Effect of cholecystectomy on hepatic fat accumulation and insulin resistance in non-obese Hispanic patients: a pilot study

Víctor Cortés, Nicolás Quezada, Sergio Uribe, Marco Arrese, Flavio Nervi, Víctor Cortés, Nicolás Quezada, Sergio Uribe, Marco Arrese, Flavio Nervi

Abstract

Background: Nonalcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. Experimental studies have shown that cholecystectomy (XGB) increases hepatic fat content in mice and appears associated to NAFLD in large retrospective population-based studies. The aim of this study was to prospectively assess the effects of XGB on hepatic fat content (HFC) and insulin resistance (IR) in non-obese, middle aged Hispanic subjects.

Methods: Twenty-six gallstone patients undergoing elective XGB and 16 control subjects with normal livers and gallbladders at ultrasonography were prospectively followed 24 months for changes in HFC and IR. Clinical, biochemical determinations and hepatic imaging were performed at baseline and 24 months after surgery. MRI technique quantified HFC in four hepatic segments. IR was assessed by the Homeostasis Model Assessment (HOMA-IR) index.

Results: Initial body mass index (BMI) was 25.6 ± 0.4 and 24.3 ± 1.0 in the control and XGB groups of subjects, respectively. Serum insulin level increased from 8.1 ± 0.7 to 10.0 ± 1.9 (μU/ml) 24 months after surgery in XGB patients (p < 0.05); no significant changes were detected in control individuals. Median HOMA-IR index increased from 1.31 (interquartile range, 1.01-1.68) to 2.20 (interquartile range, 1.57 - 2.60) 24 months after XGB, (p < 0.003). Median HOMA-IR index of control subjects remained unchanged at the end of the study. Serum apoB concentration increased from 61.5 ± 3.4 to 79.0 ± 7.8 (μg/ml) in XGB patients (p < 0.03). Serum apoB levels remained within normal ranges in both periods of the study in control subjects. HFC significantly increased in 2 of the 4 segments 24 months after XGB: right posterior hepatic lobe (from 5.3 ± 0.2% to 6.0 ± 0.2%, p > 0.04) and right anterior hepatic lobe (from 5.8 ± 0.2% to 6.6 ± 0.3%, p < 0.02). The average HFC of the four hepatic segments studied slightly increased from 5.4 ± 0.2 to 5.8 ± 0.3 2 years after XGB (p < 0.03). No significant changes were found in HFC in the control subjects at the end of the study.

Conclusions: Elective XGB increases HFC, HOMA-IR index and serum apoB concentration. These results support the notion that XGB is a risk factor non-alcoholic fatty liver disease and other IR - associated disease conditions.

Keywords: Cholecystectomy; Gallbladder; Insulin resistance; NAFLD; Steatosis.

Conflict of interest statement

Ethics approval and consent to participate

The study was reviewed and approved by the Pontificia Universidad Católica de Chile Review Board. All study participants provided informed written consent prior to study enrollment.

Consent for Publication

In submitting this article to LIPIDS IN HEALTH AND DISEASE published by BioMed Central I certify that;

1. I am authorized by my co-authors to enter into these arrangements.

2. I warrant, on behalf of myself and my co-authors, that:

○ he article is original, has not been formally published in any other peer-reviewed journal, is not under consideration by any other journal and does not infringe any existing copyright or any other third party rights;

○ I am/we are the sole author(s) of the article and have full authority to enter into this agreement and in granting rights to BioMed Central are not in breach of any other obligation; the article contains nothing that is unlawful, libellous, or which would, if published, constitute a breach of contract or of confidence or of commitment given to secrecy;

I/we have taken due care to ensure the integrity of the article. To my/our - and currently accepted scientific - knowledge all statements contained in it purporting to be facts are true and any formula or instruction contained in the article will not, if followed accurately, cause any injury, illness or damage to the user.

3. I, and all co-authors, agree that the article, if editorially accepted for publication, shall be licensed under the Creative Commons Attribution License 4.0. In line with BioMed Central's Open Data Policy, data included in the article shall be made available under the Creative Commons 1.0 Public Domain Dedication waiver, unless otherwise stated. If the law requires that the article be published in the public domain, I/we will notify BioMed Central at the time of submission, and in such cases not only the data but also the article shall be released under the Creative Commons 1.0 Public Domain Dedication waiver. For the avoidance of doubt it is stated that sections 1 and 2 of this license agreement shall apply and prevail regardless of whether the article is published under Creative Commons Attribution License 4.0 or the Creative Commons 1.0 Public Domain Dedication waiver.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Effect of XGB on HOMA-IR index. Values represent the median and the interquartile ranges. White columns represent results at the beginning of the study and columns with grey dots represent results obtained at the end of the study. *P < 0.02; ¶P < 0.001
Fig. 2
Fig. 2
Effect of XGB on hepatic fat content. Columns represent the mean ± SE of the percentage of HFC observed at the beginning and after 24 months of follow-up in control (panel a) and cholecystectomized subjects (panel b). White and black columns represent the values obtained at the beginning and end of the study. Four liver segments were analyzed: right posterior hepatic lobe, RPHL; right anterior hepatic lobe, RAHL; left medium hepatic lobe, LMHL; left lower hepatic lobe, LLHL, and mean value of the four lobes. White columns represent values at the beginning of the study and columns with grey dots represent values obtained at the end of the study. * P < 0.03

References

    1. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–84. doi: 10.1111/liv.13299.
    1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73–84. doi: 10.1002/hep.28431.
    1. Harris R, Harman DJ, Card TR, Aithal GP, Guha IN. Prevalence of clinically significant liver disease within the general population, as defined by non-invasive markers of liver fibrosis: a systematic review. Lancet Gastroenterology Hepatology. 2017;2(4):288–297. doi: 10.1016/S2468-1253(16)30205-9.
    1. Saab S, Manne V, Nieto J, Schwimmer JB, Chalasani NP. Nonalcoholic Fatty Liver Disease in Latinos. Clin Gastroenterol Hepatol. 2016;14(1):5–12. doi: 10.1016/j.cgh.2015.05.001.
    1. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47–S64. doi: 10.1016/j.jhep.2014.12.012.
    1. Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):637–653. doi: 10.1016/j.bpg.2014.07.008.
    1. Ahmed MH, Ali A. Nonalcoholic fatty liver disease and cholesterol gallstones: which comes first? Scand J Gastroenterol. 2014;49(5):521–527. doi: 10.3109/00365521.2014.894119.
    1. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28(4):629–636. doi: 10.1161/ATVBAHA.107.151092.
    1. Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2(11):901–910. doi: 10.1016/S2213-8587(14)70032-4.
    1. Almeda-Valdes P, Aguilar-Olivos N, Uribe M, Mendez-Sanchez N. Common features of the metabolic syndrome and nonalcoholic fatty liver disease. Rev Recent Clin Trials. 2014;9(3):148–158. doi: 10.2174/1574887109666141216103908.
    1. Duseja A, Singh SP, Saraswat VA, Acharya SK, Chawla YK, Chowdhury S, et al. Non-alcoholic Fatty Liver Disease and Metabolic Syndrome-Position Paper of the Indian National Association for the Study of the Liver, Endocrine Society of India, Indian College of Cardiology and Indian Society of Gastroenterology. J Clinical Experimental Hepatology. 2015;5(1):51–68. doi: 10.1016/j.jceh.2015.02.006.
    1. Lonardo A, Ballestri S, Marchesini G, Angulo P, Loria P. Nonalcoholic fatty liver disease: a precursor of the metabolic syndrome. Dig Liver Dis. 2015;47(3):181–190. doi: 10.1016/j.dld.2014.09.020.
    1. Larrain S, Rinella ME. A myriad of pathways to NASH. Clin. Liver Dis. 2012;16(3):525–548. doi: 10.1016/j.cld.2012.05.009.
    1. Goh GB, McCullough AJ. Natural History of Nonalcoholic Fatty Liver Disease. Dig Dis Sci. 2016;61(5):1226–1233. doi: 10.1007/s10620-016-4095-4.
    1. Italian Association for the Study of the L AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig Liver Dis. 2017;49(5):471–483. doi: 10.1016/j.dld.2017.01.147.
    1. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434–441. doi: 10.1007/s00535-013-0758-5.
    1. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–723. doi: 10.1002/hep.26672.
    1. Jelenik T, Kaul K, Sequaris G, Flogel U, Phielix E, Kotzka J, et al. Mechanisms of Insulin Resistance in Primary and Secondary Non-Alcoholic Fatty Liver. Diabetes. 2017; PubMed
    1. EASL Clinical Practice Guidelines on the prevention, diagnosis and treatment of gallstones. J Hepatol. 2016;65(1):146–181. doi: 10.1016/j.jhep.2016.03.005.
    1. Csikesz NG, Singla A, Murphy MM, Tseng JF, Shah SA. Surgeon volume metrics in laparoscopic cholecystectomy. Dig Dis Sci. 2010;55(8):2398–2405. doi: 10.1007/s10620-009-1035-6.
    1. Russo MW, Wei JT, Thiny MT, Gangarosa LM, Brown A, Ringel Y, et al. Digestive and liver diseases statistics, 2004. Gastroenterology. 2004;126(5):1448–1453. doi: 10.1053/j.gastro.2004.01.025.
    1. Housset C, Chretien Y, Debray D, Chignard N. Functions of the Gallbladder. Comprehensive Physiology. 2016;6(3):1549–1577. doi: 10.1002/cphy.c150050.
    1. Zanlungo S, Rigotti A, Miquel JF, Nervi F. Abnormalities of lipid metabolism, gallstone disease and gallbladder function. Clinical Lipidology. 2011;6:315–325. doi: 10.2217/clp.11.22.
    1. Nervi F, Arrese M. Cholecystectomy and NAFLD: does gallbladder removal have metabolic consequences? Am J Gastroenterol. 2013;108(6):959–961. doi: 10.1038/ajg.2013.84.
    1. Ruhl CE, Everhart JE. Relationship of non-alcoholic fatty liver disease with cholecystectomy in the US population. Am J Gastroenterol. 2013;108(6):952–958. doi: 10.1038/ajg.2013.70.
    1. Kwak MS, Kim D, Chung GE, Kim W, Kim YJ, Yoon JH. Cholecystectomy is independently associated with nonalcoholic fatty liver disease in an Asian population. World J Gastroenterol. 2015;21(20):6287–6295. doi: 10.3748/wjg.v21.i20.6287.
    1. Shen C, Wu X, Xu C, Yu C, Chen P, Li Y. Association of cholecystectomy with metabolic syndrome in a Chinese population. PLoS One. 2014;9(2):e88189. doi: 10.1371/journal.pone.0088189.
    1. Amigo L, Husche C, Zanlungo S, Lutjohann D, Arrese M, Miquel JF, et al. Cholecystectomy increases hepatic triglyceride content and very-low-density lipoproteins production in mice. Liver Int. 2011;31(1):52–64. doi: 10.1111/j.1478-3231.2010.02361.x.
    1. Cortes V, Amigo L, Zanlungo S, Galgani J, Robledo F, Arrese M, et al. Metabolic effects of cholecystectomy: gallbladder ablation increases basal metabolic rate through G-protein coupled bile acid receptor Gpbar1-dependent mechanisms in mice. PLoS One. 2015;10(3):e0118478. doi: 10.1371/journal.pone.0118478.
    1. Juvonen T, Kervinen K, Kairaluoma MI, Kesaniemi YA. Effect of cholecystectomy on plasma lipid and lipoprotein levels. Hepato-Gastroenterology. 1995;42(4):377–382.
    1. Sonne DP, Hare KJ, Martens P, Rehfeld JF, Holst JJ, Vilsboll T, et al. Postprandial gut hormone responses and glucose metabolism in cholecystectomized patients. Am J Physiol Gastrointest Liver Physiol. 2013;304(4):G413–G419. doi: 10.1152/ajpgi.00435.2012.
    1. Ali RB, Cahill RA, Watson RG. Weight gain after laparoscopic cholecystectomy. Ir J Med Sci. 2004;173(1):9–12. doi: 10.1007/BF02914515.
    1. Schonewille M, de Boer JF, Groen AK. Bile salts in control of lipid metabolism. Curr Opin Lipidol. 2016;27(3):295–301. doi: 10.1097/MOL.0000000000000303.
    1. Chiang JY. Bile acid metabolism and signaling. Comprehensive Physiology. 2013;3(3):1191–1212.
    1. Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–362. doi: 10.1002/hep.28709.
    1. Gariani K, Philippe J, Jornayvaz FR. Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside. Diabetes Metab. 2013;39(1):16–26. doi: 10.1016/j.diabet.2012.11.002.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Idilman IS, Aniktar H, Idilman R, Kabacam G, Savas B, Elhan A, et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology. 2013;267(3):767–775. doi: 10.1148/radiol.13121360.
    1. Tang A, Tan J, Sun M, Hamilton G, Bydder M, Wolfson T, et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 2013;267(2):422–431. doi: 10.1148/radiol.12120896.
    1. Acosta AM, Escalona M, Maiz A, Pollak F, Leighton F. Determination of the insulin resistance index by the Homeostasis Model Assessment in a population of Metropolitan Region in Chile. Revista medica de Chile. 2002;130(11):1227–1231.
    1. Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, et al. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–644. doi: 10.1002/mrm.20624.
    1. Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. J Magn Reson Imaging. 1991;1(5):521–530. doi: 10.1002/jmri.1880010504.
    1. Arboleda C, Aguirre-Reyes D, Garcia MP, Tejos C, Munoz L, Miquel JF, et al. Total liver fat quantification using three-dimensional respiratory self-navigated MRI sequence. Magn Reson Med. 2016;76(5):1400–1409. doi: 10.1002/mrm.26028.
    1. Fotbolcu H, Zorlu E. Nonalcoholic fatty liver disease as a multi-systemic disease. World J Gastroenterol. 2016;22(16):4079–4090. doi: 10.3748/wjg.v22.i16.4079.
    1. Abbasi F, Brown BW, Jr, Lamendola C, McLaughlin T, Reaven GM. Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol. 2002;40(5):937–943. doi: 10.1016/S0735-1097(02)02051-X.
    1. Patel TP, Rawal K, Bagchi AK, Akolkar G, Bernardes N, Dias Dda S, et al. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev. 2016;21(1):11–23. doi: 10.1007/s10741-015-9515-6.
    1. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and cancer: local and systemic mechanisms. Annu Rev Med. 2015;66:297–309. doi: 10.1146/annurev-med-050913-022228.
    1. Jahn D, Rau M, Hermanns HM, Geier A. Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev. 2015;26(6):625–635. doi: 10.1016/j.cytogfr.2015.07.016.
    1. Nies VJ, Sancar G, Liu W, van Zutphen T, Struik D, Yu RT, et al. Fibroblast Growth Factor Signaling in Metabolic Regulation. Front Endocrinol. 2015;6:193.
    1. Barrera F, Azocar L, Molina H, Schalper KA, Ocares M, Liberona J, et al. Effect of cholecystectomy on bile acid synthesis and circulating levels of fibroblast growth factor 19. Ann Hepatol. 2015;14(5):710–721.
    1. Wojcik M, Janus D, Dolezal-Oltarzewska K, Kalicka-Kasperczyk A, Poplawska K, Drozdz D, et al. A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents. J Pediatr Endocrinol Metab. 2012;25(11-12):1089–1093. doi: 10.1515/jpem-2012-0253.
    1. Eren F, Kurt R, Ermis F, Atug O, Imeryuz N, Yilmaz Y. Preliminary evidence of a reduced serum level of fibroblast growth factor 19 in patients with biopsy-proven nonalcoholic fatty liver disease. Clin Biochem. 2012;45(9):655–658. doi: 10.1016/j.clinbiochem.2012.03.019.
    1. Shaffer EA, Small DM. Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. J Clin Invest. 59(5):1977, 828–40. PubMed Pubmed Central PMCID: 372291. Epub 1977/05/01. eng
    1. Roda E, Aldini R, Mazzella G, Roda A, Sama C, Festi D, et al. Enterohepatic circulation of bile acids after cholecystectomy. Gut. 1978;19(7):640–649. doi: 10.1136/gut.19.7.640.
    1. Malagelada JR, Go VL, Summerskill WH, Gamble WS. Bile acid secretion and biliary bile acid composition altered by cholecystectomy. Am J Dig Dis. 1973;18(6):455–459. doi: 10.1007/BF01076595.
    1. Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids & nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology. 2017;65(1):350–362.
    1. Ioannou GN. Cholelithiasis, cholecystectomy, and liver disease. Am J Gastroenterol. 2010;105(6):1364–1373. doi: 10.1038/ajg.2009.737.
    1. Mendez-Sanchez N, Bahena-Aponte J, Chavez-Tapia NC, Motola-Kuba D, Sanchez-Lara K, Ponciano-Radriguez G, et al. Strong association between gallstones and cardiovascular disease. Am J Gastroenterol. 2005;100(4):827–830. doi: 10.1111/j.1572-0241.2005.41214.x.
    1. Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab. 2013;24(8):391–397. doi: 10.1016/j.tem.2013.04.001.
    1. Arshad F, Laway BA, Rather TA, Kuchay MS, Khan SH. Impaired gallbladder motility in adults with newly detected type 2 diabetes and lack of reversibility after achieving euglycemia. Can J Diabetes. 2015;39(2):101–104. doi: 10.1016/j.jcjd.2014.07.223.
    1. Nakeeb A, Comuzzie AG, Al-Azzawi H, Sonnenberg GE, Kissebah AH, Pitt HA. Insulin resistance causes human gallbladder dysmotility. J Gastrointest Surg. 2006;10(7):940–948. doi: 10.1016/j.gassur.2006.04.005.

Source: PubMed

3
Abonnieren