., Mukunda M. Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and pericontusion. J. Neurochem. 2015;134(1):156–172. []. [PMID: 25712633].
    1. Hellewell S.C., Yan E.B., Agyapomaa D.A., Bye N., Morganti-Kossmann M.C. Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses. J. Neurotrauma. 2010;27(11):1997–2010. [. 2009.1245]. [PMID: 20822466].
    1. Mac Donald C.L., Johnson A.M., Cooper D., Nelson E.C., Werner N.J., Shimony J.S., Snyder A.Z., Raichle M.E., Witherow J.R., Fang R., Flaherty S.F., Brody D.L. Detection of blast-related traumatic brain injury in U.S. military personnel. N. Engl. J. Med. 2011;364(22):2091–2100. [. 1056/NEJMoa1008069]. [PMID: 21631321].
    1. Smith-Seemiller L., Fow N.R., Kant R., Franzen M.D. Presence of post-concussion syndrome symptoms in patients with chronic pain vs mild traumatic brain injury. Brain Inj. 2003;17(3):199–206. []. [PMID: 12623496].
    1. Unterberg A.W., Stover J., Kress B., Kiening K.L. Edema and brain trauma. Neuroscience. 2004;129(4):1021–1029. [http://dx. ]. [PMID: 15561417].
    1. Betz A., Crockard A. Brain edema and the blood brain barrier. 1992.
    1. Marmarou A., Fatouros P.P., Barzó P., Portella G., Yoshihara M., Tsuji O., Yamamoto T., Laine F., Signoretti S., Ward J.D., Bullock M.R., Young H.F. Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J. Neurosurg. 2000;93(2):183–193. [ jns.2000.93.2.0183]. [PMID: 10930002].
    1. Marmarou A., Signoretti S., Fatouros P.P., Portella G., Aygok G.A., Bullock M.R. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries. J. Neurosurg. 2006;104(5):720–730. [. 5.720]. [PMID: 16703876].
    1. DeWitt D.S., Prough D.S. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J. Neurotrauma. 2003;20(9):795–825. [ 089771503322385755]. [PMID: 14577860].
    1. Stiefel M.F., Tomita Y., Marmarou A. Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J. Neurosurg. 2005;103(4):707–714. [. 3171/jns.2005.103.4.0707]. [PMID: 16266054].
    1. Stein N.R., McArthur D.L., Etchepare M., Vespa P.M. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit. Care. 2012;17(1):49–57. []. [PMID: 22528283].
    1. Steiner L.A., Andrews P.J. Monitoring the injured brain: ICP and CBF. Br. J. Anaesth. 2006;97(1):26–38. [. 1093/bja/ael110]. [PMID: 16698860].
    1. Duschek S., Schandry R. Reduced brain perfusion and cognitive performance due to constitutional hypotension. Clin. Auton. Res. 2007;17(2):69–76. []. [PMID: 17106628].
    1. Robertson C.L. Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J. Bioenerg. Biomembr. 2004;36(4):363–368. [ 10.1023/B:JOBB.0000041769.06954.e4]. [PMID: 15377873].
    1. Sullivan P.G., Thompson M.B., Scheff S.W. Cyclosporin A attenuates acute mitochondrial dysfunction following traumatic brain injury. Exp. Neurol. 1999;160(1):226–234. [http://dx. ]. [PMID: 10630207].
    1. Lifshitz J., Sullivan P.G., Hovda D.A., Wieloch T., McIntosh T.K. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion. 2004;4(5-6):705–713. [. 1016/j.mito.2004.07.021]. [PMID: 16120426].
    1. Ankarcrona M., Dypbukt J.M., Bonfoco E., Zhivotovsky B., Orrenius S., Lipton S.A., Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961–973. [http://dx.doi. org/10.1016/0896-6273(95)90186-8]. [PMID: 7576644].
    1. Mark L.P., Prost R.W., Ulmer J.L., Smith M.M., Daniels D.L., Strottmann J.M., Brown W.D., Hacein-Bey L. Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol. 2001;22(10):1813–1824. [PMID: 11733308].
    1. Nicholls D.G., Ward M.W. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci. 2000;23(4):166–174. [ 10.1016/S0166-2236(99)01534-9]. [PMID: 10717676].
    1. Xiong Y., Gu Q., Peterson P.L., Muizelaar J.P., Lee C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma. 1997;14(1):23–34. [http://dx. ]. [PMID: 9048308].
    1. Brustovetsky N., Brustovetsky T., Jemmerson R., Dubinsky J.M. Calcium-induced cytochrome c release from CNS mitochondria is associated with the permeability transition and rupture of the outer membrane. J. Neurochem. 2002;80(2):207–218. [http://dx.doi. org/10.1046/j.0022-3042.2001.00671.x]. [PMID: 11902111].
    1. Singh I.N., Sullivan P.G., Deng Y., Mbye L.H., Hall E.D. Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J. Cereb. Blood Flow Metab. 2006;26(11):1407–1418. [. 9600297]. [PMID: 16538231].
    1. Nicholls D.G., Budd S.L. Mitochondria and neuronal survival. Physiol. Rev. 2000;80(1):315–360. [ physrev.2000.80.1.315]. [PMID: 10617771].
    1. Sullivan P.G., Rabchevsky A.G., Waldmeier P.C., Springer J.E. Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J. Neurosci. Res. 2005;79(1-2):231–239. []. [PMID: 15573402].
    1. Jacquard C., Trioulier Y., Cosker F., Escartin C., Bizat N., Hantraye P., Cancela J.M., Bonvento G., Brouillet E. Brain mitochondrial defects amplify intracellular [Ca2+] rise and neurodegeneration but not Ca2+ entry during NMDA receptor activation. FASEB J. 2006;20(7):1021–1023. [ fj.05-5085fje]. [PMID: 16571773].
    1. Lewén A., Fujimura M., Sugawara T., Matz P., Copin J-C., Chan P.H. Oxidative stress-dependent release of mitochondrial cytochrome c after traumatic brain injury. J. Cereb. Blood Flow Metab. 2001;21(8):914–920. []. [PMID: 11487726].
    1. Olney J. Excitotoxicity: an overview. 1990.
    1. Palmer A.M., Marion D.W., Botscheller M.L., Redd E.E. Therapeutic hypothermia is cytoprotective without attenuating the traumatic brain injury-induced elevations in interstitial concentrations of aspartate and glutamate. J. Neurotrauma. 1993;10(4):363–372. []. [PMID: 7908337].
    1. Bullock R., Zauner A., Woodward J.J., Myseros J., Choi S.C., Ward J.D., Marmarou A., Young H.F. Factors affecting excitatory amino acid release following severe human head injury. J. Neurosurg. 1998;89(4):507–518. [. 1998.89.4.0507]. [PMID: 9761042].
    1. Robertson C.L., Bell M.J., Kochanek P.M., Adelson P.D., Ruppel R.A., Carcillo J.A., Wisniewski S.R., Mi Z., Janesko K.L., Clark R.S., Marion D.W., Graham S.H., Jackson E.K. Increased adenosine in cerebrospinal fluid after severe traumatic brain injury in infants and children: association with severity of injury and excitotoxicity. Crit. Care Med. 2001;29(12):2287–2293. [http://dx. ]. [PMID: 11801827].
    1. Nishizawa Y. Glutamate release and neuronal damage in ischemia. Life Sci. 2001;69(4):369–381. []. [PMID: 11459428].
    1. Floyd C.L., Gorin F.A., Lyeth B.G. Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia. 2005;51(1):35–46. [ 10.1002/glia.20183]. [PMID: 15779085].
    1. Yi J-H., Hazell A.S. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem. Int. 2006;48(5):394–403. [. neuint.2005.12.001]. [PMID: 16473439].
    1. Obrenovitch T.P., Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J. Neurotrauma. 1997;14(10):677–698. []. [PMID: 9383088].
    1. Bayir H., Kagan V.E., Borisenko G.G., Tyurina Y.Y., Janesko K.L., Vagni V.A., Billiar T.R., Williams D.L., Kochanek P.M. Enhanced oxidative stress in iNOS-deficient mice after traumatic brain injury: support for a neuroprotective role of iNOS. J. Cereb. Blood Flow Metab. 2005;25(6):673–684. [ 10.1038/sj.jcbfm.9600068]. [PMID: 15716856].
    1. Chong Z.Z., Li F., Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol. 2005;75(3):207–246. [ 10.1016/j.pneurobio.2005.02.004]. [PMID: 15882775].
    1. Shao C., Roberts K.N., Markesbery W.R., Scheff S.W., Lovell M.A. Oxidative stress in head trauma in aging. Free Radic. Biol. Med. 2006;41(1):77–85. [. 2006.03.007]. [PMID: 16781455].
    1. Prins M., Greco T., Alexander D., Giza C.C. The pathophysiology of traumatic brain injury at a glance. Dis. Model. Mech. 2013;6(6):1307–1315. []. [PMID: 24046353].
    1. Lewén A., Matz P., Chan P.H. Free radical pathways in CNS injury. J. Neurotrauma. 2000;17(10):871–890. [http://dx.doi. org/10.1089/neu.2000.17.871]. [PMID: 11063054].
    1. Kontos H.A., Wei E.P. Superoxide production in experimental brain injury. J. Neurosurg. 1986;64(5):803–807. [http://dx.doi. org/10.3171/jns.1986.64.5.0803]. [PMID: 3009736].
    1. Chaudière J., Ferrari-Iliou R. Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem. Toxicol. 1999;37(9-10):949–962. [ 00090-3]. [PMID: 10541450].
    1. Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999;9(1):119–131. [. x]. [PMID: 9989455].
    1. Keynes R.G., Garthwaite J. Nitric oxide and its role in ischaemic brain injury. Curr. Mol. Med. 2004;4(2):179–191. [http://dx. ]. [PMID: 15032712].
    1. Calabrese V., Mancuso C., Calvani M., Rizzarelli E., Butterfield D.A., Stella A.M.G. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007;8(10):766–775. []. [PMID: 17882254].
    1. Enevoldsen E.M., Jensen F.T. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J. Neurosurg. 1978;48(5):689–703. [ jns.1978.48.5.0689]. [PMID: 641549].
    1. Hauerberg J., Xiaodong M., Willumsen L., Pedersen D.B., Juhler M. The upper limit of cerebral blood flow autoregulation in acute intracranial hypertension. J. Neurosurg. Anesthesiol. 1998;10(2):106–112. []. [PMID: 9559769].
    1. Hlatky R., Furuya Y., Valadka A.B., Gonzalez J., Chacko A., Mizutani Y., Contant C.F., Robertson C.S. Dynamic autoregulatory response after severe head injury. J. Neurosurg. 2002;97(5):1054–1061. []. [PMID: 12450026].
    1. Jaeger M., Schuhmann M.U., Soehle M., Meixensberger J. Continuous assessment of cerebrovascular autoregulation after traumatic brain injury using brain tissue oxygen pressure reactivity. Crit. Care Med. 2006;34(6):1783–1788. [. 1097/01.CCM.0000218413.51546.9E]. [PMID: 16625135].
    1. Jünger E.C., Newell D.W., Grant G.A., Avellino A.M., Ghatan S., Douville C.M., Lam A.M., Aaslid R., Winn H.R. Cerebral autoregulation following minor head injury. J. Neurosurg. 1997;86(3):425–432. []. [PMID: 9046298].
    1. Lam J.M., Hsiang J.N., Poon W.S. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J. Neurosurg. 1997;86(3):438–445. [. 1997.86.3.0438]. [PMID: 9046300].
    1. Chesnut R.M., Marshall L.F., Klauber M.R., Blunt B.A., Baldwin N., Eisenberg H.M., Jane J.A., Marmarou A., Foulkes M.A. The role of secondary brain injury in determining outcome from severe head injury. J. Trauma. 1993;34(2):216–222. [http:// ]. [PMID: 8459458].
    1. Lee J.H., Kelly D.F., Oertel M., McArthur D.L., Glenn T.C., Vespa P., Boscardin W.J., Martin N.A. Carbon dioxide reactivity, pressure autoregulation, and metabolic suppression reactivity after head injury: a transcranial Doppler study. J. Neurosurg. 2001;95(2):222–232. []. [PMID: 11780891].
    1. McLaughlin M.R., Marion D.W. Cerebral blood flow and vasoresponsivity within and around cerebral contusions. J. Neurosurg. 1996;85(5):871–876. [. 5.0871]. [PMID: 8893726].
    1. Cunningham A.S., Salvador R., Coles J.P., Chatfield D.A., Bradley P.G., Johnston A.J., Steiner L.A., Fryer T.D., Aigbirhio F.I., Smielewski P., Williams G.B., Carpenter T.A., Gillard J.H., Pickard J.D., Menon D.K. Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain. 2005;128(Pt 8):1931–1942. [. 1093/brain/awh536]. [PMID: 15888537].
    1. Clark R.S., Carcillo J.A., Kochanek P.M., Obrist W.D., Jackson E.K., Mi Z., Wisneiwski S.R., Bell M.J., Marion D.W. Cerebrospinal fluid adenosine concentration and uncoupling of cerebral blood flow and oxidative metabolism after severe head injury in humans. Neurosurgery. 1997;41(6):1284–1292. [ 10.1097/00006123-199712000-00010]. [PMID: 9402580].
    1. Diringer M.N., Yundt K., Videen T.O., Adams R.E., Zazulia A.R., Deibert E., Aiyagari V., Dacey R.G., Jr, Grubb R.L., Jr, Powers W.J. No reduction in cerebral metabolism as a result of early moderate hyperventilation following severe traumatic brain injury. J. Neurosurg. 2000;92(1):7–13. [ jns.2000.92.1.0007]. [PMID: 10616076].
    1. Wu H-M., Huang S-C., Hattori N., Glenn T.C., Vespa P.M., Yu C-L., Hovda D.A., Phelps M.E., Bergsneider M. Selective metabolic reduction in gray matter acutely following human traumatic brain injury. J. Neurotrauma. 2004;21(2):149–161. [http:// ]. [PMID: 15000756].
    1. Tavazzi B., Signoretti S., Lazzarino G., Amorini A.M., Delfini R., Cimatti M., Marmarou A., Vagnozzi R. Cerebral oxidative stress and depression of energy metabolism correlate with severity of diffuse brain injury in rats. Neurosurgery. 2005;56(3):582–589. []. [PMID: 15730584].
    1. Verweij B.H., Muizelaar J.P., Vinas F.C., Peterson P.L., Xiong Y., Lee C.P. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J. Neurosurg. 2000;93(5):815–820. []. [PMID: 11059663].
    1. Magnoni S., Ghisoni L., Locatelli M., Caimi M., Colombo A., Valeriani V., Stocchetti N. Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J. Neurosurg. 2003;98(5):952–958. [ 10.3171/jns.2003.98.5.0952]. [PMID: 12744353].
    1. Bergsneider M., Hovda D.A., Shalmon E., Kelly D.F., Vespa P.M., Martin N.A., Phelps M.E., McArthur D.L., Caron M.J., Kraus J.F., Becker D.P. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J. Neurosurg. 1997;86(2):241–251. [http://dx.doi. org/10.3171/jns.1997.86.2.0241]. [PMID: 9010426].
    1. Chen S-F., Richards H.K., Smielewski P., Johnström P., Salvador R., Pickard J.D., Harris N.G. Relationship between flow-metabolism uncoupling and evolving axonal injury after experimental traumatic brain injury. J. Cereb. Blood Flow Metab. 2004;24(9):1025–1036. [. 34520.47]. [PMID: 15356423].
    1. Glenn T.C., Kelly D.F., Boscardin W.J., McArthur D.L., Vespa P., Oertel M., Hovda D.A., Bergsneider M., Hillered L., Martin N.A. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J. Cereb. Blood Flow Metab. 2003;23(10):1239–1250. []. [PMID: 14526234].
    1. Greve M.W., Zink B.J. Pathophysiology of traumatic brain injury. Mt. Sinai J. Med. 2009;76(2):97–104. [ msj.20104]. [PMID: 19306379].
    1. Wang T., Huang X-J., Van K.C., Went G.T., Nguyen J.T., Lyeth B.G. Amantadine improves cognitive outcome and increases neuronal survival after fluid percussion traumatic brain injury in rats. J. Neurotrauma. 2014;31(4):370–377. [. 1089/neu.2013.2917]. [PMID: 23574258].
    1. Hinzman J.M., Thomas T.C., Quintero J.E., Gerhardt G.A., Lifshitz J. Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J. Neurotrauma. 2012;29(6):1197–1208. [http://dx.doi. org/10.1089/neu.2011.2261]. [PMID: 22233432].
    1. Mellergård P., Sjögren F., Hillman J. The cerebral extracellular release of glycerol, glutamate, and FGF2 is increased in older patients following severe traumatic brain injury. J. Neurotrauma. 2012;29(1):112–118. []. [PMID: 21988111].
    1. Kim J.P., Choi D.W. Quinolinate neurotoxicity in cortical cell culture. Neuroscience. 1987;23(2):423–432. [. 1016/0306-4522(87)90066-2]. [PMID: 2963969].
    1. Johnston A.J., Steiner L.A., Coles J.P., Chatfield D.A., Fryer T.D., Smielewski P., Hutchinson P.J., O’Connell M.T., Al-Rawi P.G., Aigbirihio F.I., Clark J.C., Pickard J.D., Gupta A.K., Menon D.K. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit. Care Med. 2005;33(1):189–195. [. ]. [PMID: 15644668].
    1. Rose J.C., Neill T.A., Hemphill J.C., III Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr. Opin. Crit. Care. 2006;12(2):97–102. []. [PMID: 16543783].
    1. Lang E.W., Czosnyka M., Mehdorn H.M. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit. Care Med. 2003;31(1):267–271. [ 00003246-200301000-00042]. [PMID: 12545027].
    1. Stiefel M.F., Udoetuk J.D., Spiotta A.M., Gracias V.H., Goldberg A., Maloney-Wilensky E., Bloom S., Le Roux P.D. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J. Neurosurg. 2006;105(4):568–575. [http:// ]. [PMID: 17044560].
    1. Leal-Noval S.R., Rincón-Ferrari M.D., Marin-Niebla A., Cayuela A., Arellano-Orden V., Marín-Caballos A., Amaya-Villar R., Ferrándiz-Millón C., Murillo-Cabeza F. Transfusion of erythrocyte concentrates produces a variable increment on cerebral oxygenation in patients with severe traumatic brain injury: a preliminary study. Intensive Care Med. 2006;32(11):1733–1740. [http:// ]. [PMID: 17019549].
    1. Stiefel M.F., Spiotta A., Gracias V.H., Garuffe A.M., Guillamondegui O., Maloney-Wilensky E., Bloom S., Grady M.S., LeRoux P.D. Reduced mortality rate in patients with severe traumatic brain injury treated with brain tissue oxygen monitoring. J. Neurosurg. 2005;103(5):805–811. [ jns.2005.103.5.0805]. [PMID: 16304983].
    1. Das M., Leonardo C.C., Rangooni S., Pennypacker K.R., Mohapatra S., Mohapatra S.S. Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J. Neuroinflammation. 2011;8(1):148. [ 1742-2094-8-148]. [PMID: 22040257].
    1. Streit W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia. 2002;40(2):133–139. [ glia.10154]. [PMID: 12379901].
    1. Bye N., Habgood M.D., Callaway J.K., Malakooti N., Potter A., Kossmann T., Morganti-Kossmann M.C. Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp. Neurol. 2007;204(1):220–233. [http:// ]. [PMID: 17188268].
    1. Lopes R.S., Cardoso M.M., Sampaio A.O., Barbosa M.S., Jr, Souza C.C., Silva D.A. M.C.; Ferreira, E.M.N.; Freire, M.A.M.; Lima, R.R.; Gomes-Leal, W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci. 2016;41(3):381–394. []. [PMID: 27581930].
    1. Guimarães J.S., Freire M.A.M., Lima R.R., Picanço-Diniz C.W., Pereira A., Gomes-Leal W. Minocycline treatment reduces white matter damage after excitotoxic striatal injury. Brain Res. 2010;1329:182–193. []. [PMID: 20226770].
    1. Lucas S.M., Rothwell N.J., Gibson R.M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 2006;147(S1) Suppl. 1:S232–S240. [. 0706400]. [PMID: 16402109].
    1. Potts M.B., Koh S-E., Whetstone W.D., Walker B.A., Yoneyama T., Claus C.P., Manvelyan H.M., Noble-Haeusslein L.J. Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx. 2006;3(2):143–153. [. 2006.01.006]. [PMID: 16554253].
    1. Zhang Z., Artelt M., Burnet M., Trautmann K., Schluesener H.J. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience. 2006;141(2):637–644. [http:// ]. [PMID: 16725271].
    1. Fabricius M., Fuhr S., Bhatia R., Boutelle M., Hashemi P., Strong A.J., Lauritzen M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129(Pt 3):778–790. [ brain/awh716]. [PMID: 16364954].
    1. Lee J.H., Martin N.A., Alsina G., McArthur D.L., Zaucha K., Hovda D.A., Becker D.P. Hemodynamically significant cerebral vasospasm and outcome after head injury: a prospective study. J. Neurosurg. 1997;87(2):221–233. [. 1997.87.2.0221]. [PMID: 9254085].
    1. Oertel M., Boscardin W.J., Obrist W.D., Glenn T.C., McArthur D.L., Gravori T., Lee J.H., Martin N.A. Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J. Neurosurg. 2005;103(5):812–824. [. 3171/jns.2005.103.5.0812]. [PMID: 16304984].
    1. Sobey C.G. Cerebrovascular dysfunction after subarachnoid haemorrhage: novel mechanisms and directions for therapy. Clin. Exp. Pharmacol. Physiol. 2001;28(11):926–929. [http://dx.doi. org/10.1046/j.1440-1681.2001.03550.x]. [PMID: 11703398].
    1. Zuccarello M., Boccaletti R., Romano A., Rapoport R.M. Endothelin B receptor antagonists attenuate subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 1998;29(9):1924–1929. []. [PMID: 9731620].
    1. Todo H., Ohta S., Wang J., Ichikawa H., Ohue S., Kumon Y., Sakaki S. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery. J. Cereb. Blood Flow Metab. 1998;18(7):808–817. []. [PMID: 9663510].
    1. Armstead W.M. Differential activation of ERK, p38, and JNK MAPK by nociceptin/orphanin FQ in the potentiation of prostaglandin cerebrovasoconstriction after brain injury. Eur. J. Pharmacol. 2006;529(1-3):129–135. [. 2005.08.059]. [PMID: 16352304].
    1. Eldadah B.A., Faden A.I. Caspase pathways, neuronal apoptosis, and CNS injury. J. Neurotrauma. 2000;17(10):811–829. [http:// ]. [PMID: 11063050].
    1. Nathoo N., Narotam P.K., Agrawal D.K., Connolly C.A., van Dellen J.R., Barnett G.H., Chetty R. Influence of apoptosis on neurological outcome following traumatic cerebral contusion. J. Neurosurg. 2004;101(2):233–240. [. 2004.101.2.0233]. [PMID: 15309913].
    1. Uzan M., Erman H., Tanriverdi T., Sanus G.Z., Kafadar A., Uzun H. Evaluation of apoptosis in cerebrospinal fluid of patients with severe head injury. Acta Neurochir. (Wien) 2006;148(11):1157–1164. []. [PMID: 16964558].
    1. Liu X.Z., Xu X.M., Hu R., Du C., Zhang S.X., McDonald J.W., Dong H.X., Wu Y.J., Fan G.S., Jacquin M.F., Hsu C.Y., Choi D.W. Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci. 1997;17(14):5395–5406. [ 10.1523/JNEUROSCI.17-14-05395.1997]. [PMID: 9204923].
    1. Choi D.W. Ischemia-induced neuronal apoptosis. Curr. Opin. Neurobiol. 1996;6(5):667–672. []. [PMID: 8937832].
    1. Algattas H., Huang J.H. Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int. J. Mol. Sci. 2013;15(1):309–341. [ 15010309]. [PMID: 24381049].
    1. Yoshino A., Hovda D.A., Kawamata T., Katayama Y., Becker D.P. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 1991;561(1):106–119. [http:// ]. [PMID: 1797338].
    1. Madikians A., Giza C.C. A clinician’s guide to the pathophysiology of traumatic brain injury. Indian J Neurotrauma. 2006;3(1):9–17. [].
    1. Bergsneider M., Hovda D.A., Lee S.M., Kelly D.F., McArthur D.L., Vespa P.M., Lee J.H., Huang S.C., Martin N.A., Phelps M.E., Becker D.P. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J. Neurotrauma. 2000;17(5):389–401. []. [PMID: 10833058].
    1. Biros M.H., Dimlich R.V. Brain lactate during partial global ischemia and reperfusion: effect of pretreatment with dichloroacetate in a rat model. Am. J. Emerg. Med. 1987;5(4):271–277. [http:// ]. [PMID: 3593491].
    1. Nilsson B., Nordström C-H. Rate of cerebral energy consumption in concussive head injury in the rat. J. Neurosurg. 1977;47(2):274–281. []. [PMID: 874550].
    1. Siemkowicz E., Hansen A.J. Clinical restitution following cerebral ischemia in hypo-, normo- and hyperglycemic rats. Acta Neurol. Scand. 1978;58(1):1–8. []. [PMID: 30250].
    1. Doberstein C.E., Hovda D.A., Becker D.P. Clinical considerations in the reduction of secondary brain injury. Ann. Emerg. Med. 1993;22(6):993–997. [ 82740-4]. [PMID: 8503538].
    1. Yang M.S., DeWitt D.S., Becker D.P., Hayes R.L. Regional brain metabolite levels following mild experimental head injury in the cat. J. Neurosurg. 1985;63(4):617–621. [ 10.3171/jns.1985.63.4.0617]. [PMID: 4032026].
    1. Inao S., Marmarou A., Clarke G.D., Andersen B.J., Fatouros P.P., Young H.F. Production and clearance of lactate from brain tissue, cerebrospinal fluid, and serum following experimental brain injury. J. Neurosurg. 1988;69(5):736–744. [ 10.3171/jns.1988.69.5.0736]. [PMID: 3183734].
    1. Bramlett H.M., Dietrich W.D. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J. Cereb. Blood Flow Metab. 2004;24(2):133–150. [. 1097/01.WCB.0000111614.19196.04]. [PMID: 14747740].
    1. Martin N.A., Patwardhan R.V., Alexander M.J., Africk C.Z., Lee J.H., Shalmon E., Hovda D.A., Becker D.P. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J. Neurosurg. 1997;87(1):9–19. []. [PMID: 9202259].
    1. Rodríguez-Baeza A., Reina-de la Torre F., Poca A., Martí M., Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003;273(1):583–593. []. [PMID: 12808643].
    1. Kelly D.F., Martin N.A., Kordestani R., Counelis G., Hovda D.A., Bergsneider M., McBride D.Q., Shalmon E., Herman D., Becker D.P. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J. Neurosurg. 1997;86(4):633–641. []. [PMID: 9120627].
    1. Kelly D.F., Kordestani R.K., Martin N.A., Nguyen T., Hovda D.A., Bergsneider M., McArthur D.L., Becker D.P. Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J. Neurosurg. 1996;85(5):762–771. [http:// ]. [PMID: 8893712].
    1. Bouma G.J., Muizelaar J.P. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J. Neurotrauma. 1992;9(Suppl. 1):S333–S348. [PMID: 1588625].
    1. Mazzini L., Campini R., Angelino E., Rognone F., Pastore I., Oliveri G. Posttraumatic hydrocephalus: a clinical, neuroradiologic, and neuropsychologic assessment of long-term outcome. Arch. Phys. Med. Rehabil. 2003;84(11):1637–1641. [http://dx. ]. [PMID: 14639563].
    1. Katz R.T., Brander V., Sahgal V. Updates on the diagnosis and management of posttraumatic hydrocephalus. Am. J. Phys. Med. Rehabil. 1989;68(2):91–96. []. [PMID: 2649117].
    1. Groswasser Z., Cohen M., Reider-Groswasser I., Stern M.J. Incidence, CT findings and rehabilitation outcome of patients with communicative hydrocephalus following severe head injury. Brain Inj. 1988;2(4):267–272. [ 02699058809150897]. [PMID: 3203174].
    1. Portnoy H.D., Chopp M., Branch C., Shannon M.B. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation. J. Neurosurg. 1982;56(5):666–678. [. 1982.56.5.0666]. [PMID: 7069479].
    1. Factora R., Luciano M. Normal pressure hydrocephalus: diagnosis and new approaches to treatment. Clin. Geriatr. Med. 2006;22(3):645–657. []. [PMID: 16860251].
    1. Mori K., Shimada J., Kurisaka M., Sato K., Watanabe K. Classification of hydrocephalus and outcome of treatment. Brain Dev. 1995;17(5):338–348. [ 00070-R]. [PMID: 8579221].
    1. Kammersgaard L.P., Linnemann M., Tibæk M. Hydrocephalus following severe traumatic brain injury in adults. Incidence, timing, and clinical predictors during rehabilitation. NeuroRehabilitation. 2013;33(3):473–480. [PMID: 23949078].
    1. Linnemann M., Tibæk M., Kammersgaard L.P. Hydrocephalus during rehabilitation following severe TBI. Relation to recovery, outcome, and length of stay. NeuroRehabilitation. 2014;35(4):755–761. [PMID: 25318768].
    1. Rehman T., Ali R., Tawil I., Yonas H. Rapid progression of traumatic bifrontal contusions to transtentorial herniation: A case report. Cases J. 2008;1(1):203. []. [PMID: 18831756].
    1. Dawodu S. T. Traumatic brain injury: definition, epidemiology, pathophysiology. E medicine from WebMD . 2007.
    1. Packet S-L. Overview of adult traumatic brain injuries. Orlando, FL: Orlando Regional Healthcare, Education & Development; 2004.
    1. Freeman M.D., Rosa S., Harshfield D., Smith F., Bennett R., Centeno C.J., Kornel E., Nystrom A., Heffez D., Kohles S.S. A case-control study of cerebellar tonsillar ectopia (Chiari) and head/ neck trauma (whiplash). Brain Inj. 2010;24(7-8):988–994. [http:// ]. [PMID: 20545453].

Source: PubMed

3
Abonnieren