Danish study of Non-Invasive testing in Coronary Artery Disease (Dan-NICAD): study protocol for a randomised controlled trial

Louise Nissen, Simon Winther, Christin Isaksen, June Anita Ejlersen, Lau Brix, Grazina Urbonaviciene, Lars Frost, Lene Helleskov Madsen, Lars Lyhne Knudsen, Samuel Emil Schmidt, Niels Ramsing Holm, Michael Maeng, Mette Nyegaard, Hans Erik Bøtker, Morten Bøttcher, Louise Nissen, Simon Winther, Christin Isaksen, June Anita Ejlersen, Lau Brix, Grazina Urbonaviciene, Lars Frost, Lene Helleskov Madsen, Lars Lyhne Knudsen, Samuel Emil Schmidt, Niels Ramsing Holm, Michael Maeng, Mette Nyegaard, Hans Erik Bøtker, Morten Bøttcher

Abstract

Background: Coronary computed tomography angiography (CCTA) is an established method for ruling out coronary artery disease (CAD). Most patients referred for CCTA do not have CAD and only approximately 20-30 % of patients are subsequently referred to further testing by invasive coronary angiography (ICA) or non-invasive perfusion evaluation due to suspected obstructive CAD. In cases with severe calcifications, a discrepancy between CCTA and ICA often occurs, leading to the well-described, low-diagnostic specificity of CCTA. As ICA is cost consuming and involves a risk of complications, an optimized algorithm would be valuable and could decrease the number of ICAs that do not lead to revascularization. The primary objective of the Dan-NICAD study is to determine the diagnostic accuracy of cardiac magnetic resonance imaging (CMRI) and myocardial perfusion scintigraphy (MPS) as secondary tests after a primary CCTA where CAD could not be ruled out. The secondary objective includes an evaluation of the diagnostic precision of an acoustic technology that analyses the sound of coronary blood flow. It may potentially provide better stratification prior to CCTA than clinical risk stratification scores alone.

Methods/design: Dan-NICAD is a multi-centre, randomised, cross-sectional trial, which will include approximately 2,000 patients without known CAD, who were referred to CCTA due to a history of symptoms suggestive of CAD and a low-risk to intermediate-risk profile, as evaluated by a cardiologist. Patient interview, sound recordings, and blood samples are obtained in connection with the CCTA. All patients with suspected obstructive CAD by CCTA are randomised to either stress CMRI or stress MPS, followed by ICA with fractional flow reserve (FFR) measurements. Obstructive CAD is defined as an FFR below 0.80 or as high-grade stenosis (>90 % diameter stenosis) by visual assessment. Diagnostic performance is evaluated as sensitivity, specificity, predictive values, likelihood ratios, and C statistics. Enrolment commenced in September 2014 and is expected to be complete in May 2016.

Discussion: Dan-NICAD is designed to assess whether a secondary perfusion examination after CCTA could safely reduce the number of ICAs where revascularization is not required. The results are expected to add knowledge about the optimal algorithm for diagnosing CAD.

Trial registration: Clinicaltrials.gov identifier, NCT02264717 . Registered on 26 September 2014.

Keywords: Cardiac magnetic resonance imaging; Coronary angiography; Coronary artery disease; Coronary computed tomography angiography; Fractional flow reserve; Myocardial perfusion scintigraphy.

Figures

Fig. 1
Fig. 1
Danish study of Non-Invasive testing in Coronary Artery Disease (Dan-NICAD) patient flowchart. CAD, coronary artery disease; CCTA, coronary computed tomography angiography; CMRI, cardiac magnetic resonance imaging; MPS, myocardial perfusion scintigraphy; ICA-FFR, invasive coronary angiography-fractional flow reserve
Fig. 2
Fig. 2
Perfusion defect on myocardial perfusion scintigraphy. Myocardial perfusion scintigraphy with Tc-99 m Sestamibi: short-axis and horizontal long-axis images during stress (upper rows) and rest (lower rows). A severe reversible perfusion defect is seen in the anteroseptal area of the left ventricle
Fig. 3
Fig. 3
Perfusion defect on coronary magnetic resonance imaging. Coronary magnetic resonance imaging during pharmacological stress induced hyperemia (a) and at rest (b). The patient has an anteroseptal and lateral reversible perfusion defect in the midcardial segments of the left ventricle

References

    1. Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS), European Association for Percutaneous Cardiovascular Interventions (EAPCI) Wijns W, Kolh P, Danchin N, Di Mario C, et al. Guidelines on myocardial revascularization. Eur Heart J. 2010;31:2501–55. doi: 10.1093/eurheartj/ehq277.
    1. Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA, ACCF/SCAI/STS/AATS/AHA/ASNC/HFSA/SCCT 2012 Appropriate use criteria for coronary revascularization focused update: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2012;59:857–81. doi: 10.1016/j.jacc.2011.12.001.
    1. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21. doi: 10.1016/j.jacc.2009.11.096.
    1. Noto TJ, Jr, Johnson LW, Krone R, Weaver WF, Clark DA, Kramer JR, Jr, et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I) Cathet Cardiovasc Diagn. 1991;24:75–83. doi: 10.1002/ccd.1810240202.
    1. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36. doi: 10.1056/NEJMoa0806576.
    1. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52:1724–32. doi: 10.1016/j.jacc.2008.07.031.
    1. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44. doi: 10.1016/j.jacc.2008.08.058.
    1. Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, et al. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J. 2014;35:1120–30. doi: 10.1093/eurheartj/eht488.
    1. Raff GL, Abidov A, Achenbach S, Berman DS, Boxt LM, Budoff MJ, et al. SCCT guidelines for the interpretation and reporting of coronary computed tomographic angiography. J Cardiovasc Comput Tomogr. 2009;3:122–36. doi: 10.1016/j.jcct.2009.01.001.
    1. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403. doi: 10.1056/NEJMoa1201163.
    1. Groothuis JG, Beek AM, Brinckman SL, Meijerink MR, van den Oever ML, Hofman MB, et al. Combined non-invasive functional and anatomical diagnostic work-up in clinical practice: the magnetic resonance and computed tomography in suspected coronary artery disease (MARCC) study. Eur Heart J. 2013;34:1990–8. doi: 10.1093/eurheartj/eht077.
    1. Cheng V, Gutstein A, Wolak A, Suzuki Y, Dey D, Gransar H, et al. Moving beyond binary grading of coronary arterial stenoses on coronary computed tomographic angiography: insights for the imager and referring clinician. JACC Cardiovasc Imaging. 2008;1:460–71. doi: 10.1016/j.jcmg.2008.05.006.
    1. Zorlak A, Zorlak A, Thomassen A, Gerke O, Munkholm H, Mickley H, et al. Patients with suspected coronary artery disease referred for examinations in the era of coronary computed tomography angiography. Am J Cardiol. 2015;116:344–9. doi: 10.1016/j.amjcard.2015.04.049.
    1. Task Force Members. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart. 2013;34:2949–3003. doi: 10.1093/eurheartj/eht296.
    1. Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60. doi: 10.1016/S0140-6736(11)61335-4.
    1. Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, et al. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology. 2003;229:209–16. doi: 10.1148/radiol.2291021118.
    1. Li M, Zhou T, Yang LF, Peng ZH, Ding J, Sun G. Diagnostic accuracy of myocardial magnetic resonance perfusion to diagnose ischemic stenosis with fractional flow reserve as reference: systematic review and meta-analysis. JACC Cardiovasc Imaging. 2014;7:1098–105. doi: 10.1016/j.jcmg.2014.07.011.
    1. Sakuma H, Suzawa N, Ichikawa Y, Makino K, Hirano T, Kitagawa K, et al. Diagnostic accuracy of stress first-pass contrast-enhanced myocardial perfusion MRI compared with stress myocardial perfusion scintigraphy. AJR Am J Roentgenol. 2005;185:95–102. doi: 10.2214/ajr.185.1.01850095.
    1. Nabi F, Malaty A, Shah DJ. Stress cardiac magnetic resonance. Curr Opin Cardiol. 2011;26:385–91. doi: 10.1097/HCO.0b013e3283490373.
    1. Hamon M, Fau G, Nee G, Ehtisham J, Morello R, Hamon M. Meta-analysis of the diagnostic performance of stress perfusion cardiovascular magnetic resonance for detection of coronary artery disease. J Cardiovasc Magn Reson. 2010;12:29. doi: 10.1186/1532-429X-12-29.
    1. Melikian N, De Bondt P, Tonino P, De Winter O, Wyffels E, Bartunek J, et al. Fractional flow reserve and myocardial perfusion imaging in patients with angiographic multivessel coronary artery disease. JACC Cardiovasc Interv. 2010;3:307–14. doi: 10.1016/j.jcin.2009.12.010.
    1. Underwood SR, Anagnostopoulos C, Cerqueira M, Ell PJ, Flint EJ, Harbinson M, et al. Myocardial perfusion scintigraphy: the evidence. Eur J Nucl Med Mol Imaging. 2004;31:261–91. doi: 10.1007/s00259-003-1344-5.
    1. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol. 2007;14:521–8. doi: 10.1016/j.nuclcard.2007.05.008.
    1. Pakkal M, Raj V, McCann GP. Non-invasive imaging in coronary artery disease including anatomical and functional evaluation of ischaemia and viability assessment. Br J Radiol. 2011;84(Spec No 3):S280–95. doi: 10.1259/bjr/50903757.
    1. Iskandar A, Limone B, Parker MW, Perugini A, Kim H, Jones C, et al. Gender differences in the diagnostic accuracy of SPECT myocardial perfusion imaging: a bivariate meta-analysis. J Nucl Cardiol. 2013;20:53–63. doi: 10.1007/s12350-012-9646-2.
    1. Schmidt S, Holst-Hansen C, Hansen J, Toft E, Struijk J. Acoustic features for the identification of coronary artery disease. IEEE Trans Biomed Eng. 2015
    1. Schmidt SE, Holst-Hansen C, Graff C, Toft E, Struijk JJ. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol Meas. 2010;31:513–29. doi: 10.1088/0967-3334/31/4/004.
    1. Semmlow J, Rahalkar K. Acoustic detection of coronary artery disease. Annu Rev Biomed Eng. 2007;9:449–69. doi: 10.1146/annurev.bioeng.9.060906.151840.
    1. Winther S, Schmidt SE, Holm NR, Toft E, Struijk JJ, Botker HE, et al. Diagnosing coronary artery disease by sound analysis from coronary stenosis induced turbulent blood flow: diagnostic performance in patients with stable angina pectoris. Int J Cardiovasc Imaging. 2015
    1. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med. 1995;36:2138–47.
    1. Patel MR, Klufas RA, Alberico RA, Edelman RR. Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol. 1997;18:1635–40.
    1. Deimling M, Heid O. Magnetization prepared true FISP imaging. San Francisco: Proceedings of the 2nd Annual Meeting of SMRM; 1994. p. 495.
    1. Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M. Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging. 2002;16:641–52. doi: 10.1002/jmri.10209.
    1. Haase A, Frahm J, Matthaei D, Hanicke W, Merboldt KD. FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986. J Magn Reson. 2011;213:533–41. doi: 10.1016/j.jmr.2011.09.021.
    1. Hou P, Hasan KM, Sitton CW, Wolinsky JS, Narayana PA. Phase-sensitive T1 inversion recovery imaging: a time-efficient interleaved technique for improved tissue contrast in neuroimaging. AJNR Am J Neuroradiol. 2005;26:1432–8.
    1. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Duarte R, et al. Cardiac magnetic resonance myocardial perfusion imaging for detection of functionally significant obstructive coronary artery disease: a prospective study. Int J Cardiol. 2013;168:765–73. doi: 10.1016/j.ijcard.2012.09.231.
    1. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95. doi: 10.1056/NEJMoa0907272.
    1. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomised trial. Eur Heart J. 2008;29:480–9. doi: 10.1093/eurheartj/ehm617.

Source: PubMed

3
Abonnieren