The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial

Gisèle Pickering, Adrian Kastler, Nicolas Macian, Bruno Pereira, Romain Valabrègue, Stéphane Lehericy, Louis Boyer, Claude Dubray, Betty Jean, Gisèle Pickering, Adrian Kastler, Nicolas Macian, Bruno Pereira, Romain Valabrègue, Stéphane Lehericy, Louis Boyer, Claude Dubray, Betty Jean

Abstract

Background: Paracetamol's (APAP) mechanism of action suggests the implication of supraspinal structures but no neuroimaging study has been performed in humans.

Methods and results: This randomized, double-blind, crossover, placebo-controlled trial in 17 healthy volunteers (NCT01562704) aimed to evaluate how APAP modulates pain-evoked functional magnetic resonance imaging signals. We used behavioral measures and functional magnetic resonance imaging to investigate the response to experimental thermal stimuli with APAP or placebo administration. Region-of-interest analysis revealed that activity in response to noxious stimulation diminished with APAP compared to placebo in prefrontal cortices, insula, thalami, anterior cingulate cortex, and periaqueductal gray matter.

Conclusion: These findings suggest an inhibitory effect of APAP on spinothalamic tracts leading to a decreased activation of higher structures, and a top-down influence on descending inhibition. Further binding and connectivity studies are needed to evaluate how APAP modulates pain, especially in the context of repeated administration to patients with pain.

Keywords: fMRI; nociception; pain; paracetamol; pharmacology.

Figures

Figure 1
Figure 1
Chronology of the study. Notes: PT: determination of pain threshold with Thermotest pathway (Medoc Ltd, Ramat Yishai, Israel). *Pain stimulation following the pain paradigm with Thermotest pathway (Medoc) and acquisition of data with fMRI 3 Tesla (recording session duration: 40 minutes). Waiting period** outside from the MRI. Abbreviations: APAP, paracetamol; min, minute(s); fMRI, functional magnetic resonance imaging; MRI, magnetic resonance imaging.
Figure 2
Figure 2
Thermal pain paradigm used in the fMRI trial. Abbreviation: fMRI, functional magnetic resonance imaging.
Figure 3
Figure 3
Flowchart of the study.
Figure 4
Figure 4
Pain matrix at baseline showing activation of left and right prefrontal cortices, dorsal anterior cingulate cortex, left and right insula, thalamus, and periaqueductal gray matter.
Figure 5
Figure 5
ROI analysis performed on physical pain regions revealed anti-nociceptive effect of APAP compared to placebo. Notes: Bar graphs demonstrate the β-values of APAP deactivation (T+100 minutes > baseline) and placebo deactivation (T+100 minutes > baseline) extracted from each cluster. β-values associated with APAP differed significantly from the β-values associated with placebo in all regions (prefrontal cortices left and right [lPRC, rPFC], anterior cingulate cortex [ACC], anterior [a], medium [m], dorsal [d]), insula left and right (lIn, rIn), and thalamus left and right (lTh, rTh) but in the periaqueductal gray matter (PAG). Abbreviations: ROI, regions-of-interest; APAP, paracetamol.

References

    1. Alloui A, Pelissier T, Dubray C, Lavarenne J, Eschalier A. Tropisetron inhibits the antinociceptive effect of intrathecally administered acetaminophen and serotonin. Fundam Clin Pharmacol. 1996;10(4):406–407.
    1. Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21(3):201–232.
    1. Pickering G, Estève V, Loriot MA, Eschalier A, Dubray C. Acetaminophen reinforces descending inhibitory pain pathways. Clin Pharmacol Ther. 2008;84(1):47–51.
    1. Pickering G, Loriot MA, Libert F, Eschalier A, Beaune P, Dubray C. Acetaminophen: First evidence of a central serotonergic mechanism of action in humans. Clin Pharmacol Ther. 2006;79(4):371–378.
    1. Andersson DA, Gentry C, Alenmyr L, et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ(9)-tetrahydrocannabiorcol. Nat Commun. 2011;2:551.
    1. Högestätt ED, Jönsson BA, Ermund A, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem. 2005;280(36):31405–31412.
    1. Barrière DA, Mallet C, Blomgren A, et al. Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PLoS One. 2013;5(8(8)):e70690.
    1. Bonnefont J, Daulhac L, Etienne M, et al. Paracetamol recruits spinal p42/p44 MAPKs and GH/IGF-1 receptors to produce analgesia via the serotonergic system. Mol Pharmacol. 2007;71(2):407–415.
    1. Kerckhove N, Mallet C, François A, et al. Ca(v)3.2 calcium channels: the key protagonist in the supraspinal effect of paracetamol. Pain. 2014;155(4):764–772.
    1. Mallet C, Barriere DA, Ermund A, Jönsson BA, Eschalier A, et al. TRPV(1) in brain is involved in acetaminophen-induced antinociception. PLoS One. 2010;5(9):e12748.
    1. Mallet C, Daulhac L, Bonnefont J, et al. Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain. 2008;139(1):190–200.
    1. Pini LA, Sandrini M, Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotonergic system in the rat brain. Eur J Pharmacol. 1996;308(1):31–40.
    1. Zygmunt PM, Chuang H, Movahed P, Julius D, Hogestatt ED. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol. 2000;396(1):39–42.
    1. Hadjipavlou G, Dunckley P, Behrens TE, Tracey I. Determining anatomical connectivities between cortical and brainstem pain processing regions in humans: a diffusion tensor imaging study in healthy controls. Pain. 2006;123(1–2):169–78.
    1. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–374.
    1. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377–391.
    1. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–338.
    1. Fields HL, Basbaum AI. Central nervous system mechanisms of pain modulation. In: Melzack R, Wall PD, editors. Textbook of pain. London: Churchill Livingstone; 2005. pp. 125–142.
    1. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66(1):149–160.
    1. Upadhyay J, Anderson J, Schwarz AJ, et al. Imaging Drugs With and Without Clinical Analgesic Efficacy. Neuropsychopharmacology. 2011;36(13):2659–2673.
    1. Wise RG, Williams P, Tracey I. Using fMRI to quantify the time dependence of remifentanil analgesia in the human brain. Neuropsychopharmacology. 2004;29(3):626–635.
    1. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463–484.
    1. Peyron R, Faillenot I. Imagerie fonctionnelle cérébrale appliquée à l’analyse des phénomènes douloureux. [Functional brain mapping of pain perception] Med Sci (Paris) 2011;27(1):82–87. French.
    1. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997;277(5328):968–971.
    1. Eisenberger NI, Lieberman MD. Why rejection hurts: a common neural alarm system for physical and social pain. Trends Cogn Sci. 2004;8(7):294–300.
    1. Kross E, Berman MG, Mischel W, Smith EE, Wager TD. Social rejection shares somatosensory representations with physical pain. Proc Natl Acad Sci U S A. 2011;108(15):6270–6275.
    1. Becerra L, Harter K, Gonzalez RG, Borsook D. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth Analg. 2006;103(1):208–216.
    1. Gear R, Becerra L, Upadhyay J, et al. Pain facilitation brain regions activated by nalbuphine are revealed by pharmacological fMRI. PLoS One. 2013;8(1):e50169.
    1. Leppa M, Korvenoja A, Carlson S, et al. Acute opioid effects on human brain as revealed by functional magnetic resonance imaging. Neuroimage. 2006;31(2):661–669.
    1. Oertel BG, Preibisch C, Wallenhorst T, et al. Differential opioid action on sensory and affective cerebral pain processing. Clin Pharmacol Ther. 2008;83(4):577–588.
    1. Upadhyay J, Anderson J, Baumgartner R, et al. Modulation of CNS pain circuitry by intravenous and sublingual doses of buprenorphine. Neuroimage. 2012;59(4):3762–3773.
    1. Wise RG, Rogers R, Painter D, et al. Combining fMRI with a pharmacokinetic model to determine which brain areas activated by painful stimulation are specifically modulated by remifentanil. Neuroimage. 2002;16(4):999–1014.
    1. Maihöfner C, Ringler R, Herrndobler F, Koppert W. Brain imaging of analgesic and antihyperalgesic effects of cyclooxygenase inhibition in an experimental human pain model: a functional MRI study. Eur J Neurosci. 2007;26(5):1344–1356.
    1. Rogers R, Wise RG, Painter DJ, Longe SE, Tracey I. An investigation to dissociate the analgesic and anesthetic properties of ketamine using functional magnetic resonance imaging. Anesthesiology. 2004;100(2):292–301.
    1. Pickering G, Moustafa F, Desbrandes S, Cardot JM, Roux D, Dubray C. Paracetamol and opioid pathways: a pilot randomised clinical trial. Fund Clin Pharmacol. 2013;27(3):339–345.
    1. Granovsky Y, Matre D, Sokolik A, Lorenz J, Casey KL. Thermoreceptive innervation of human glabrous and hairy skin: a contact heat evoked potential analysis. Pain. 2005;115(3):238–247.
    1. Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia? imaging a shared neuronal network. Science. 2002;295(5560):1737–1740.
    1. Dewall CN, Macdonald G, Webster GD, et al. Acetaminophen reduces social pain: behavioral and neural evidence. Psychol Sci. 2010;21(7):931–937.
    1. Husebo BS, Ballard C, Sandvik R, Nilsen OB, Aarsland D. Efficacy of treating pain to reduce behavioural disturbances in residents of nursing homes with dementia: cluster randomised clinical trial. BMJ. 2011;343:d4065.
    1. La Cesa S, Tinelli E, Toschi N, et al. fMRI pain activation in the periaqueductal gray in healthy volunteers during the cold pressor test. Magn Reson Imaging. 2014;32(3):236–240.
    1. Linnman C, Moulton EA, Barmettler G, Becerra L, Borsook D. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage. 2012;60(1):505–522.
    1. Yoshida W, Seymour B, Koltzenburg M, Dolan RJ. Uncertainty increases pain: evidence for a novel mechanism of pain modulation involving the periaqueductal gray. J Neurosci. 2013;33(13):5638–5646.
    1. Mantyh PW. Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp Neurol. 1982;206(2):146–158.
    1. Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci. 2002;22(7):2748–2752.
    1. Aimone LD, Jones SL, Gebhart GF. Stimulation-produced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain. 1987;31(1):123–136.
    1. Rivot JP, Pointis D, Besson JM. A comparison of the effects of morphine on 5-HT metabolism in the periaqueductal gray, ventromedial medulla and medullary dorsal horn: in vivo electrochemical studies in freely moving rats. Brain Res. 1989;495(1):140–144. Available from: .
    1. de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T, de Aguiar Corrêa FM, Coimbra NC. The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT2A and 5-HT2C serotonergic receptors in post-ictal antinociception. Synapse. 2014;68(1):16–30.
    1. Liu J, Reid AR, Sawynok J. Antinociception by systemically- administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neurosci Lett. 2013;536:64–68.
    1. Slosky LM, Thompson BJ, Sanchez-Covarrubias L, et al. Acetaminophen modulates P-glycoprotein functional expression at the blood–brain barrier by a constitutive androstane receptor-dependent mechanism. Mol Pharmacol. 2013;84(5):774–786.
    1. Williams WC, Maher CG, McLachlan AJ, Hancock MJ, Day RO, Chung-Wei CL. Efficacy of paracetamol for acute low-back pain: a double-blind, randomised controlled trial. Lancet. 2014;384(9954):1586–1596.

Source: PubMed

3
Abonnieren