Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy

Esther Krook-Magnuson, Gergely G Szabo, Caren Armstrong, Mikko Oijala, Ivan Soltesz, Esther Krook-Magnuson, Gergely G Szabo, Caren Armstrong, Mikko Oijala, Ivan Soltesz

Abstract

Temporal lobe epilepsy is often medically refractory and new targets for intervention are needed. We used a mouse model of temporal lobe epilepsy, on-line seizure detection, and responsive optogenetic intervention to investigate the potential for cerebellar control of spontaneous temporal lobe seizures. Cerebellar targeted intervention inhibited spontaneous temporal lobe seizures during the chronic phase of the disorder. We further report that the direction of modulation as well as the location of intervention within the cerebellum can affect the outcome of intervention. Specifically, on-demand optogenetic excitation or inhibition of parvalbumin-expressing neurons, including Purkinje cells, in the lateral or midline cerebellum results in a decrease in seizure duration. In contrast, a consistent reduction in spontaneous seizure frequency occurs uniquely with on-demand optogenetic excitation of the midline cerebellum, and was not seen with intervention directly targeting the hippocampal formation. These findings demonstrate that the cerebellum is a powerful modulator of temporal lobe epilepsy, and that intervention targeting the cerebellum as a potential therapy for epilepsy should be revisited.

Keywords: Purkinje; cerebellum; epilepsy; hippocampus; optogenetics; seizure.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Cover Figure
Cover Figure
Krook-Magnuson et al. report a bidirectional functional connectivity between the hippocampus and the cerebellum in a mouse model of temporal lobe epilepsy, and demonstrate that cerebellar directed on-demand optogenetic intervention can stop seizures recorded from the hippocampus.
Figure 1
Figure 1
Lateral cerebellar intervention in PV-ChR2 mice. a, In PV-Cre animals, Cre is expressed in cerebellar neurons, including Purkinje neurons. Layers indicated: M, molecular; P, Purkinje; G, granular. b, Blue light produces action potentials in Purkinje neurons in PV-ChR2 animals (top) but not in opsin negative animals (bottom trace). c, In vivo juxtacellular recording of a Purkinje cell (black trace), illustrating an increase in firing rate (50 ms sliding window; red trace) with light delivery (blue bar). Portion of trace expanded in d is indicated by a thick black bar. d, Detected spikes illustrated by green trace. Asterisk indicates a complex spike. e, On-line detection of spontaneous temporal lobe seizures allows on-demand light delivery during the chronic phase of the disorder. f, The EEG is recorded from the hippocampus ipsilateral to previous kainate injection (KA), and light is delivered to the cerebellum. g, Example detected seizures not receiving light (top trace) and receiving cerebellar directed light-intervention (bottom). Gray bars denote seizure detection. Blue box denotes 3 s of pulsed light delivery. In opsin-expressing PV-ChR2 animals, light delivered to the ipsilateral (h) or contralateral (i) cerebellum produces a significant reduction in seizure duration, but there is no effect of light in an opsin-negative animal (j). k, Three seconds of pulsed light delivery produces a significant reduction in seizure duration in opsin-expressing animals with both short pulses (50 ms on, 100 ms off) and long pulses (1000 ms on, 50 ms off). *p < 0.05. Scale bars: a, 200 µm; b, 50 ms, 20m V; c, 1 s; 1 mV or 100 Hz change in firing rate; d, 50 ms; 1 mV or 100 Hz change in firing rate; g, 5 s, 0.05 mV.
Figure 2
Figure 2
On-demand optogenetic intervention in PV-HR animals. a, Crossing PV-Cre mice with mice expressing in a Cre-dependent manner the inhibitory opsin halorhodopsin (HR) produces mice expressing HR in PV-expressing neurons, including cerebellar Purkinje cells. Light delivery to cerebellar slices from PV-HR mice produces strong inhibition, capable of inhibiting Purkinje cell firing induced by direct current injected. b, Light delivery inhibits spontaneous firing of a Purkinje cell recorded juxtacellularly in vivo. Orange bars denote light delivery. Green trace indicates detected spikes. Blue trace illustrates the change in firing frequency (50 ms sliding window). The asterisk marks a complex spike. In vivo on-demand intervention in PV-HR animals directed to the cerebellar cortex ipsilateral (c) or contralateral (d) to previous hippocampal kainate injection reduced postdetection seizure duration in opsin-expressing, but not opsin-negative (e) animals. f, Both short and long light pulses were effective at stopping seizures. g, In contrast, light delivery to the hippocampus in PV-HR animals did not affect seizure duration. dur red, Duration reduction. Scale bars: a, 500 ms, 20 mV; b, 50 ms; top, 4 mV; bottom, 100 Hz change in firing rate.
Figure 3
Figure 3
Optogenetic intervention targeting the midline cerebellum. On-demand optogenetic intervention with 3 s of pulsed light delivered to the midline cerebellum (vermis) in a PV-ChR2 mouse reduces seizure duration (a) and increases time to next seizure (b). Blue bars and traces indicate events receiving light. Gray indicates events not receiving light. Inset, Box and whisker plot indicating median, 25th and 75th percentiles, and 25th and 75th percentile ± 1.5 times the interquartile range. c, With 3 s of short light pulses (50 ms on, 100 ms off), there is an increase in time to next seizure with vermal directed intervention in PV-ChR2 animals. CB, Cerebellum; hipp, hippocampus; ipsilat or ipsi, ipsilateral to KA; contrlat, contralateral.
Figure 4
Figure 4
On-demand optogenetic intervention with Purkinje cell specific expression. a, In Pcp-Cre mice, cerebellar Cre is selectively expressed in Purkinje neurons. Cre expression (white) was visualized by crossing with a reporter strain. Bottom, blue, DAPI fluorescent stain. b, Crossing Pcp-Cre mice with mice expressing ChR2 in a Cre-dependent manner produces mice with ChR2 expressed selectively in Purkinje neurons. Light delivery to cerebellar slices from Pcp-ChR2 animals induces firing in Purkinje neurons. c, In vivo on-demand optogenetic intervention targeting the lateral cerebellum produces an inhibition of seizure duration. d, Light delivery to the hippocampus (which does not express opsin in Pcp-ChR2 animals) does not inhibit seizures. Light delivery to the midline cerebellum is capable of reducing seizure duration (e) and increasing time to next seizure (f). Scale bars: a, top, 500 µm; bottom, 50 µm; b, 100 ms, 20 mV.
Figure 5.
Figure 5.
Temporal lobe seizures modulate cerebellar activity. An example temporal lobe seizure recorded in the hippocampus (a), which produced changes in the cerebellar EEG (b) and in the firing rate of a juxtacellularly recorded Purkinje cell over the course of the seizure (c) as well as on a shorter time scale (d). Green trace denotes detected Purkinje cell spikes. Scale bars: a, 1 mV; b, 0.5 mV; a−c, 10 s; d, 0.5 mV or 0.1 kHz change in firing rate, 0.1 s.

References

    1. Anand BK, Malhotra CL, Singh B, Dua S (1959) Cerebellar projections to limbic system. J Neurophysiol 22:451-457.
    1. Angaut P, Cicirata F, Serapide F (1985) Topographic organization of the cerebellothalamic projections in the rat: an autoradiographic study. Neuroscience 15:389-401.
    1. Armstrong C, Krook-Magnuson E, Oijala M, Soltesz I (2013) Closed-loop optogenetic intervention in mice. Nat Protoc 8:1475-1493. 10.1038/nprot.2013.080
    1. Babb TL, Mitchell AG Jr, Crandall PH (1974) Fastigiobulbar and dentatothalamic influences on hippocampal cobalt epilepsy in the cat. Electroencephalogr Clin Neurophysiol 36:141-154.
    1. Bantli H, Bloedel JR, Anderson G, McRoberts R, Sandberg E (1978) Effects of stimulating the cerebellar surface on the activity in penicillin foci. J Neurosurg 48:69-84. 10.3171/jns.1978.48.1.0069
    1. Berglind F, Ledri M, Sorensen AT, Nikitidou L, Melis M, Bielefeld P, Kirik D, Deisseroth K, Andersson M, Kokaia M (2014) Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiol Dis 65:133-141. 10.1016/j.nbd.2014.01.015
    1. Bertram EH, Zhang D, Williamson JM (2008) Multiple roles of midline dorsal thalamic nuclei in induction and spread of limbic seizures. Epilepsia 49:256-268. 10.1111/j.1528-1167.2007.01408.x
    1. Blumenfeld H, Varghese GI, Purcaro MJ, Motelow JE, Enev M, McNally KA, Levin AR, Hirsch LJ, Tikofsky R, Zubal IG, Paige AL, Spencer SS (2009) Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 132:999-1012. 10.1093/brain/awp028
    1. Boon P, De Herdt V, Vonck K, Van Roost D (2007) Clinical experience with vagus nerve stimulation and deep brain stimulation in epilepsy. Acta Neurochir Suppl 97:273-280.
    1. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263-1268. 10.1038/nn1525
    1. Bragin A, Engel J, Jr ., Wilson CL, Vizentin E, Mathern GW (1999) Electrophysiologic analysis of a chronic seizure model after unilateral hippocampal KA injection. Epilepsia 40:1210-1221.
    1. Buckner RL (2013) The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron 80:807-815. 10.1016/j.neuron.2013.10.044
    1. Cavalheiro EA, Riche DA, Le Gal La Salle G (1982) Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol 53:581-589.
    1. Cavdar S, Ozgur M, Uysal SP, Amuk OC (2014) Motor afferents from the cerebellum, zona incerta and substantia nigra to the mediodorsal thalamic nucleus in the rat. J Integrative Neurosci. Advance online publication. doi:10.1142/S0219635214500198.
    1. Chiang CC, Ladas TP, Gonzalez-Reyes LE, Durand DM (2014) Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy. Brain Stim. Advance online publication. doi:10.1016/j.brs.2014.07.034.
    1. Chkhenkeli SA, Sramka M, Lortkipanidze GS, Rakviashvili TN, Bregvadze E, Magalashvili GE, Gagoshidze T, Chkhenkeli IS (2004) Electrophysiological effects and clinical results of direct brain stimulation for intractable epilepsy. Clin Neurol Neurosurg 106:318-329. 10.1016/j.clineuro.2004.01.009
    1. Cooke PM, Snider RS (1955) Some cerebellar influences on electrically-induced cerebral seizures. Epilepsia 4:19-28.
    1. Cooper IS, Amin I, Gilman S (1973) The effect of chronic cerebellar stimulation upon epilepsy in man. Trans Am Neurol Assoc 98:192-196.
    1. Davis R, Emmonds SE (1992) Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg 58:200-208.
    1. Dow RS, Fernandez-Guardiola A, Manni E (1962) The influence of the cerebellum on experimental epilepsy. Electroencephalograph Clin Neurophysiol 14:383-398.
    1. Ebner TJ, Bantli H, Bloedel JR (1980) Effects of cerebellar stimulation on unitary activity within a chronic epileptic focus in a primate. Electroencephalograph Clin Neurophysiol 49:585-599.
    1. Elisevich KV, Hrycyshyn AW, Flumerfelt BA (1985) Cerebellar, medullary and spinal afferent connections of the paramedian reticular nucleus in the cat. Brain Res 332:267-282.
    1. Ellis TL, Stevens A (2008) Deep brain stimulation for medically refractory epilepsy. Neurosurg Focus 25:E11. 10.3171/FOC/2008/25/9/E11
    1. Fisher RS (2013) Deep brain stimulation for epilepsy. Handb Clin Neurol 116:217-234. 10.1016/B978-0-444-53497-2.00017-6
    1. Fisher RS, Velasco AL (2014) Electrical brain stimulation for epilepsy. Nat Rev Neurol 10:261-270. 10.1038/nrneurol.2014.59
    1. Fountas KN, Kapsalaki E, Hadjigeorgiou G (2010) Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review. Neurosurg Focus 29:E8. 10.3171/2010.5.FOCUS10111
    1. Gale K, Pazos A, Maggio R, Japikse K, Pritchard P (1993) Blockade of GABA receptors in superior colliculus protects against focally evoked limbic motor seizures. Brain Res 603:279-283.
    1. Gartside IB (1979) The activity of cerebellar neurones during epileptiform activity induced by penicillin in the cerebral cortex of the rat. Electroencephalogr Clin Neurophysiol 46:189-196.
    1. Ge Y, Hu W, Liu C, Zhang JG, Meng FG (2013) Brain stimulation for treatment of refractory epilepsy. Chinese Med J 126:3364-3370.
    1. Glickstein M (2007) What does the cerebellum really do? Curr Biol 17:R824-R827. 10.1016/j.cub.2007.08.009
    1. Godlevskii LS, Stepanenko KI, Lobasyuk BA, Sarakhan EV, Bobkova LM (2004) The effects of electrical stimulation of the paleocerebellar cortex on penicillin-induced convulsive activity in rats. Neurosci Behav Physiol 34:797-802.
    1. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154-165. 10.1016/j.cell.2010.02.037
    1. Grimaldi G, Manto M (2012) Topography of cerebellar deficits in humans. Cerebellum 11:336-351. 10.1007/s12311-011-0247-4
    1. Grimm RJ, Frazee JG, Bell CC, Kawasaki T, Dow RS (1970) Quantitative studies in cobalt model epilepsy: the effect of cerebellar stimulation. Int J Neurol 7:126-140.
    1. Hablitz JJ (1976) Intramuscular penicillin epilepsy in the cat: effects of chronic cerebellar stimulation. Exp Neurol 50:505-514.
    1. Hablitz JJ, McSherry JW, Kellaway P (1975) Cortical seizures following cerebellar stimulation in primates. Electroencephalogr Clin Neurophysiol 38:423-426.
    1. Hamani C, Andrade D, Hodaie M, Wennberg R, Lozano A (2009) Deep brain stimulation for the treatment of epilepsy. Int J Neural Syst 19:213-226. 10.1142/S0129065709001975
    1. Haroian AJ, Massopust LC, Young PA (1981) Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. J Comp Neurol 197:217-236. 10.1002/cne.901970205
    1. Harper JW, Heath RG (1973) Anatomic connections of the fastigial nucleus to the rostral forebrain in the cat. Exp Neurol 39:285-292.
    1. Harvey AS, Jayakar P, Duchowny M, Resnick T, Prats A, Altman N, Renfroe JB (1996) Hemifacial seizures and cerebellar ganglioglioma: an epilepsy syndrome of infancy with seizures of cerebellar origin. Ann Neurol 40:91-98. 10.1002/ana.410400115
    1. Haussler U, Bielefeld L, Froriep UP, Wolfart J, Haas CA (2012) Septotemporal position in the hippocampal formation determines epileptic and neurogenic activity in temporal lobe epilepsy. Cereb Cortex 22:26-36. 10.1093/cercor/bhr054
    1. Heath RG, Harper JW (1974) Ascending projections of the cerebellar fastigial nucleus to the hippocampus, amygdala, and other temporal lobe sites: evoked potential and histological studies in monkeys and cats. Exp Neurol 45:268-287.
    1. Heath RG, Dempesy CW, Fontana CJ, Myers WA (1978) Cerebellar stimulation: effects on septal region, hippocampus, and amygdala of cats and rats. Biol Psychiatry 13:501-529.
    1. Heath RG, Dempesy CW, Fontana CJ, Fitzjarrell AT (1980) Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy. Biol Psychiatry 15:541-556.
    1. Heck CN, King-Stephens D, Massey AD, Nair DR, Jobst BC, Barkley GL, Salanova V, Cole AJ, Smith MC, Gwinn RP, Skidmore C, Van Ness PC, Bergey GK, Park YD, Miller I, Geller E, Rutecki PA, Zimmerman R, Spencer DC, Goldman A, Edwards JC, Leiphart JW, Wharen RE, Fessler J, Fountain NB, Worrell GA, Gross RE, Eisenschenk S, Duckrow RB, Hirsch LJ, Bazil C, O'Donovan CA, Sun FT, Courtney TA, Seale CG, Morrell MJ (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 55:432-441. 10.1111/epi.12534
    1. Hemmy DC, Larson SJ, Sances A, Jr ., Millar EA (1977) The effect of cerebellar stimulation on focal seizure activity and spasticity in monkeys. J Neurosurg 46:648-653. 10.3171/jns.1977.46.5.0648
    1. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3:e159. 10.1371/journal.pbio.0030159
    1. Hutton JT, Frost JD Jr, Foster J (1972) the influence of the cerebellum in cat penicillin epilepsy. Epilepsia 13:401-408.
    1. Ivry RB, Baldo JV (1992) Is the cerebellum involved in learning and cognition? Curr Opin Neurobiol 2:212-216.
    1. Iwata K, Snider RS (1959) Cerebello-hippocampal influences on the electroencephalogram. Electroencephalogr Clin Neurophysiol 11:439-446.
    1. Kahane P, Depaulis A (2010) Deep brain stimulation in epilepsy: what is next? Curr Opin Neurol 23:177-182. 10.1097/WCO.0b013e3283374a39
    1. Kandel A, Buzsaki G (1993) Cerebellar neuronal activity correlates with spike and wave EEG patterns in the rat. Epilepsy Res 16:1-9.
    1. Karceski S (2007) Electrical stimulation devices in the treatment of epilepsy. Acta Neurochir Suppl 97:247-259.
    1. Katoh YY, Benedek G (2003) Cerebellar fastigial neurons send bifurcating axons to both the left and right superior colliculus in cats. Brain Res 970:246-249.
    1. Klemm WR, Atkinson AV, Herron RE (1979) Evoked EEG responses in several motor areas of brain to stimulation of hippocampus and caudate, alone and in combination. Int J Neurosci 10:1-5.
    1. Kottamasu SR (1997) Brain imaging during seizure: ictal brain SPECT. Indian J Pediatr 64:575-580.
    1. Krauss GL, Koubeissi MZ (2007) Cerebellar and thalamic stimulation treatment for epilepsy. Acta Neurochir Suppl 97:347-356.
    1. Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376. 10.1038/ncomms2376
    1. Krook-Magnuson E, Ledri M, Soltesz I, Kokaia M (2014) How might novel technologies such as optogenetics lead to better treatments in epilepsy? Adv Exp Med Biol 813:319-336. 10.1007/978-94-017-8914-1_26
    1. Laxpati NG, Kasoff WS, Gross RE (2014) Deep brain stimulation for the treatment of epilepsy: circuits, targets, and trials. Neurotherapeutics 11:508-526. 10.1007/s13311-014-0279-9
    1. Lega BC, Halpern CH, Jaggi JL, Baltuch GH (2010) Deep brain stimulation in the treatment of refractory epilepsy: update on current data and future directions. Neurobiol Dis 38:354-360. 10.1016/j.nbd.2009.07.007
    1. Levy LF, Auchterlonie WC (1979) Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia 20:235-245.
    1. Liu W, Zhang Y, Yuan W, Wang J, Li S (2012) A direct hippocampo-cerebellar projection in chicken. Anat Rec (Hoboken) 295:1311-1320. 10.1002/ar.22515
    1. Lockard JS, Ojemann GA, Congdon WC, DuCharme LL (1979) Cerebellar stimulation in alumina-gel monkey model: inverse relationship between clinical seizures and EEG interictal bursts. Epilepsia 20:223-234.
    1. Lockman J, Fisher RS (2009) Therapeutic brain stimulation for epilepsy. Neurol Clin 27:1031-1040. 10.1016/j.ncl.2009.06.005
    1. Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A, Fujisawa S, Hsu YW, Garcia AJ, 3rd, Gu X, Zanella S, Kidney J, Gu H, Mao Y, Hooks BM, Boyden ES, Buzsaki G, Ramirez JM, Jones AR, Svoboda K, Han X, Turner EE, Zeng H (2012) A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat Neurosci 15:793-802. 10.1038/nn.3078
    1. Maiti A, Snider RS (1975) Cerebellar control of basal forebrain seizures: amygdala and hippocampus. Epilepsia 16:521-533.
    1. Mesiwala AH, Kuratani JD, Avellino AM, Roberts TS, Sotero MA, Ellenbogen RG (2002) Focal motor seizures with secondary generalization arising in the cerebellum: case report and review of the literature. J Neurosurg 97:190-196. 10.3171/jns.2002.97.1.0190
    1. Miller JW (1992) The role of mesencephalic and thalamic arousal systems in experimental seizures. Prog Neurobiol 39:155-178.
    1. Morrell M (2006) Brain stimulation for epilepsy: can scheduled or responsive neurostimulation stop seizures? Curr Opin Neurol 19:164-168. 10.1097/01.wco.0000218233.60217.84
    1. Mutani R (1967) Cobalt experimental hippocampal epilepsy in the cat. Epilepsia 8:223-240.
    1. Mutani R, Bergamini L, Doriguzzi T (1969) Experimental evidence for the existence of an extrarhinencephalic control of the activity of the cobalt rhinencephalic epileptogenic focus. Part 2. Effects of the paleocerebellar stimulation. Epilepsia 10:351-362.
    1. Newman PP, Reza H (1979) Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat. J Physiol 287:405-426.
    1. Niedermeyer E, Uematsu S (1974) Electroencephalographic recordings from deep cerebellar structures in patients with uncontrolled epileptic seizures. Electroencephalogr Clin Neurophysiol 37:355-365.
    1. Norden AD, Blumenfeld H (2002) The role of subcortical structures in human epilepsy. Epilepsy Behav 3:219-231.
    1. Osawa S, Iwasaki M, Hosaka R, Matsuzaka Y, Tomita H, Ishizuka T, Sugano E, Okumura E, Yawo H, Nakasato N, Tominaga T, Mushiake H (2013) Optogenetically induced seizure and the longitudinal hippocampal network dynamics. PloS One 8:e60928. 10.1371/journal.pone.0060928
    1. Paul SM, Heath RG, Ellison JP (1973) Histochemical demonstration of a direct pathway from the fastigial nucleus to the septal region. Exp Neurol 40:798-805.
    1. Paz JT, Davidson TJ, Frechette ES, Delord B, Parada I, Peng K, Deisseroth K, Huguenard JR (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16:64-70. 10.1038/nn.3269
    1. Rahman M, Abd-El-Barr MM, Vedam-Mai V, Foote KD, Murad GJ, Okun MS, Roper SN (2010) Disrupting abnormal electrical activity with deep brain stimulation: is epilepsy the next frontier? Neurosurg Focus 29:E7. 10.3171/2010.4.FOCUS10104
    1. Reimer GR, Grimm RJ, Dow RS (1967) Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalogr Clin Neurophysiol 23:456-462.
    1. Rochefort C, Arabo A, Andre M, Poucet B, Save E, Rondi-Reig L (2011) Cerebellum shapes hippocampal spatial code. Science 334:385-389. 10.1126/science.1207403
    1. Rochefort C, Lefort JM, Rondi-Reig L (2013) The cerebellum: a new key structure in the navigation system. Front Neural Circuits 7:35. 10.3389/fncir.2013.00035
    1. Saillet S, Langlois M, Feddersen B, Minotti L, Vercueil L, Chabardes S, David O, Depaulis A, Deransart C, Kahane P (2009) Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies. Epileptic Disord 11:100-112.
    1. Sinjab B, Martinian L, Sisodiya SM, Thom M (2013) Regional thalamic neuropathology in patients with hippocampal sclerosis and epilepsy: a postmortem study. Epilepsia 54:2125-2133. 10.1111/epi.12403
    1. Snider RS (1979) Focal cerebellar hyperthermia: effects on cerebral paroxysmal afterdischarges. Epilepsia 20:115-125.
    1. Snider RS, Maiti A (1975a) Cerebellar control of amygdaloid seizures. Transact Am Neurol Assoc 100:17-18.
    1. Snider RS, Maiti A (1975b) Septal afterdischarges and their modification by the cerebellum. Exp Neurol 49:529-539.
    1. Snider RS, Maiti A (1976) Cerebellar contributions to the Papez circuit. J Neurosci Res 2:133-146. 10.1002/jnr.490020204
    1. Soussi R, Boulland JL, Bassot E, Bras H, Coulon P, Chaudhry FA, Storm-Mathisen J, Ferhat L, Esclapez M (2014) Reorganization of supramammillary-hippocampal pathways in the rat pilocarpine model of temporal lobe epilepsy: evidence for axon terminal sprouting. Brain Struct Funct. Advance online publication. doi:10.1007/s00429-014-0800-2.
    1. Sprengers M, Vonck K, Carrette E, Marson AG, Boon P (2014) Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev 6:CD008497. 10.1002/14651858.CD008497.pub2
    1. Sramka M, Fritz G, Galanda M, Nadvornik P (1976) Some observations in treatment stimulation of epilepsy. Acta Neurochir (Wien) [Suppl] 257-262.
    1. Staba RJ, Ekstrom AD, Suthana NA, Burggren A, Fried I, Engel J, Jr ., Bookheimer SY (2012) Gray matter loss correlates with mesial temporal lobe neuronal hyperexcitability inside the human seizure-onset zone. Epilepsia 53:25-34. 10.1111/j.1528-1167.2011.03333.x
    1. Strain GM, Van Meter WG, Brockman WH (1978) Elevation of seizure thresholds: a comparison of cerebellar stimulation, phenobarbital, and diphenylhydantoin. Epilepsia 19:493-504.
    1. Strain GM, Babb TL, Soper HV, Perryman KM, Lieb JP, Crandall PH (1979) Effects of chronic cerebellar stimulation on chronic limbic seizures in monkeys. Epilepsia 20:651-664.
    1. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Ann Rev Neurosci 32:413-434. 10.1146/annurev.neuro.31.060407.125606
    1. Sukhotinsky I, Chan AM, Ahmed OJ, Rao VR, Gradinaru V, Ramakrishnan C, Deisseroth K, Majewska AK, Cash SS (2013) Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PloS One 8:e62013. 10.1371/journal.pone.0062013
    1. Theodore WH, Fisher RS (2004) Brain stimulation for epilepsy. Lancet Neurol 3:111-118.
    1. Tonnesen J, Sorensen AT, Deisseroth K, Lundberg C, Kokaia M (2009) Optogenetic control of epileptiform activity. Proc Nat Acad Sci U S A 106:12162-12167. 10.1073/pnas.0901915106
    1. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647-651. 10.1038/nature11310
    1. Tykocki T, Mandat T, Kornakiewicz A, Koziara H, Nauman P (2012) Deep brain stimulation for refractory epilepsy. Arch Med Sci 8:805-816. 10.5114/aoms.2012.31135
    1. Van Buren JM, Wood JH, Oakley J, Hambrecht F (1978) Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg 48:407-416. 10.3171/jns.1978.48.3.0407
    1. Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A 109:E2726-2734. 10.1073/pnas.1210929109
    1. Velasco F, Carrillo-Ruiz JD, Brito F, Velasco M, Velasco AL, Marquez I, Davis R (2005) Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 46:1071-1081. 10.1111/j.1528-1167.2005.70504.x
    1. Verveer C, Hawkins RK, Ruigrok TJ, De Zeeuw CI (1997) Ultrastructural study of the GABAergic and cerebellar input to the nucleus reticularis tegmenti pontis. Brain Res 766:289-296.
    1. Wada JA (1974) Progressive seizure recruitment in subhuman primates and effect of cerebellar stimulation upon developed vs. developing amygdaloid seizures. Bol Estud Med Biol 28:285-301.
    1. Wright GD, McLellan DL, Brice JG (1984) A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry 47:769-774.
    1. Wyckhuys T, Geerts PJ, Raedt R, Vonck K, Wadman W, Boon P (2009) Deep brain stimulation for epilepsy: knowledge gained from experimental animal models. Acta Neurol Belg 109:63-80.
    1. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, Hashemi KS, Walker MC, Schorge S, Kullmann DM (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4:161ra152 10.1126/scitranslmed.3004190
    1. Zhong XL, Yu JT, Zhang Q, Wang ND, Tan L (2011) Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res Bull 85:81-88. 10.1016/j.brainresbull.2011.03.020
    1. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ (2006) The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Rev 52:93-106. 10.1016/j.brainresrev.2006.01.003

Source: PubMed

3
Abonnieren