Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults

Tiffany L Weir, Daniel K Manter, Amy M Sheflin, Brittany A Barnett, Adam L Heuberger, Elizabeth P Ryan, Tiffany L Weir, Daniel K Manter, Amy M Sheflin, Brittany A Barnett, Adam L Heuberger, Elizabeth P Ryan

Abstract

In this study we used stool profiling to identify intestinal bacteria and metabolites that are differentially represented in humans with colorectal cancer (CRC) compared to healthy controls to identify how microbial functions may influence CRC development. Stool samples were collected from healthy adults (n = 10) and colorectal cancer patients (n = 11) prior to colon resection surgery at the University of Colorado Health-Poudre Valley Hospital in Fort Collins, CO. The V4 region of the 16s rRNA gene was pyrosequenced and both short chain fatty acids and global stool metabolites were extracted and analyzed utilizing Gas Chromatography-Mass Spectrometry (GC-MS). There were no significant differences in the overall microbial community structure associated with the disease state, but several bacterial genera, particularly butyrate-producing species, were under-represented in the CRC samples, while a mucin-degrading species, Akkermansia muciniphila, was about 4-fold higher in CRC (p<0.01). Proportionately higher amounts of butyrate were seen in stool of healthy individuals while relative concentrations of acetate were higher in stools of CRC patients. GC-MS profiling revealed higher concentrations of amino acids in stool samples from CRC patients and higher poly and monounsaturated fatty acids and ursodeoxycholic acid, a conjugated bile acid in stool samples from healthy adults (p<0.01). Correlative analysis between the combined datasets revealed some potential relationships between stool metabolites and certain bacterial species. These associations could provide insight into microbial functions occurring in a cancer environment and will help direct future mechanistic studies. Using integrated "omics" approaches may prove a useful tool in identifying functional groups of gastrointestinal bacteria and their associated metabolites as novel therapeutic and chemopreventive targets.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Using the 3% genetic distance,…
Figure 1. Using the 3% genetic distance, we observed no clustering of samples according to total stool microbial communities based on disease status of the sample donor using either the unweighted measure Jaccard similarity (A) or the weighted ThetaYC distance (B).
Figure 2. Phyla-level microbial classification of bacteria…
Figure 2. Phyla-level microbial classification of bacteria from individual stool samples.
H sample numbers indicate samples from healthy adults while the C designation signifies samples from colon cancer patients.
Figure 3. The relative proportion of bacterially-produced…
Figure 3. The relative proportion of bacterially-produced short chain fatty acids (SCFA) differed significantly between stool of healthy adults and individuals with CRC.
Acetic acid, valeric acid, isobutyric acid, and isovaleric acid concentrations were proportionately higher while the anti-proliferative SCFA, butyric acid was significantly lower.
Figure 4. OPLS-DA scores plot generated from…
Figure 4. OPLS-DA scores plot generated from global GC-MS profiles differentiate stool metabolites from CRC patients and healthy adults.
Figure 5. A heat map showing Pearson’s…
Figure 5. A heat map showing Pearson’s correlations between groups of metabolites and bacterial genera/species that significantly differed between CRC patients and healthy adults.
Green boxes indicate positive associations and red boxes indicate negative associations.

References

    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1131.
    1. Neish AS (2009) Microbes in Gastrointestinal Health and Disease. Gastroenterology 136: 65–80.
    1. Kelly D, Conway S, Aminov R (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends in Immunology 26: 326–333.
    1. Selgrad M, Malfertheiner P, Fini L, Goel A, Boland CR, et al. (2008) The role of viral and bacterial pathogens in gastrointestinal cancer. Journal of Cellular Physiology 216: 378–388.
    1. Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH, et al. (1979) Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 91: 560–562.
    1. Leport C, Bure J, Leport J, Vilde JL (1987) Incidence of colonic lesions in Streptococcus bovis and enterococcal endocarditis. Lancet 1: 748–749.
    1. Hill MJ, Drasar BS, Aries V, Crowther JS, Hawksworth G, et al. (1971) BACTERIA AND ÆTIOLOGY OF CANCER OF LARGE BOWEL. The Lancet 297: 95–100.
    1. Maclennan R, Jensen OM (1977) Dietary fibre, transit-time, faecal bacteria, steroids, and colon cancer in two Scandinavian populations. Report from the International Agency for Research on Cancer Intestinal Microecology Group. Lancet 2: 207–211.
    1. Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Applied and Environmental Microbiology 61: 3202–3207.
    1. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, et al. (2011) Microbial Dysbiosis in Colorectal Cancer (CRC) Patients. PLoS ONE 6: e16393.
    1. Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, et al. (2011) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research 22: 299–306.
    1. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, et al. (2011) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research 22: 292–298.
    1. Chen W, Liu F, Ling Z, Tong X, Xiang C (2012) Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE 7: e39743.
    1. Marchesi JR, Dutilh BE, Hall N, Peters WHM, Roelofs R, et al. (2011) Towards the Human Colorectal Cancer Microbiome. PLoS ONE 6: e20447.
    1. Huycke MM, Gaskins HR (2004) Commensal Bacteria, Redox Stress, and Colorectal Cancer: Mechanisms and Models. Experimental Biology and Medicine 229: 586–597.
    1. Nicholson JK, Lindon JC (2008) Systems biology: Metabonomics. Nature 455: 1054–1056.
    1. Nicholls AW, Mortishire-Smith RJ, Nicholson JK (2003) NMR Spectroscopic-Based Metabonomic Studies of Urinary Metabolite Variation in Acclimatizing Germ-Free Rats. Chemical Research in Toxicology 16: 1395–1404.
    1. Martin F-PJ, Sprenger N, Montoliu I, Rezzi S, Kochhar S, et al. (2010) Dietary Modulation of Gut Functional Ecology Studied by Fecal Metabonomics. Journal of Proteome Research 9: 5284–5295.
    1. Kinross J, Darzi A, Nicholson J (2011) Gut microbiome-host interactions in health and disease. Genome Medicine 3: 14.
    1. Jacobs DM, Deltimple N, van Velzen E, van Dorsten FA, Bingham M, et al. (2008) 1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR in Biomedicine 21: 615–626.
    1. Fierer N, Hamady M, Lauber CL, Knight R (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences 105: 17994–17999.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, et al. (2009) Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology 75: 7537–7541.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology 73: 5261–5267.
    1. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environmental Microbiology 12: 1889–1898.
    1. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry 78: 779–787.
    1. Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. Journal of the American Society for Mass Spectrometry 10: 770–781.
    1. Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, et al. (2008) Comparative Analysis of Human Gut Microbiota by Barcoded Pyrosequencing. PLoS ONE 3: e2836.
    1. Yue JC, Clayton MK (2005) A Similarity Measure Based on Species Proportions. Communications in Statistics - Theory and Methods 34: 2123–2131.
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 107: 14691–14696.
    1. Shen XJ, Rawls JF, Randall TA, Burcall L, Mpande C, et al. (2010) Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1: 138–147.
    1. Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, et al... (2011) Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives. Gut.
    1. Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, et al. (2010) Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria. Am J Gastroenterol 105: 2420–2428.
    1. Zella GC, Hait EJ, Glavan T, Gevers D, Ward DV, et al. (2011) Distinct microbiome in pouchitis compared to healthy pouches in ulcerative colitis and familial adenomatous polyposis. Inflammatory Bowel Diseases 17: 1092–1100.
    1. Byrd JC, Bresalier RS (2004) Mucins and mucin binding proteins in colorectal cancer: Colorectal Cancer. Cancer and Metastasis Reviews 23: 77–99.
    1. Deloménie C, Fouix S, Longuemaux S, Brahimi Nm, Bizet C, et al. (2001) Identification and Functional Characterization of Arylamine N-Acetyltransferases in Eubacteria: Evidence for Highly Selective Acetylation of 5-Aminosalicylic Acid. Journal of Bacteriology 183: 3417–3427.
    1. Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of Bacterial Communities in Feces from Healthy Elderly Volunteers and Hospitalized Elderly Patients by Using Real-Time PCR and Effects of Antibiotic Treatment on the Fecal Microbiota. Applied and Environmental Microbiology 70: 3575–3581.
    1. Sartor RB (2008) Therapeutic correction of bacterial dysbiosis discovered by molecular techniques. Proceedings of the National Academy of Sciences 105: 16413–16414.
    1. Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proceedings of the Nutrition Society 62: 107–115.
    1. Matthews GM, Howarth GS, Butler RN (2012) Short-Chain Fatty Acids Induce Apoptosis in Colon Cancer Cells Associated with Changes to Intracellular Redox State and Glucose Metabolism. Chemotherapy 58: 102–109.
    1. Weaver GA, Krause JA, Miller TL, Wolin MJ (1988) Short chain fatty acid distributions of enema samples from a sigmoidoscopy population: an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29: 1539–1543.
    1. Sato K, Tsuchihara K, Fujii S, Sugiyama M, Goya T, et al. (2007) Autophagy Is Activated in Colorectal Cancer Cells and Contributes to the Tolerance to Nutrient Deprivation. Cancer Research 67: 9677–9684.
    1. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, et al. (2009) Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry. Cancer Research 69: 4918–4925.
    1. Monleón D, Morales JM, Barrasa A, López JA, Vázquez C, et al. (2009) Metabolite profiling of fecal water extracts from human colorectal cancer. NMR in Biomedicine 22: 342–348.
    1. Byrd J, Bresalier R (2004) Mucins and mucin binding proteins in colorectal cancer. Cancer and Metastasis Reviews 23: 77–99.
    1. Akare S, Jean-Louis S, Chen W, Wood DJ, Powell AA, et al. (2006) Ursodeoxycholic acid modulates histone acetylation and induces differentiation and senescence. International Journal of Cancer 119: 2958–2969.
    1. Lepercq P, Gérard P, Béguet F, Grill J-P, Relano P, et al. (2011) Isolates from Normal Human Intestinal Flora but not Lactic Acid Bacteria Exhibit 7a- and b- Hydroxysteroid Dehydrogenase Activities. Microbial Ecology in Health and Disease 16: 1651–2235.
    1. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE (2012) A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Micro 10: 575–582.

Source: PubMed

3
Abonnieren