Defining and measuring motor imagery in children: mini review

Ghazala T Saleem, Ghazala T Saleem

Abstract

Motor imagery (MI) is the ability to engage in the mental representation of a task consciously or automatically without generating a voluntary movement. While the construct of MI and its various dimensions have been comprehensively studied in adults, research remains limited in children. Children as young as 5 years old can engage in MI, and this engagement is crucial to their motor development and skill acquisition. Further, the degree of skill achievement is directly linked to MI responsiveness. Clinicians and researchers often measure MI responsiveness in children to facilitate skill development and retention. However, few measures exist that can appropriately assess MI responsiveness in children. To date, a focused review examining the MI dimensions in children as well as comparing the characteristics of MI measures in children is lacking, and thus a research gap exists. This paper examines past and current research describing MI ability in children from the theoretical, developmental, and neurological lens and systematically analyzes the properties of three widely used operations - the movement imagery questionnaire in children (MIQ-C), the Florida praxis imaginary questionnaire (FPIQ-C), and the mental chronometry paradigm (MCP) - to measure MI and its dimensions in children.

Keywords: children; measurements; mental practice; motor imagery; motor learning; motor rehabilitation.

Conflict of interest statement

The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2023 Saleem.

Figures

FIGURE 1
FIGURE 1
The construct of motor imagery is multidimensional including kinesthetic, visual, and temporal imagery.

References

    1. Aflalo T., Kellis S., Klaes C., Lee B., Shi Y., Pejsa K., et al. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science 348 906–910. 10.1126/science.aaa5417
    1. Asa S. K., Melo M. C., Piemonte M. E. (2014). Effects of mental and physical practice on a finger opposition task among children. Res. Q. Exerc. Sport 85 308–315. 10.1080/02701367.2014.931557
    1. Bahmani M., Babak M., Land W. M., Howard J. T., Diekfuss J. A., Abdollahipour R. (2021). Children’s motor imagery modality dominance modulates the role of attentional focus in motor skill learning. Hum. Mov. Sci. 75:102742. 10.1016/j.humov.2020.102742
    1. Barrouillet P. (2015). Theories of cognitive development: From Piaget to today. Dev. Rev. 38 1–12. 10.1016/j.dr.2015.07.004
    1. Behrendt F., Zumbrunnen V., Brem L., Suica Z., Gäumann S., Ziller C., et al. (2021). Effect of motor imagery training on motor learning in children and adolescents: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 18:9467. 10.3390/ijerph18189467
    1. Bhoyroo R., Hands B., Wilmut K., Hyde C., Wigley A. (2019). Motor planning with and without motor imagery in children with developmental coordination disorder. Acta Psychol. 199:102902. 10.1016/j.actpsy.2019.102902
    1. Caeyenberghs K., Tsoupas J., Wilson P. H., Smits-Engelsman B. C. M. (2009a). Motor imagery development in primary school children. Dev. Neuropsychol. 34 103–121. 10.1080/87565640802499183
    1. Caeyenberghs K., Wilson P. H., van Roon D., Swinnen S. P., Smits-Engelsman B. C. M. (2009b). Increasing convergence between imagined and executed movement across development: Evidence for the emergence of movement representations. Dev. Sci. 12 474–483. 10.1111/j.1467-7687.2008.00803.x
    1. Chang S.-H., Yu N.-Y. (2016). Comparison of motor praxis and performance in children with varying levels of developmental coordination disorder. Hum. Mov. Sci. 48 7–14. 10.1016/j.humov.2016.04.001
    1. Chang S.-H., Yu N.-Y. (2018). Development and validation of the comprehensive praxis assessment for children aged 6–8. Hum. Mov. Sci. 57 332–341. 10.1016/j.humov.2017.09.011
    1. Collet C., Guillot A., Lebon F., MacIntyre T., Moran A. (2011). Measuring motor imagery using psychometric, behavioral, and psychophysiological tools. Exerc. Sport Sci. Rev. 39:85. 10.1097/JES.0b013e31820ac5e0
    1. Cordova A., Gabbard C. (2014). Do older adults perceive postural constraints for reach estimation? Exp. Aging Res. 40 578–588. 10.1080/0361073X.2014.956627
    1. Decety J. (1996). The neurophysiological basis of motor imagery. Behav. Brain Res. 77 45–52. 10.1016/0166-4328(95)00225-1
    1. Dhouibi M.-A., Miladi I., Racil G., Hammoudi S., Coquart J. (2021). The effects of sporting and physical practice on visual and kinesthetic motor imagery vividness: A comparative study between athletic, physically active, and exempted adolescents. Front. Psychol. 12:776833. 10.3389/fpsyg.2021.776833
    1. Errante A., Bozzetti F., Sghedoni S., Bressi B., Costi S., Crisi G., et al. (2019). Explicit motor imagery for grasping actions in children with spastic unilateral cerebral palsy. Front. Neurol. 10:937. 10.3389/fneur.2019.00837
    1. Frick A., Daum M. M., Wilson M., Wilkening F. (2009). Effects of action on children’s and adults’ mental imagery. J. Exp. Child Psychol. 104 34–51. 10.1016/j.jecp.2009.01.003
    1. Fuchs C. T., Caçola P. (2018). Differences in accuracy and vividness of motor imagery in children with and without developmental coordination disorder. Hum. Mov. Sci. 60 234–241. 10.1016/j.humov.2018.06.015
    1. Funk M., Brugger P., Wilkening F. (2005). Motor processes in children’s imagery: The case of mental rotation of hands. Dev. Sci. 8 402–408. 10.1111/j.1467-7687.2005.00428.x
    1. Gabbard C., Cordova A., Lee S. (2009). Do children perceive postural constraints when estimating reach or action planning? J. Mot. Behav. 41 100–105. 10.3200/JMBR.41.2.100-105
    1. Guillot A., Collet C. (eds) (2010). “Introduction,” in The neurophysiological foundations of mental and motor imagery, (Oxford: Oxford University Press; ). 10.1093/acprof:oso/9780199546251.002.0007
    1. Guillot A., Louis M., Collet C. (2010). “Neurophysiological substrates of motor imagery ability,” in The neurophysiological foundations of mental and motor imagery, eds Guillot A., Collet C. (Oxford: Oxford University Press; ). 10.1093/acprof:oso/9780199546251.003.0008
    1. Hecker J. E., Kaczor L. M. (1988). Application of imagery theory to sport psychology: Some preliminary findings. J. Sport Exerc. Psychol. 10:363.
    1. Hoyek N., Champely S., Collet C., Fargier P., Guillot A. (2009). Age and gender-related differences in the temporal congruence development between motor imagery and motor performance. Learn. Individ. Differ. 19 555–560. 10.1016/j.lindif.2009.07.003
    1. Iosa M., Zoccolillo L., Montesi M., Morelli D., Paolucci S., Fusco A. (2014). The brain’s sense of walking: A study on the intertwine between locomotor imagery and internal locomotor models in healthy adults, typically developing children and children with cerebral palsy. Front. Hum. Neurosci. 8:859. 10.3389/fnhum.2014.00859
    1. Jeannerod M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage 14 S103–S109. 10.1006/nimg.2001.0832
    1. Kwekkeboom K. L., Maddox M. A., West T. (2000). Measuring imaging ability in children. J. Pediatr. Health Care 14 297–303. 10.1067/mph.2000.106896
    1. Lust J. M., Wilson P. H., Steenbergen B. (2016). Motor imagery difficulties in children with cerebral palsy: A specific or general deficit? Res. Dev. Disabil. 57 102–111. 10.1016/j.ridd.2016.06.010
    1. Martini R., Carter M. J., Yoxon E., Cumming J., Ste-Marie D. M. (2016). Development and validation of the movement imagery questionnaire for children (MIQ-C). Psychol. Sport Exerc. 22 190–201. 10.1016/j.psychsport.2015.08.008
    1. Molina M., Tijus C., Jouen F. (2008). The emergence of motor imagery in children. J. Exp. Child Psychol. 99 196–209. 10.1016/j.jecp.2007.10.001
    1. Mowrer O. H. (1961). Learning theory and the symbolic processes. J. Nerv. Ment. Dis. 133:568.
    1. Nilsen D. M., Gillen G., DiRusso T., Gordon A. M. (2012). Effect of imagery perspective on occupational performance after stroke: A randomized controlled trial. Am. J. Occup. Ther. 66 320–329. 10.5014/ajot.2012.003475
    1. Ochipa C., Rapcsak S. Z., Maher L. M., Rothi L. J., Bowers D., Heilman K. M. (1997). Selective deficit of praxis imagery in ideomotor apraxia. Neurology 49 474–480. 10.1212/wnl.49.2.474
    1. Quinton M. L., Cumming J., Gray R., Geeson J., Cooper A., Crowley H., et al. (2014). A PETTLEP imagery intervention with young athletes. J. Imag. Res. Sport Phys. Act. 9, 47–59. 10.1515/jirspa-2014-0003
    1. Rehbein L., Doussoulin A. (2011). Motor imagery as a tool for motor skill training in children. Motricidade 7 37–43.
    1. Saleem G. T., Gillen G. (2018). Examining the association between imagery responsiveness and increased scores on the minnesota handwriting assessment: A correlational pilot study. J. Occup. Ther. Schl. Early Interv. 11 440–453. 10.1080/19411243.2018.1534633
    1. Saleem G. T., Gillen G. (2019). Mental practice combined with repetitive task practice to rehabilitate handwriting in children. Can. J. Occup. Ther. 86 19–29. 10.1177/0008417418824871
    1. Skoura X., Vinter A., Papaxanthis C. (2009). Mentally simulated motor actions in children. Dev. Neuropsychol. 34 356–367. 10.1080/87565640902801874
    1. Souto D. O., Cruz T. K. F., Fontes P. L. B., Batista R. C., Haase V. G. (2020). Motor imagery development in children: Changes in speed and accuracy with increasing age. Front. Pediatr. 8:100. 10.3389/fped.2020.00100
    1. Spruijt S., van der Kamp J., Steenbergen B. (2015). Current insights in the development of children’s motor imagery ability. Front. Psychol. 6:787. 10.3389/fpsyg.2015.00787
    1. Suica Z., Platteau-Waldmeier P., Koppel S., Schmidt-Trucksaess A., Ettlin T., Schuster-Amft C. (2018). Motor imagery ability assessments in four disciplines: Protocol for a systematic review. BMJ Open 8:e023439. 10.1136/bmjopen-2018-023439
    1. Takazono P. S., Teixeira L. A., Takazono P. S., Teixeira L. A. (2018). Effect of association of imagery and physical practice on children’s motor learning. Rev. Brasil. Cineantropometria Desempenho Hum. 20 363–372. 10.5007/1980-0037.2018v20n5p363
    1. Wilson P. H., Adams I. L. J., Caeyenberghs K., Thomas P., Smits-Engelsman B., Steenbergen B. (2016). Motor imagery training enhances motor skill in children with DCD: A replication study. Res. Dev. Disabil. 57 54–62. 10.1016/j.ridd.2016.06.014
    1. Wilson P. H., Maruff P., Ives S., Currie J. (2001). Abnormalities of motor and praxis imagery in children with DCD. Hum. Mov. Sci. 20 135–159. 10.1016/S0167-9457(01)00032-X
    1. Wilson P. H., Thomas P. R., Maruff P. (2002). Motor imagery training ameliorates motor clumsiness in children. J. Child Neurol. 17 491–498. 10.1177/088307380201700704
    1. Yavari Kateb M., Gharayagh Zandi H., Moghadam Zadeh A. (2019). Psychometric analysis of Persian version of movement imagery questionnaire-children form (MIQ-C). Int. J. Motor Control Learn. 1 13–24. 10.29252/ijmcl.1.1.22

Source: PubMed

3
Abonnieren