Poor sleep and adolescent obesity risk: a narrative review of potential mechanisms

Kara M Duraccio, Kendra N Krietsch, Marie L Chardon, Tori R Van Dyk, Dean W Beebe, Kara M Duraccio, Kendra N Krietsch, Marie L Chardon, Tori R Van Dyk, Dean W Beebe

Abstract

Poor sleep is related to increased obesity risk in adolescents, though the mechanisms of this relationship are unclear. This paper presents a conceptual framework of the various pathways that have been proposed to drive this relationship. In this framework, increased food reward, emotional reactivity, decreased inhibitory control, metabolic disturbances, poorer dietary quality, and disrupted meal timings may increase the likelihood of increasing overall energy intake. This paper further notes how poor sleep increases sedentary behavior and screen time, which likely limits overall energy expenditure. The model posits that these mechanisms result in an imbalance of energy intake and expenditure following poor sleep, intensifying the overall risk for obesity. Increases in food reward processes, decreases in insulin sensitivity, disrupted meal timing, and increases in sedentary behavior seem to be the most compelling mechanisms linking poor sleep with increased obesity risk in adolescents. Future directions and clinical implications of this framework are discussed.

Keywords: diet; food reward; inhibitory control; obesity; sedentary behavior; sleep.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2019 Duraccio et al.

Figures

Figure 1
Figure 1
Potential mechanisms driving the relationship between poor sleep and increased obesity risk in adolescence.

References

    1. Centers for Disease Control and Prevention. Short sleep duration among US adults; 2014.
    1. Carskadon MA. Sleep in adolescents: the perfect storm. Pediatr Clin North Am. 2011;58(3):637–647. doi:10.1016/j.pcl.2011.03.003
    1. Crowley SJ, Wolfson AR, Tarokh L, Carskadon MA. An update on adolescent sleep: new evidence informing the perfect storm model. J Adolesc. 2018;67:55–65. doi:10.1016/j.adolescence.2018.06.001
    1. Miller MA, Kruisbrink M, Wallace J, Ji C, Cappuccio FP. Sleep duration and incidence of obesity in infants, children, and adolescents: a systematic review and meta-analysis of prospective studies. Sleep. 2018;41(4):zsy018. doi:10.1093/sleep/zsy024
    1. Sluggett L, Wagner SL, Harris RL. Sleep duration and obesity in children and adolescents. Can J Diabetes. 2019;43(2):146–152. doi:10.1016/j.jcjd.2018.06.006
    1. Krietsch KN, Chardon ML, Beebe DW, Janicke DM. Sleep and weight-related factors in youth: a systematic review of recent studies. Sleep Med Rev. 2019;46:87–96. doi:10.1016/j.smrv.2019.04.010
    1. Chen X, Beydoun MA, Wang Y. Is sleep duration associated with childhood obesity? A systematic review and meta-analysis. Obesity (Silver Spring). 2008;16(2):265–274. doi:10.1038/oby.2007.63
    1. Hart CN, Cairns A, Jelalian E. Sleep and obesity in children and adolescents. Pediatr Clin North Am. 2011;58(3):715–733. doi:10.1016/j.pcl.2011.03.007
    1. Lundahl A, Nelson TD. Sleep and food intake: a multisystem review of mechanisms in children and adults. J Health Psychol. 2015;20(6):794–805. doi:10.1177/1359105315573427
    1. Navarro-Solera M, Carrasco-Luna J, Pin-Arboledas G, Gonzalez-Carrascosa R, Soriano JM, Codoner-Franch P. Short sleep duration is related to emerging cardiovascular risk factors in obese children. J Pediatr Gastroenterol Nutr. 2015;61(5):571–576.
    1. Felso R, Lohner S, Hollody K, Erhardt E, Molnar D. Relationship between sleep duration and childhood obesity: systematic review including the potential underlying mechanisms. Nutr Metab Cardiovasc Dis. 2017;27(9):751–761. doi:10.1016/j.numecd.2017.07.008
    1. Cordova FV, Barja S, Brockmann PE. Consequences of short sleep duration on the dietary intake in children: a systematic review and metanalysis. Sleep Med Rev. 2018;42:68–84. doi:10.1016/j.smrv.2018.05.006
    1. Diamond A. The early development of executive functions. In: Bialystok E, Craik FIM, editors. Lifespan Cognition. New York, NY: Oxford University Press; 2006:70–95.
    1. Luna B, Padmanabhan A, O’Hearn K. What has fMRI told us about the development of cognitive control through adolescence? Brain Cogn. 2010;72(1):101–113. doi:10.1016/j.bandc.2009.08.005
    1. Alberga AS, Sigal RJ, Goldfield G, Prud’homme D, Kenny GP. Overweight and obese teenagers: why is adolescence a critical period? Pediatr Obes. 2012;7(4):261–273. doi:10.1111/j.2047-6310.2011.00046.x
    1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the united states, 2011–2012. JAMA. 2014;311(8):806–814. doi:10.1001/jama.2014.732
    1. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95–107. doi:10.1111/obr.12334
    1. Suchindran C, North KE, Popkin BM, Gordon-Larsen P. Association of adolescent obesity with risk of severe obesity in adulthood. Jama. 2010;304(18):2042–2047. doi:10.1001/jama.2010.1635
    1. Telzer EH, Fuligni AJ, Lieberman MD, Galvan A. The effects of poor quality sleep on brain function and risk taking in adolescence. Neuroimage. 2013;71:275–283. doi:10.1016/j.neuroimage.2013.01.025
    1. Hasler BP, Dahl RE, Holm SM, et al. Weekend-weekday advances in sleep timing are associated with altered reward-related brain function in healthy adolescents. Biol Psychol. 2012;91(3):334–341. doi:10.1016/j.biopsycho.2012.08.008
    1. Duraccio KM, Zaugg K, Jensen CD. Effects of sleep restriction on food-related inhibitory control and reward in adolescents. J Pediatr Psychol. 2019. doi:10.1093/jpepsy/jsz008
    1. Berridge KC, Ho CY, Richard JM, DiFeliceantonio AG. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 2010;1350:43–64. doi:10.1016/j.brainres.2010.04.003
    1. Simon SL, Field J, Miller LE, DiFrancesco M, Beebe DW. Sweet/dessert foods are more appealing to adolescents after sleep restriction. PLoS One. 2015;10(2):e0115434. doi:10.1371/journal.pone.0115434
    1. Asarnow LD, Greer SM, Walker MP, Harvey AG. The impact of sleep improvement on food choices in adolescents with late bedtimes. J Adolesc Health. 2017;60(5):570–576. doi:10.1016/j.jadohealth.2016.11.018
    1. Klingenberg L, Chaput JP, Holmback U, Jennum P, Astrup A, Sjodin A. Sleep restriction is not associated with a positive energy balance in adolescent boys. Am J Clin Nutr. 2012;96(2):240–248. doi:10.3945/ajcn.112.038638
    1. Epstein LH, Paluch RA, Carr KA, Temple JL, Bickel WK, MacKillop J. Reinforcing value and hypothetical behavioral economic demand for food and their relation to BMI. Eat Behav. 2018;29:120–127. doi:10.1016/j.eatbeh.2018.03.008
    1. Epstein LH, Dearing KK, Roba LG. A questionnaire approach to measuring the relative reinforcing efficacy of snack foods. Eat Behav. 2010;11(2):67–73. doi:10.1016/j.eatbeh.2009.09.006
    1. Short MA, Weber N. Sleep duration and risk-taking in adolescents: a systematic review and meta-analysis. Sleep Med Rev. 2018;41:185–196. doi:10.1016/j.smrv.2018.03.006
    1. Beebe DW. Cognitive, behavioral, and functional consequences of inadequate sleep in children and adolescents. Pediatr Clin North Am. 2011;58(3):649–665. doi:10.1016/j.pcl.2011.03.002
    1. Beebe DW, Field J, Milller MM, Miller LE, LeBlond E. Impact of multi-night experimentally induced short sleep on adolescent performance in a simulated classroom. Sleep. 2017;40:2. doi:10.1093/sleep/zsw035
    1. Baum KT, Desai A, Field J, Miller LE, Rausch J, Beebe DW. Sleep restriction worsens mood and emotion regulation in adolescents. J Child Psychol Psychiatry. 2014;55(2):180–190. doi:10.1111/jcpp.12125
    1. Becker SP, Epstein JN, Tamm L, et al. Shortened sleep duration causes sleepiness, inattention, and oppositionality in adolescents with attention-deficit/hyperactivity disorder: findings from a crossover sleep restriction/extension study. J Am Acad Child Adolesc Psychiatry. 2019;58(4):433–442. doi:10.1016/j.jaac.2018.09.439
    1. de Bruin EJ, Dewald-Kaufmann JF, Oort FJ, Bogels SM, Meijer AM. Differential effects of online insomnia treatment on executive functions in adolescents. Sleep Med. 2015;16(4):510–520. doi:10.1016/j.sleep.2014.12.009
    1. Blumfield ML, Bei B, Zimberg IZ, Cain SW. Dietary disinhibition mediates the relationship between poor sleep quality and body weight. Appetite. 2018;120:602–608. doi:10.1016/j.appet.2017.10.022
    1. Cedernaes J, Brandell J, Ros O, et al. Increased impulsivity in response to food cues after sleep loss in healthy young men. Obesity (Silver Spring). 2014;22(8):1786–1791. doi:10.1002/oby.20786
    1. Demos KE, Sweet LH, Hart CN, et al. The effects of experimental manipulation of sleep duration on neural response to food cues. Sleep. 2017;40(11):zsx125. doi:10.1093/sleep/zsx125
    1. Jensen CD, Duraccio KM, Barnett KA, et al. Sleep duration differentially affects brain activation in response to food images in adolescents with overweight/obesity compared to adolescents with normal weight. Sleep. 2019;42(4):zsz001. doi:10.1093/sleep/zsz001
    1. McGlinchey EL, Talbot LS, Chang KH, Kaplan KA, Dahl RE, Harvey AG. The effect of sleep deprivation on vocal expression of emotion in adolescents and adults. Sleep. 2011;34(9):1233–1241. doi:10.5665/SLEEP.1246
    1. Talbot LS, McGlinchey EL, Kaplan KA, Dahl RE, Harvey AG. Sleep deprivation in adolescents and adults: changes in affect. Emotion. 2010;10(6):831–841. doi:10.1037/a0020138
    1. Yoo SS, Gujar N, Hu P, Jolesz FA, Walker MP. The human emotional brain without sleep–a prefrontal amygdala disconnect. Curr Biol. 2007;17(20):R877–R878. doi:10.1016/j.cub.2007.09.008
    1. Aparicio E, Canals J, Voltas N, Valenzano A, Arija V. Emotional symptoms and dietary patterns in early adolescence: a school-based follow-up study. J Nutr Educ Behav. 2017;49(5):405–414.e401. doi:10.1016/j.jneb.2017.01.015
    1. Fulkerson JA, Sherwood NE, Perry CL, Neumark-Sztainer D, Story M. Depressive symptoms and adolescent eating and health behaviors: a multifaceted view in a population-based sample. Prev Med. 2004;38(6):865–875. doi:10.1016/j.ypmed.2003.12.028
    1. Gibson EL. Emotional influences on food choice: sensory, physiological and psychological pathways. Physiol Behav. 2006;89(1):53–61. doi:10.1016/j.physbeh.2006.01.024
    1. Jaaskelainen A, Nevanpera N, Remes J, Rahkonen F, Jarvelin MR, Laitinen J. Stress-related eating, obesity and associated behavioural traits in adolescents: a prospective population-based cohort study. BMC Public Health. 2014;14:321. doi:10.1186/1471-2458-14-321
    1. Farhangi MA. Night eating syndrome and its relationship with emotional eating, sleep quality and nutritional status among adolescents’ boys. Community Ment Health J. 2019. doi:10.1007/s10597-019-00395-8
    1. Demirci E. Non suicidal self-injury, emotional eating and insomnia after child sexual abuse: are those symptoms related to emotion regulation? J Forensic Leg Med. 2018;53:17–21. doi:10.1016/j.jflm.2017.10.012
    1. Ievers-Landis CE, Kneifel A, Giesel J, et al. Dietary intake and eating-related cognitions related to sleep among adolescents who are overweight or obese. J Pediatr Psychol. 2016;41(6):670–679. doi:10.1093/jpepsy/jsw017
    1. Chardon ML, Janicke DM, Carmody JK, Dumont-Driscoll MC. Youth internalizing symptoms, sleep-related problems, and disordered eating attitudes and behaviors: a moderated mediation analysis. Eat Behav. 2016;21:99–103. doi:10.1016/j.eatbeh.2016.01.007
    1. Kelly NR, Shomaker LB, Radin RM, et al. Associations of sleep duration and quality with disinhibited eating behaviors in adolescent girls at-risk for type 2 diabetes. Eat Behav. 2016;22:149–155. doi:10.1016/j.eatbeh.2016.06.019
    1. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21–34. doi:10.1111/j.1467-789X.2006.00270.x
    1. Al-Disi D, Al-Daghri N, Khanam L, et al. Subjective sleep duration and quality influence diet composition and circulating adipocytokines and ghrelin levels in teen-age girls. Endocr J. 2010;57(10):915–923.
    1. Boeke CE, Storfer-Isser A, Redline S, Taveras EM. Childhood sleep duration and quality in relation to leptin concentration in two cohort studies. Sleep. 2014;37(3):613–620. doi:10.5665/sleep.3510
    1. Li L, Fu J, Yu XT, et al. Sleep duration and cardiometabolic risk among chinese school-aged children: do adipokines play a mediating role? Sleep. 2017;40(5):zsx042. doi:10.1093/sleep/zsx042
    1. Kurtoglu S, Hatipoglu N, Mazicioglu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2(3):100–106. doi:10.4274/jcrpe.v2i3.100
    1. Templeman NM, Skovso S, Page MM, Lim GE, Johnson JD. A causal role for hyperinsulinemia in obesity. J Endocrinol. 2017;232(3):R173–R183. doi:10.1530/JOE-16-0449
    1. Moran A, Jacobs DR Jr, Steinberger J, et al. Insulin resistance during puberty: results from clamp studies in 357 children. Diabetes. 1999;48(10):2039–2044. doi:10.2337/diabetes.48.10.2039
    1. Kaar JL, Simon SL, Schmiege SJ, Nadeau KJ, Kelsey MM. Adolescent’s health behaviors and risk for insulin resistance: a review of the literature. Curr Diab Rep. 2017;17(7):49. doi:10.1007/s11892-017-0902-3
    1. De Bernardi Rodrigues AM, Da Silva Cde C, Vasques AC, et al. Association of sleep deprivation with reduction in insulin sensitivity as assessed by the hyperglycemic clamp technique in adolescents. JAMA Pediatr. 2016;170(5):487–494. doi:10.1001/jamapediatrics.2015.4365
    1. Dorenbos E, Rijks JM, Adam TC, Westerterp-Plantenga MS, Vreugdenhil AC. Sleep efficiency as a determinant of insulin sensitivity in overweight and obese adolescents. Diabetes Obes Metab. 2015;17(Suppl 1):90–98. doi:10.1111/dom.12515
    1. Klingenberg L, Chaput JP, Holmback U, et al. Acute sleep restriction reduces insulin sensitivity in adolescent boys. Sleep. 2013;36(7):1085–1090. doi:10.5665/sleep.2816
    1. Simon SL, Behn CD, Cree-Green M, et al. Too late and not enough: school year sleep duration, timing, and circadian misalignment are associated with reduced insulin sensitivity in adolescents with overweight/obesity. J Pediatr. 2019;205:257–264.e251. doi:10.1016/j.jpeds.2018.10.027
    1. Javaheri S, Storfer-Isser A, Rosen CL, Redline S. Association of short and long sleep durations with insulin sensitivity in adolescents. J Pediatr. 2011;158(4):617–623. doi:10.1016/j.jpeds.2010.09.080
    1. Hagen EW, Starke SJ, Peppard PE. The association between sleep duration and leptin, ghrelin, and adiponectin among children and adolescents. Curr Sleep Medi Rep. 2015;1(4):185–194. doi:10.1007/s40675-015-0025-9
    1. Golley RK, Maher CA, Matricciani L, Olds TS. Sleep duration or bedtime? Exploring the association between sleep timing behaviour, diet and BMI in children and adolescents. Int J Obes (Lond). 2013;37(4):546–551. doi:10.1038/ijo.2012.212
    1. Beebe DW, Simon S, Summer S, Hemmer S, Strotman D, Dolan LM. Dietary intake following experimentally restricted sleep in adolescents. Sleep. 2013;36(6):827–834. doi:10.5665/sleep.2704
    1. Beebe DW, Zhou A, Rausch J, Noe O, Simon SL. The impact of early bedtimes on adolescent caloric intake varies by chronotype. J Adolesc Health. 2015;57(1):120–122. doi:10.1016/j.jadohealth.2015.02.017
    1. Arora T, Taheri S. Associations among late chronotype, body mass index and dietary behaviors in young adolescents. Int J Obes (Lond). 2015;39(1):39–44. doi:10.1038/ijo.2014.157
    1. He F, Bixler EO, Berg A, et al. Habitual sleep variability, not sleep duration, is associated with caloric intake in adolescents. Sleep Med. 2015;16(7):856–861. doi:10.1016/j.sleep.2015.03.004
    1. He F, Bixler EO, Liao J, et al. Habitual sleep variability, mediated by nutrition intake, is associated with abdominal obesity in adolescents. Sleep Med. 2015;16(12):1489–1494. doi:10.1016/j.sleep.2015.07.028
    1. Sagala NJ, Sofyani S, Supriatmo S. Association between sleep quality and obesity in adolescents. Paediatr Indones. 2017;57(1):41–46. doi:10.14238/pi57.1.2017
    1. Al-Hazzaa HM, Musaiger AO, Abahussain NA, Al-Sobayel HI, Qahwaji DM. Lifestyle correlates of self-reported sleep duration among Saudi adolescents: a multicentre school-based cross-sectional study. Child Care Health Dev. 2014;40(4):533–542. doi:10.1111/cch.12051
    1. Kruger AK, Reither EN, Peppard PE, Krueger PM, Hale L. Do sleep-deprived adolescents make less-healthy food choices? Br J Nutr. 2014;111(10):1898–1904. doi:10.1017/S0007114514000130
    1. Ferranti R, Marventano S, Castellano S, et al. Sleep quality and duration is related with diet and obesity in young adolescent living in Sicily, Southern Italy. Sleep Sci. 2016;9(2):117–122. doi:10.1016/j.slsci.2016.04.003
    1. Honkala S, Behbehani JM, Honkala E. Daily consumption of sugary drinks and foods as a behavioural risk for health of adolescents in Kuwait. Oral Health Prev Dent. 2012;10(2):113–122.
    1. Stea TH, Knutsen T, Torstveit MK. Association between short time in bed, health-risk behaviors and poor academic achievement among Norwegian adolescents. Sleep Med. 2014;15(6):666–671. doi:10.1016/j.sleep.2014.01.019
    1. de Castro JM. When, how much and what foods are eaten are related to total daily food intake. Br J Nutr. 2009;102(8):1228–1237. doi:10.1017/S0007114509371640
    1. Al-Haifi AA, AlMajed HT, Al-Hazzaa HM, Musaiger AO, Arab MA, Hasan RA. Relative contribution of obesity, sedentary behaviors and dietary habits to sleep duration among Kuwaiti adolescents. Glob J Health Sci. 2015;8(1):107–117. doi:10.5539/gjhs.v8n1p107
    1. Gong QH, Li H, Zhang XH, Zhang T, Cui J, Xu GZ. Associations between sleep duration and physical activity and dietary behaviors in Chinese adolescents: results from the youth behavioral risk factor surveys of 2015. Sleep Med. 2017;37:168–173. doi:10.1016/j.sleep.2017.06.024
    1. Tambalis KD, Panagiotakos DB, Psarra G, Sidossis LS. Insufficient sleep duration is associated with dietary habits, screen time, and obesity in children. J Clin Sleep Med. 2018;14(10):1689–1696. doi:10.5664/jcsm.7374
    1. Wang M, Zhong JM, Wang H, et al. Breakfast consumption and its associations with health-related behaviors among school-aged adolescents: a cross-sectional study in Zhejiang Province, China. Int J Environ Res Public Health. 2016;13(8). doi:10.3390/ijerph13121252
    1. Rossbach S, Diederichs T, Nothlings U, Buyken AE, Alexy U. Relevance of chronotype for eating patterns in adolescents. Chronobiol Int. 2018;35(3):336–347. doi:10.1080/07420528.2017.1406493
    1. Boschloo A, Ouwehand C, Dekker S, et al. The relation between breakfast skipping and school performance in adolescents. Mind Brain Educ. 2012;6(2):81–88. doi:10.1111/j.1751-228X.2012.01138.x
    1. Otsuka Y, Kaneita Y, Itani O, et al. Association between unhealthy dietary behaviors and sleep disturbances among Japanese adolescents: a nationwide representative survey. Sleep Bio Rhythms. 2019;17(1):93–102. doi:10.1007/s41105-018-0193-3
    1. Nasim M, Saade M, AlBuhairan F. Sleep deprivation: prevalence and associated factors among adolescents in Saudi Arabia. Sleep Med. 2019;53:165–171. doi:10.1016/j.sleep.2018.08.031
    1. Cullen KW, Chen T-A. The contribution of the USDA school breakfast and lunch program meals to student daily dietary intake. Prev Med Rep. 2016;5:82–85. doi:10.1016/j.pmedr.2016.11.016
    1. Collings PJ, Wijndaele K, Corder K, et al. Magnitude and determinants of change in objectively-measured physical activity, sedentary time and sleep duration from ages 15 to 17.5y in UK adolescents: the ROOTS study. Int J Behav Nutr Phys Act. 2015;12:61. doi:10.1186/s12966-015-0222-4
    1. Hayes JF, Balantekin KN, Altman M, Wilfley DE, Taylor CB, Williams J. Sleep patterns and quality are associated with severity of obesity and weight-related behaviors in adolescents with overweight and obesity. Child Obes. 2018;14(1):11–17. doi:10.1089/chi.2017.0148
    1. Van Dyk TR, Krietsch KN, Saelens BE, Whitacre C, McAlister S, Beebe DW. Inducing more sleep on school nights reduces sedentary behavior without affecting physical activity in short-sleeping adolescents. Sleep Med. 2018;47:7–10. doi:10.1016/j.sleep.2018.03.007
    1. Steele MM, Richardson B, Daratha KB, Bindler RC. Multiple behavioral factors related to weight status in a sample of early adolescents: relationships of sleep, screen time, and physical activity. Child Health Care. 2012;41(4):269–280. doi:10.1080/02739615.2012.721721
    1. Lee J. Sleep duration’s association with diet, physical activity, mental status, and weight among Korean high school students. Asia Pac J Clin Nutr. 2017;26(5):906–913. doi:10.6133/apjcn.082016.04
    1. Bel S, Michels N, De Vriendt T, et al. Association between self-reported sleep duration and dietary quality in European adolescents. Br J Nutr. 2013;110(5):949–959. doi:10.1017/S0007114512006046
    1. Hancox RJ, Poulton R. Watching television is associated with childhood obesity: but is it clinically important? Int J Obes (Lond). 2006;30(1):171–175. doi:10.1038/sj.ijo.0803071
    1. National Sleep Foundation. 2014 sleep in America poll - sleep in the modern family: summary of findings; 2014; Available from: . Accessed July10, 2015.
    1. Carter B, Rees P, Hale L, Bhattacharjee D, Paradkar MS. Association between portable screen-based media device access or use and sleep outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2016;170(12):1202–1208. doi:10.1001/jamapediatrics.2016.2341
    1. Jun N, Lee A, Baik I. Associations of caffeinated beverage consumption and screen time with excessive daytime sleepiness in korean high school students. Clin Nutr Res. 2017;6(1):55–60. doi:10.7762/cnr.2017.6.1.55
    1. Drescher AA, Goodwin JL, Silva GE, Quan SF. Caffeine and screen time in adolescence: associations with short sleep and obesity. J Clin Sleep Med. 2011;7(4):337–342. doi:10.5664/JCSM.1182
    1. Garaulet M, Ortega FB, Ruiz JR, et al. Short sleep duration is associated with increased obesity markers in European adolescents: effect of physical activity and dietary habits. The HELENA study. Int J Obes (Lond). 2011;35(10):1308–1317. doi:10.1038/ijo.2011.149
    1. Paiva T, Gaspar T, Matos MG. Mutual relations between sleep deprivation, sleep stealers and risk behaviours in adolescents. Sleep Sci. 2016;9(1):7–13. doi:10.1016/j.slsci.2016.02.176
    1. Gamble AL, D’Rozario AL, Bartlett DJ, et al. Adolescent sleep patterns and night-time technology use: results of the Australian broadcasting corporation’s big sleep survey. PLoS One. 2014;9(11):e111700. doi:10.1371/journal.pone.0111700
    1. Polos PG, Bhat S, Gupta D, et al. The impact of Sleep Time-Related Information and Communication Technology (STRICT) on sleep patterns and daytime functioning in American adolescents. J Adolesc. 2015;44:232–244. doi:10.1016/j.adolescence.2015.08.002
    1. Children and parents: media use and attitudes report: 2013. Ofcom. Available from: . Published August 6, 2018. Accessed August 1, 2019.
    1. Toh SH, Howie EK, Coenen P, Straker LM. “From the moment I wake up I will use it … every day, very hour”: a qualitative study on the patterns of adolescents’ mobile touch screen device use from adolescent and parent perspectives. BMC Pediatr. 2019;19(1):30. doi:10.1186/s12887-019-1399-5
    1. Laposky AD, Van Cauter E, Diez-Roux AV. Reducing health disparities: the role of sleep deficiency and sleep disorders. Sleep Med. 2016;18:3–6. doi:10.1016/j.sleep.2015.01.007
    1. Guglielmo D, Gazmararian JA, Chung J, Rogers AE, Hale L. Racial/ethnic sleep disparities in US school-aged children and adolescents: a review of the literature. Sleep Health. 2018;4(1):68–80. doi:10.1016/j.sleh.2017.09.005
    1. Spruyt K, Alaribe CU, Nwabara OU. To sleep or not to sleep: a repeated daily challenge for African American children. CNS Neurosci Ther. 2015;21(1):23–31. doi:10.1111/cns.12319
    1. El-Sheikh M, Bagley EJ, Keiley M, Elmore-Staton L, Chen E, Buckhalt JA. Economic adversity and children’s sleep problems: multiple indicators and moderation of effects. Health Psychol. 2013;32(8):849–859. doi:10.1037/a0030413
    1. Hale L, Berger LM, LeBourgeois MK, Brooks-Gunn J. Social and demographic predictors of preschoolers’ bedtime routines. JDBP. 2009;30(5):394. doi:10.1097/DBP.0b013e3181b0f01b
    1. Wilson KE, Miller AL, Bonuck K, Lumeng JC, Chervin RD. Evaluation of a sleep education program for low-income preschool children and their families. Sleep. 2014;37(6):1117–1125. doi:10.5665/sleep.3774
    1. Keyes KM, Maslowsky J, Hamilton A, Schulenberg J. The great sleep recession: changes in sleep duration among US adolescents, 1991–2012. Pediatrics. 2015;135(3):460. doi:10.1542/peds.2014-1115
    1. Saelens BE, Sallis JF, Frank LD, et al. Obesogenic neighborhood environments, child and parent obesity: the neighborhood impact on kids study. Am J Prev Med. 2012;42(5):e57–e64. doi:10.1016/j.amepre.2011.10.013
    1. Rooney BL, Mathiason MA, Schauberger CW. Predictors of obesity in childhood, adolescence, and adulthood in a birth cohort. Matern Child Health J. 2011;15(8):1166–1175. doi:10.1007/s10995-010-0689-1
    1. Knutson KL. Sex differences in the association between sleep and body mass index in adolescents. J Pediatr. 2005;147(6):830–834. doi:10.1016/j.jpeds.2005.07.019
    1. Valrie CR, Bond K, Lutes LD, Carraway M, Collier DN. Relationship of sleep quality, baseline weight status, and weight-loss responsiveness in obese adolescents in an immersion treatment program. Sleep Med. 2015;16(3):432–434. doi:10.1016/j.sleep.2014.11.007
    1. Sallinen BJ, Hassan F, Olszewski A, et al. Longer weekly sleep duration predicts greater 3-month BMI reduction among obese adolescents attending a clinical multidisciplinary weight management program. Obes Facts. 2013;6(3):239–246. doi:10.1159/000351819
    1. Tan E, Healey D, Gray AR, Galland BC. Sleep hygiene intervention for youth aged 10 to 18 years with problematic sleep: a before-after pilot study. BMC Pediatr. 2012;12:189. doi:10.1186/1471-2431-12-34
    1. Minges KE, Redeker NS. Delayed school start times and adolescent sleep: a systematic review of the experimental evidence. Sleep Med Rev. 2016;28:86–95. doi:10.1016/j.smrv.2015.06.002
    1. Gariepy G, Janssen I, Sentenac M, Elgar FJ. School start time and the healthy weight of adolescents. J Adolesc Health. 2018;63(1):69–73. doi:10.1016/j.jadohealth.2018.01.009

Source: PubMed

3
Abonnieren