From Acupuncture to Interaction between δ-Opioid Receptors and Na (+) Channels: A Potential Pathway to Inhibit Epileptic Hyperexcitability

Dongman Chao, Xueyong Shen, Ying Xia, Dongman Chao, Xueyong Shen, Ying Xia

Abstract

Epilepsy is one of the most common neurological disorders affecting about 1% of population. Although the precise mechanism of its pathophysiological changes in the brain is unknown, epilepsy has been recognized as a disorder of brain excitability characterized by recurrent unprovoked seizures that result from the abnormal, excessive, and synchronous activity of clusters of nerve cells in the brain. Currently available therapies, including medical, surgical, and other strategies, such as ketogenic diet and vagus nerve stimulation, are symptomatic with their own limitations and complications. Seeking new strategies to cure this serious disorder still poses a big challenge to the field of medicine. Our recent studies suggest that acupuncture may exert its antiepileptic effects by normalizing the disrupted neuronal and network excitability through several mechanisms, including lowering the overexcited neuronal activity, enhancing the inhibitory system, and attenuating the excitatory system in the brain via regulation of the interaction between δ -opioid receptors (DOR) and Na(+) channels. This paper reviews the progress in this field and summarizes new knowledge based on our work and those of others.

Figures

Figure 1
Figure 1
Schematic demonstration of the potential relation between acupuncture, opioid, and Na+ channels in the regulation of brain hyperexcitability and epileptic seizures. Acupuncture can regulate the levels of endogenous opioids and their receptors in the brain. The released opioids activate δ-opioid receptors, and Na+ channels are inhibited by activated δ-opioid receptors via signaling molecules such as PKC. Thus the neuronal discharges are inhibited and overexcited brain is “cooled” leading to the termination of epilepsy.

References

    1. Chao D, Xia Y. Acupuncture treatment of epilepsy. In: Xia Y, Ding G, Wu GC, editors. Current Research in Acupuncture. New York, Heidelberg, Dordrecht, London, USA: Springer; 2012. pp. 129–214.
    1. Errington AC, Stöhr T, Lees G. Voltage gated ion channels: targets for anticonvulsant drugs. Current Topics in Medicinal Chemistry. 2005;5(1):15–30.
    1. Kong J, Gollub R, Huang T, et al. Acupuncture de qi, from qualitative history to quantitative measurement. Journal of Alternative and Complementary Medicine. 2007;13(10):1059–1070.
    1. Mao JJ, Farrar JT, Armstrong K, Donahue A, Ngo J, Bowman MA. De qi: Chinese acupuncture patients’ experiences and beliefs regarding acupuncture needling sensation—an exploratory survey. Acupuncture in Medicine. 2007;25(4):158–165.
    1. NIH Consensus Development Panel on Acupuncture. Acupuncture. The Journal of the American Medical Association. 1998;280(17):1518–1524.
    1. Jindal V, Ge A, Mansky PJ. Safety and efficacy of acupuncture in children: a review of the evidence. Journal of Pediatric Hematology/Oncology. 2008;30(6):431–442.
    1. Wu Y, Zou LP, Han TL, et al. Randomized controlled trial of traditional Chinese medicine (acupuncture and Tuina) in cerebral palsy—part 1: any increase in seizure in integrated acupuncture and rehabilitation group versus rehabilitation group? Journal of Alternative and Complementary Medicine. 2008;14(8):1005–1009.
    1. Chao DM, Shen LL, Tjen-A-Looi S, Pitsillides KF, Li P, Longhurst JC. Naloxone reverses inhibitory effect of electroacupuncture on sympathetic cardiovascular reflex responses. American Journal of Physiology. 1999;276(6):H2127–H2134.
    1. Han JS. Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends in Neurosciences. 2003;26(1):17–22.
    1. Wang SM, Kain ZN, White P. Acupuncture analgesia: I. The scientific basis. Anesthesia and Analgesia. 2008;106(2):602–610.
    1. Wen G, Yang Y, Lu Y, Xia Y. Acupuncture-induced activation of endogenous opioid system. In: Xia Y, Cao XD, Wu GC, Cheng JS, editors. Acupuncture Therapy for Neurological Diseases: A Neurobiological View. Beijing, Heidelberg, London, New York, NY, USA: Springer-Tsinghua Press; 2010. pp. 104–119.
    1. Wen G, He X, Lu Y, Xia Y. Effect of acupuncture on neurotransmitters/modulators. In: Xia Y, Cao XD, Wu GC, Cheng JS, editors. Acupuncture Therapy for Neurological Diseases: A Neurobiological View. Beijing, Heidelberg, London, New York, NY, USA: Springer-Tsinghua Press; 2010. pp. 120–142.
    1. Liang J, Xia Y. Acupuncture Modulation of central neurotransmitters. In: Xia Y, Ding G, Wu GC, editors. Current Research in Acupuncture. New York, NY, USA: Springer; 2012. pp. 1–36.
    1. Zhao P, Guo JC, Hong SS, Bazzy-Asaad A, Cheng JS, Xia Y. Electro-acupuncture and brain protection from cerebral ischemia: the role of delta-opioid receptor. Society for Neuroscience Abstract. 2002;28:p. 736.
    1. Tian XS, Zhou F, Yang R, Xia Y, Wu GC, Guo JC. Electroacupuncture protects the brain against acute ischemic injury via up-regulation of delta-opioid receptor in rats. Zhong Xi Yi Jie He Xue Bao. 2008;6(6):632–638.
    1. Kang X, Chao D, Gu Q, et al. δ-opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cellular and Molecular Life Sciences. 2009;66(21):3505–3516.
    1. Chattopadhyay M, Mata M, Fink DJ. Continuous δ-opioid receptor activation reduces neuronal voltage-gated sodium channel (NaV1.7) levels through activation of protein kinase C in painful diabetic neuropathy. Journal of Neuroscience. 2008;28(26):6652–6658.
    1. Chao D, Bazzy-Asaad A, Balboni G, Xia Y. δ-, but not μ-, opioid receptor stabilizes K+ homeostasis by reducing Ca2+ influx in the cortex during acute hypoxia. Journal of Cellular Physiology. 2007;212(1):60–67.
    1. Chao D, Donnelly DF, Feng Y, Bazzy-Asaad A, Xia Y. Cortical δ-opioid receptors potentiate K+ homeostasis during anoxia and oxygen-glucose deprivation. Journal of Cerebral Blood Flow and Metabolism. 2007;27(2):356–368.
    1. Chao D, Bazzy-Asaad A, Balboni G, Salvadori S, Xia Y. Activation of DOR attenuates anoxic K+ derangement via inhibition of Na+ entry in mouse cortex. Cerebral Cortex. 2008;18(9):2217–2227.
    1. Chao D, Balboni G, Lazarus LH, Salvadori S, Xia Y. Na+ mechanism of δ-opioid receptor induced protection from anoxic K+ leakage in the cortex. Cellular and Molecular Life Sciences. 2009;66(6):1105–1115.
    1. Chao D, He X, Yang Y, et al. DOR activation inhibits anoxic/ischemic Na+ influx through Na+ channels via PKC mechanisms in the cortex. Experimental Neurology. 2012;236(2):228–239.
    1. Xia Y, Fung ML, O’Reilly JP, Haddad GG. Increased neuronal excitability after long-term O2 deprivation is mediated mainly by sodium channels. Molecular Brain Research. 2000;76(2):211–219.
    1. Xia Y, Zhao P, Xue J, et al. Na+ channel expression and neuronal function in the Na+/H+ exchanger 1 null mutant mouse. Journal of Neurophysiology. 2003;89(1):229–236.
    1. Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Currents. 2007;7(1):15–22.
    1. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. The Lancet Neurology. 2010;9(4):413–424.
    1. Aghakhani Y, Bagshaw AP, Bénar CG, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain. 2004;127(5):1127–1144.
    1. Berman R, Negishi M, Vestal M, et al. Simultaneous EEG, fMRI, and behavior in typical childhood absence seizures. Epilepsia. 2010;51(10):2011–2022.
    1. Moeller F, Muhle H, Wiegand G, Wolff S, Stephani U, Siniatchkin M. EEG-fMRI study of generalized spike and wave discharges without transitory cognitive impairment. Epilepsy and Behavior. 2010;18(3):313–316.
    1. Szaflarski JP, DiFrancesco M, Hirschauer T, et al. Cortical and subcortical contributions to absence seizure onset examined with EEG/fMRI. Epilepsy and Behavior. 2010;18(4):404–413.
    1. Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Human Brain Mapping. 2010;31(12):1851–1861.
    1. Bragin A, Wilson CL, Engel J., Jr. Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia. 2000;41(supplement 6):S144–S152.
    1. Williams PA, Dou P, Dudek FE. Epilepsy and synaptic reorganization in a perinatal rat model of hypoxia-ischemia. Epilepsia. 2004;45(10):1210–1218.
    1. Morgan RJ, Soltesz I. Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(16):6179–6184.
    1. Bean BP. The action potential in mammalian central neurons. Nature Reviews Neuroscience. 2007;8(6):451–465.
    1. Chen KY, Chen GP, Feng X. Observation of immediate effect of acupuncture on electroencephalograms in epileptic patients. Journal of Traditional Chinese Medicine. 1983;3(2):121–124.
    1. Shi ZY, Gong BT, Jia YW, Huo ZX. The efficacy of electro-acupuncture on 98 cases of epilepsy. Journal of Traditional Chinese Medicine. 1987;7(1):21–22.
    1. Yang J. Treatment of status epilepticus with acupuncture. Journal of Traditional Chinese Medicine. 1990;10(2):101–102.
    1. Wen T. Treatment of 78 cases of epilepsy in narcotic abstaining. Zhongguo Zhen Jiu. 2000;20(4):p. 226.
    1. Deng YJ, Wang JJ, Lin YP, Liu WY, Wang LH. Clinical observation on treatment of epilepsy general tonic-clonic attack with catgut implantation at acupoint plus antiepileptic Western Medicine of small dose. Zhongguo Zhen Jiu. 2001;21(5):271–273.
    1. Lin J, Deng QP, Zhang JW. Observation on therapeutic effect of 160 cases of epilepsy treated with acupoint catgut embedding therapy. Zhongguo Zhen Jiu. 2001;21(11):653–654.
    1. Wang JC. One hundred and twenty cases of epilepsy treated by three acupoints on back. Shanghai Zhen Jiu Za Zhi. 2001;20(2):p. 20.
    1. Ma R, Zhang X, Liu Y, Li X, Yang C, Xiong J. Clinical observation on treatment of tonoclonic attack of infantile epilepsy with acupuncture plus Xi Feng capsule. Journal of Traditional Chinese Medicine. 2001;42(5):276–278.
    1. Mao KY, Guo Z. Observations on the efficacy of combined acupuncture and medicine for treating epilepsy secondary to cerebral infarction. Shanghai Zhen Jiu Za Zhi. 2005;24(6):17–18.
    1. Zhang J, Li YZ, Zhuang LX. Observation on therapeutic effect of 90 tonic-clonic epilepsy patients treated by catgut implantation therapy. Zhen Jiu Lin Chuang Za Zhi. 2006;22(6):8–10.
    1. Zhuang LX, Zhang J, Li YZ. Clinical observation on catgut implantation at acupoint for treatment of general paroxysmal epilepsy. Zhongguo Zhen Jiu. 2006;26(9):611–613.
    1. Ren Y. Acupuncture treatment of Jacksonian epilepsy—a report of 98 cases. Journal of Traditional Chinese Medicine. 2006;26(3):177–178.
    1. Xu ZF. Clinical observation on treatment of epileptic seizure by combined catgut embedding and herbal medicine. Shanghai Zhen Jiu Za Zhi. 2006;25(12):13–14.
    1. Song YP, Yang W, Guo HM, Han YY. Clinical observation on acupuncture combined with medicine for treatment of infantile febrile convulsion. Zhongguo Zhen Jiu. 2006;26(8):561–562.
    1. Yang R, Cheng JS. Effect of acupuncture on epilepsy. In: Xia Y, Cao XD, Wu GC, Cheng JS, editors. Acupuncture Therapy for Neurological Diseases: A Neurobiological View. Beijing, Heidelberg, London, New York: Springer-Tsinghua Press; 2010. pp. 326–364.
    1. Lai CW, Lai YHC. History of epilepsy in Chinese traditional medicine. Epilepsia. 1991;32(3):299–302.
    1. Chao DM, Chen G, Cheng JS. Melatonin might be one possible medium of electroacupuncture anti-seizures. Acupuncture and Electro-Therapeutics Research. 2001;26(1-2):39–48.
    1. Guo J, Liu J, Fu W, et al. The effect of electroacupuncture on spontaneous recurrent seizure and expression of GAD67 mRNA in dentate gyrus in a rat model of epilepsy. Brain Research. 2008;1188(1):165–172.
    1. Guo J, Liu J, Fu W, et al. Effect of electroacupuncture stimulation of hindlimb on seizure incidence and supragranular mossy fiber sprouting in a rat model of epilepsy. The Journal of Physiological Sciences. 2008;58(5):309–315.
    1. Kang XZ, Xia Y. Effect of electroacupuncture on experimental epilepsy: roles of different acupoints and stimulation parameters. Journal of Acupuncture and Tuina Science. 2008;6(5):279–280.
    1. Kim ST, Jeon S, Park HJ, et al. Acupuncture inhibits kainic acid-induced hippocampal cell death in mice. The Journal of Physiological Sciences. 2008;58(1):31–38.
    1. Zhang JL, Zhang SP, Zhang HQ. Antiepileptic effect of electroacupuncture vs. vagus nerve stimulation in the rat thalamus. Neuroscience Letters. 2008;441(2):183–187.
    1. Zhang JL, Zhang SP, Zhang HQ. Antiepileptic effects of electroacupuncture vs vagus nerve stimulation on cortical epileptiform activities. Journal of the Neurological Sciences. 2008;270(1-2):114–121.
    1. Goiz-Marquez G, Caballero S, Solis H, Rodriguez C, Sumano H. Electroencephalographic evaluation of gold wire implants inserted in acupuncture points in dogs with epileptic seizures. Research in Veterinary Science. 2009;86(1):152–161.
    1. Kang X, Shen X, Xia Y. Electroacupuncture-induced attenuation of experimental epilepsy: comparative evaluation of acupoints and stimulation parameters. Evidence-Based Complementary and Alternative Medicine. In press.
    1. Kloster R, Larsson PG, Lossius R, et al. The effect of acupuncture in chronic intractable epilepsy. Seizure. 1999;8(3):170–174.
    1. Xia Y, Guo XQ, Zhang AZ, Cao XD, Li P. Inhibitory effect of analogous electro-acupuncture on experimental arrhythmia. Acupuncture and Electro-Therapeutics Research. 1985;10(1-2):13–34.
    1. Wu DZ, Ma JY, Li WJ. Inhibitory effect of electro-acupuncture on penicillin-induced cortical epileptiform discharges. Sheng Li Xue Bao. 1986;38(3):325–331.
    1. Wu D. Mechanism of acupuncture in suppressing epileptic seizures. Journal of Traditional Chinese Medicine. 1992;12(3):187–192.
    1. Gao HM, Cheng JS. Role of intrahippocampal kappa opioid receptors in inhibiting the seizure by electroacupuncture (EA) in rats. Zhen Ci Yan Jiu. 1998;23(2):122–125.
    1. Yuan H, Han JS. Electroacupuncture accelerates the biogenesis of central enkephalins in the rat. Sheng Li Xue Bao. 1985;37(3):265–273.
    1. Wang BE, Cheng JS. The relationship between dynorphon and acupuncture anticonvulsion in hippocampus. Chinese Science Bulletin. 1992;37(13):1321–1323.
    1. Wang BE, Cheng JS. Alteration of dynorphin and leu-enkephalin in rat hippocampus during seizure and electroacupuncture. Zhongguo Yao Li Xue Bao. 1994;15(2):155–157.
    1. Wang BE, Cheng JS. Release of hippocampal dynorphin during electro-stimulated seizure and acupuncture anti-convulsion. Shanghai Zhen Jiu Za Zhi. 1995;14(1):33–34.
    1. Wang BE, Yang R, Cheng JS. Effect of electroacupuncture on the level of preproenkephalin mRNA in rat during penicillin-induced epilepsy. Acupuncture and Electro-Therapeutics Research. 1994;19(2-3):129–140.
    1. He XP, Chen BY, Zhu JM, Cao XD. Change of Leu-enkephalin- and B-endorphin-like immunoreactivity in the hippocampus after electroconvulsive shock and electroacupuncture. Acupuncture and Electro-Therapeutics Research. 1989;14(2):131–139.
    1. He XP, Cao XD. Effects of intrahippocampal δ-receptors on inhibition of electroconvulsive shock by electro-acupuncture. Zhongguo Yao Li Xue Bao. 1989;10(3):197–201.
    1. He XP, Zhu JM, Huang DK, Li KY, Cao XD. Effect of electroacupuncture on electro-convulsive shock—an autoradiographic study for opioid receptors. Sheng Li Xue Bao. 1990;42(2):149–154.
    1. Camilo O, Goldstein LB. Seizures and epilepsy after ischemic stroke. Stroke. 2004;35(7):1769–1775.
    1. Rocha L, Cuellar-Herrera M, Velasco M, et al. Opioid receptor binding in parahippocampus of patients with temporal lobe epilepsy: its association with the antiepileptic effects of subacute electrical stimulation. Seizure. 2007;16(7):645–652.
    1. Raynor K, Kong H, Chen Y, et al. Pharmacological characterization of the cloned κ-, δ-, and μ-opioid receptors. Molecular Pharmacology. 1994;45(2):330–334.
    1. Witkowski G, Szulczyk P. Opioid μ receptor activation inhibits sodium currents in prefrontal cortical neurons via a protein kinase A- and C-dependent mechanism. Brain Research. 2006;1094(1):92–106.
    1. Zhao P, Ma MC, Qian H, Xia Y. Down-regulation of delta-opioid receptors in Na+/H+ exchanger 1 null mutant mouse brain with epilepsy. Neuroscience Research. 2005;53(4):442–446.
    1. Xia Y, Cao H, Zhang JH, et al. Effect of δ-opioid receptor activation on Na+ channel expression in cortical neurons subjected to prolonged hypoxia in culture. Society Neuroscience Abstract. 2001;27, article 381 Program no. 740.6.
    1. Remy C, Remy S, Beck H, Swandulla D, Hans M. Modulation of voltage-dependent sodium channels by the δ-agonist SNC80 in acutely isolated rat hippocampal neurons. Neuropharmacology. 2004;47(7):1102–1112.
    1. Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Progress in Neurobiology. 2010;90(4):439–470.
    1. Gold MS, Levine JD. DAMGO inhibits prostaglandin E2-induced potentiation of a TTX- resistant Na+ current in rat sensory neurons in vitro. Neuroscience Letters. 1996;212(2):83–86.
    1. Su X, Joshi SK, Kardos S, Gebhart GF. Sodium channel blocking actions of the κ-opioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. Journal of Neurophysiology. 2002;87(3):1271–1279.
    1. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26(1):13–25.
    1. Goldin AL. Resurgence of sodium channel research. Annual Review of Physiology. 2001;63:871–894.
    1. Ragsdale DS. How do mutant Nav1.1 sodium channels cause epilepsy? Brain Research Reviews. 2008;58(1):149–159.
    1. Escayg A, Goldin AL. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia. 2010;51(9):1650–1658.
    1. Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. Journal of Physiology. 2010;588(11):1849–1859.
    1. Meisler MH, O’Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. Journal of Physiology. 2010;588(11):1841–1848.
    1. Cheah CS, Yu FH, Westenbrook RE, et al. Specific deletion of Nav1. 1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(36):14646–14651.
    1. Armijo JA, Shushtarian M, Valdizan EM, Cuadrado A, de las Cuevas I, Adín J. Ion channels and epilepsy. Current Pharmaceutical Design. 2005;11(15):1975–2003.
    1. Sashihara S, Yanagihara N, Kobayashi H, et al. Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible E1 mice. Neuroscience. 1992;48(2):285–291.
    1. Guo F, Yu N, Cai JQ, et al. Voltage-gated sodium channel Nav1.1, Nav1.3 and β1 subunit were up-regulated in the hippocampus of spontaneously epileptic rat. Brain Research Bulletin. 2008;75(1):179–187.
    1. Gu XQ, Yao H, Haddad GG. Increased neuronal excitability and seizures in the Na+/H+ exchanger null mutant mouse. American Journal of Physiology. 2001;281(2):C496–C503.
    1. Blumenfeld H, Lampert A, Klein JP, et al. Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia. 2009;50(1):44–55.
    1. Hargus NJ, Merrick EC, Nigam A, et al. Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. Neurobiology of Disease. 2011;41(2):361–376.
    1. Bartolomei F, Gastaldi M, Massacrier A, Planells R, Nicolas S, Cau P. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. Journal of Neurocytology. 1997;26(10):667–678.
    1. Aronica E, Yankaya B, Troost D, van Vliet EA, Lopes da Silva FH, Gorter JA. Induction of neonatal-sodium channel II and III (α-isoform mRNAs in neurons and microglia after status epilepticus in the rat hippocampus. European Journal of Neuroscience. 2001;13(6):1261–1266.
    1. Ellerkmann RK, Remy S, Chen J, et al. Molecular and functional changes in voltage-dependent Na+ channels following pilocarpine-induced status epilepticus in rat dentate granule cells. Neuroscience. 2003;119(2):323–333.
    1. Toib A, Lyakhov V, Marom S. Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. Journal of Neuroscience. 1998;18(5):1893–1903.
    1. Chen C, Bharucha V, Chen Y, et al. Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel β2-subunits. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(26):17072–17077.
    1. Aman TK, Grieco-Calub TM, Chen C, et al. Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels. Journal of Neuroscience. 2009;29(7):2027–2042.
    1. Whitaker WRJ, Faull RLM, Dragunow M, Mee EW, Emson PC, Clare JJ. Changes in the mRNAs encoding voltage-gated sodium channel types II and III in human epileptic hippocampus. Neuroscience. 2001;106(2):275–285.
    1. Gorter JA, Zurolo E, Iyer A, et al. Induction of sodium channel Nax (SCN7A) expression in rat and human hippocampus in temporal lobe epilepsy. Epilepsia. 2010;51(9):1791–1800.
    1. Vreugdenhil M, Faas GC, Wadman WJ. Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis. Neuroscience. 1998;86(1):99–107.
    1. Ketelaars SOM, Gorter JA, van Vliet EA, Lopes da Silva FH, Wadman WJ. Sodium currents in isolated rat CA1 pyramidal and dentate granule neurones in the post-status epilepticus model of epilepsy. Neuroscience. 2001;105(1):109–120.
    1. Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL., Jr. Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(30):11147–11152.
    1. Epsztein J, Sola E, Represa A, Ben-Ari Y, Crépel V. A selective interplay between aberrant EPSPKA and I NaP reduces spike timing precision in dentate granule cells of epileptic rats. Cerebral Cortex. 2010;20(4):898–911.
    1. Lossin C. A catalog of SCN1A variants. Brain and Development. 2009;31(2):114–130.
    1. Bechi G, Scalmani P, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. Pure haploinsufficiency for Dravet syndrome Na(V)1. 1 (SCN1A) sodium channel truncating mutations. Epilepsia. 2012;53(1):87–100.
    1. Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nature Neuroscience. 2006;9(9):1142–1149.
    1. Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. Journal of Neuroscience. 2007;27(41):11065–11074.
    1. Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. Journal of Neuroscience. 2007;27(22):5903–5914.
    1. Ohno Y, Sofue N, Ishihara S, Mashimo T, Sasa M, Serikawa T. Scn1a missense mutation impairs GABAA receptor-mediated synaptic transmission in the hippocampus. Biochemical and Biophysical Research Communications. 2010;400(1):117–122.
    1. Tortella FC, Long JB. Endogenous anticonvulsant substance in rat cerebrospinal fluid after a generalized seizure. Science. 1985;228(4703):1106–1108.
    1. Tortella FC, Echevarria E, Robles L, Mosberg HI, Holaday JW. Anticonvulsant effects of mu (DAGO) and delta (DPDPE) enkephalins in rats. Peptides. 1988;9(5):1177–1181.
    1. Koide S, Onishi H, Yamagami S, Kawakita Y. Effects of morphine and D-Ala2-D-Leu5-enkephalin in the seizure- susceptible El mouse. Neurochemical Research. 1992;17(8):779–783.
    1. Madar I, Lesser RP, Krauss G, et al. Imaging of δ- and μ-opioid receptors in temporal lobe epilepsy by positron emission tomography. Annals of Neurology. 1997;41(3):358–367.
    1. Danielsson I, Gasior M, Stevenson GW, Folk JE, Rice KC, Negus SS. Electroencephalographic and convulsant effects of the delta opioid agonist SNC80 in rhesus monkeys. Pharmacology Biochemistry and Behavior. 2006;85(2):428–434.
    1. Jutkiewicz EM, Baladi MG, Folk JE, Rice KC, Woods JH. The convulsive and electroencephalographic changes produced by nonpeptidic δ-opioid agonists in rats: comparison with pentylenetetrazol. Journal of Pharmacology and Experimental Therapeutics. 2006;317(3):1337–1348.
    1. Negus SS, Gatch MB, Mello NK, Zhang X, Rice K. Behavioral effects of the delta-selective opioid agonist SNC80 and related compounds in rhesus monkeys. Journal of Pharmacology and Experimental Therapeutics. 1998;286(1):362–375.
    1. Jutkiewicz EM, Rice KC, Traynor JR, Woods JH. Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology. 2005;182(4):588–596.
    1. Bausch SB, Garland JP, Yamada J. The delta opioid receptor agonist, SNC80, has complex, dose-dependent effects on pilocarpine-induced seizures in Sprague-Dawley rats. Brain Research. 2005;1045(1-2):38–44.
    1. Rezaï X, Faget L, Bednarek E, Schwab Y, Kieffer BL, Massotte D. Mouse delta opioid receptors are located on presynaptic afferents to hippocampal pyramidal cells. Cellular and Molecular Neurobiology. 2012;32(4):509–516.
    1. Erbs E, Faget L, Scherrer G, et al. Distribution of delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2012;221:203–213.
    1. Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. International Review of Neurobiology. 1996;39:145–196.
    1. Drake CT, Chavkin C, Milner TA. Opioid systems in the dentate gyrus. Progress in Brain Research. 2007;163:245–263.
    1. Hui KKS, Marina O, Liu J, Rosen BR, Kwong KK. Acupuncture, the limbic system, and the anticorrelated networks of the brain. Autonomic Neuroscience: Basic and Clinical. 2010;157(1-2):81–90.

Source: PubMed

3
Abonnieren