Saponins from Quillaja saponaria and Quillaja brasiliensis: Particular Chemical Characteristics and Biological Activities

Juliane Deise Fleck, Andresa Heemann Betti, Francini Pereira da Silva, Eduardo Artur Troian, Cristina Olivaro, Fernando Ferreira, Simone Gasparin Verza, Juliane Deise Fleck, Andresa Heemann Betti, Francini Pereira da Silva, Eduardo Artur Troian, Cristina Olivaro, Fernando Ferreira, Simone Gasparin Verza

Abstract

Quillaja saponaria Molina represents the main source of saponins for industrial applications. Q. saponaria triterpenoids have been studied for more than four decades and their relevance is due to their biological activities, especially as a vaccine adjuvant and immunostimulant, which have led to important research in the field of vaccine development. These saponins, alone or incorporated into immunostimulating complexes (ISCOMs), are able to modulate immunity by increasing antigen uptake, stimulating cytotoxic T lymphocyte production (Th1) and cytokines (Th2) in response to different antigens. Furthermore, antiviral, antifungal, antibacterial, antiparasitic, and antitumor activities are also reported as important biological properties of Quillaja triterpenoids. Recently, other saponins from Q. brasiliensis (A. St.-Hill. & Tul.) Mart. were successfully tested and showed similar chemical and biological properties to those of Q. saponaria barks. The aim of this manuscript is to summarize the current advances in phytochemical and pharmacological knowledge of saponins from Quillaja plants, including the particular chemical characteristics of these triterpenoids. The potential applications of Quillaja saponins to stimulate further drug discovery research will be provided.

Keywords: Quillaja brasiliensis; Quillaja saponaria; antimicrobial; antiviral; immunoadjuvant; triterpenoids; vaccine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Reported triterpene aglycones in Quillaja saponaria and/or Q. brasiliensis saponins.
Figure 2
Figure 2
General structure of Q. saponaria and Q. brasiliensis saponins.
Figure 3
Figure 3
The endocytosis of the saponin with an antigen can cause disruption to the endosomal membrane of the processed antigen, facilitating the antigen presentation process by extravasation of the antigen and its transportation to the endoplasmic reticulum with posterior complexation with MHCI. Also, deacylated saponins can interact with naïve CD4 T-cells through CD2 receptors, stimulating T cell activation biased towards a Th1 response with consequent secretion of IL-2 and IFNγ.

References

    1. Sparg S.G., Light M.E., Van Staden J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004;94:219–243. doi: 10.1016/j.jep.2004.05.016.
    1. Augustin J.M., Kuzina V., Andersen S.B., Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry. 2011;72:435–457. doi: 10.1016/j.phytochem.2011.01.015.
    1. Higuchi R., Tokimitsu Y., Komori T. An acylated triterpenoid saponin from Quillaja saponaria. Phytochemistry. 1988;27:1165–1168. doi: 10.1016/0031-9422(88)80295-4.
    1. Nord L.I., Kenne L. Novel acetylated triterpenoid saponins in a chromatographic fraction from Quillaja saponaria Molina. Carbohydr. Res. 2000;329:817–829. doi: 10.1016/S0008-6215(00)00248-2.
    1. Sun H.-X., Xie Y., Ye Y.-P. Advances in saponin-based adjuvants. Vaccine. 2009;27:1787–1796. doi: 10.1016/j.vaccine.2009.01.091.
    1. Codex Alimentarius International Food Standards. Volume 49 Food and Agriculture Organization of United Nations World Health Organization; Rome, Italy: 2018.
    1. Wojciechowski K. Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces. Colloids Surfaces B Biointerfaces. 2013;108:95–102. doi: 10.1016/j.colsurfb.2013.02.008.
    1. European Commission Database-CosIng. [(accessed on 12 December 2018)]; Available online: .
    1. Ozturk B., McClements D.J. Progress in natural emul sifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016;7:1–6. doi: 10.1016/j.cofs.2015.07.008.
    1. de Faria J.T., de Oliveira E.B., Minim V.P.R., Minim L.A. Performance of Quillaja bark saponin and β-lactoglobulin mixtures on emulsion formation and stability. Food Hydrocoll. 2017;67:178–188. doi: 10.1016/j.foodhyd.2017.01.013.
    1. Roner M.R., Sprayberry J., Spinks M., Dhanji S. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina) J. Gen. Virol. 2007;88:275–285. doi: 10.1099/vir.0.82321-0.
    1. Tam K.I., Roner M.R. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antiviral Res. 2011;90:231–241. doi: 10.1016/j.antiviral.2011.04.004.
    1. Roner M.R., Tam K.I., Barrager M.K. Prevention of rotavirus infections in vitro with aqueous extracts of Quillaja saponaria Molina. Futur. Med Chem. 2010;14:384–399. doi: 10.1080/10810730902873927.Testing.
    1. Dixit V., Tewari J., Obendorf S.K. Fungal Growth Inhibition of Regenerated Cellulose Nanofibrous Membranes Containing Quillaja Saponin. Arch. Environ. Con. Tox. 2010;59:417–423. doi: 10.1007/s00244-010-9493-6.
    1. Holtshausen L., Chaves A.V., Beauchemin K.A., McGinn S.M., McAllister T.A., Odongo N.E., Cheeke P.R., Benchaar C. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 2009;92:2809–2821. doi: 10.3168/jds.2008-1843.
    1. Sen S., Makkar H.P.S., Muetzel S., Becker K. Effect of Quillaja saponaria saponins and Yucca schidigera plant extract on growth of Escherichia coli. Lett. Appl. Microbiol. 1998;27:35–38. doi: 10.1046/j.1472-765X.1998.00379.x.
    1. Pen B., Sar C., Mwenya B., Kuwaki K., Morikawa R., Takahashi J. Effects of Yucca schidigera and Quillaja saponaria extracts on in vitro ruminal fermentation and methane emission. Anim. Feed Sci. Technol. 2006;129:175–186. doi: 10.1016/j.anifeedsci.2006.01.002.
    1. Rajput Z.I., Hu S., Xiao C., Arijo A.G. Adjuvant effects of saponins on animal immune responses. J. Zhejiang Univ. Sci. B. 2007;8:153–161. doi: 10.1631/jzus.2007.B0153.
    1. Sjölander A., Drane D., Maraskovsky E., Scheerlinck J.P., Suhrbier A., Tennent J., Pearse M. Immune responses to ISCOM® formulations in animal and primate models. Vaccine. 2001;19:2661–2665. doi: 10.1016/S0264-410X(00)00497-7.
    1. Paula Barbosa A. de Saponins as immunoadjuvant agent: A review. African J. Pharm. Pharmacol. 2014;8:1049–1057. doi: 10.5897/AJPP2014.4136.
    1. Marty-Roix R., Vladimer G.I., Pouliot K., Weng D., Buglione-Corbett R., West K., MacMicking J.D., Chee J.D., Wang S., Lu S., et al. Identification of QS-21 as an Inflammasome-activating Molecular Component of Saponin Adjuvants. J. Biol. Chem. 2016;291:1123–1136. doi: 10.1074/jbc.M115.683011.
    1. Demana P.H., Davies N.M., Vosgerau U., Rades T. Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method. Int. J. Pharm. 2004;270:229–239. doi: 10.1016/j.ijpharm.2003.10.020.
    1. Myschik J., Lendemans D.G., McBurney W.T., Demana P.H., Hook S., Rades T. On the preparation, microscopic investigation and application of ISCOMs. Micron. 2006;37:724–734. doi: 10.1016/j.micron.2006.03.016.
    1. De Groot C., Müller-Goymann C.C. Saponin Interactions with Model Membrane Systems-Langmuir Monolayer Studies, Hemolysis and Formation of ISCOMs. Planta Med. 2016;82:1496–1512. doi: 10.1055/s-0042-118387.
    1. Cibulski S.P., Mourglia-Ettlin G., Teixeira T.F., Quirici L., Roehe P.M., Ferreira F., Silveira F. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine. 2016;34:1162–1171. doi: 10.1016/j.vaccine.2016.01.029.
    1. De Costa F., Yendo A.C.A., Cibulski S.P., Fleck J.D., Roehe P.M., Spilki F.R., Gosmann G., Fett-Neto A.G. Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-A saponins are equally effective in inducing specific immune responses. PLoS ONE. 2014;9:e105374. doi: 10.1371/journal.pone.0105374.
    1. Silveira F., Cibulski S.P., Varela A.P., Marqués J.M., Chabalgoity A., de Costa F., Yendo A.C.A., Gosmann G., Roehe P.M., Fernández C., Ferreira F. Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation. Vaccine. 2011;29:9177–9182. doi: 10.1016/j.vaccine.2011.09.137.
    1. Fleck J.D., Kauffmann C., Spilki F., Lencina C.L., Roehe P.M., Gosmann G. Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine. 2006;24:7129–7134. doi: 10.1016/j.vaccine.2006.06.059.
    1. Wallace F., Bennadji Z., Ferreira F., Olivaro C. Analysis of an immunoadjuvant saponin fraction from Quillaja brasiliensis leaves by electrospray ionization ion trap multiple-stage mass spectrometry. Phytochem. Lett. 2017;20:228–233. doi: 10.1016/j.phytol.2017.04.020.
    1. Kite G.C., Howes M.J.R., Simmonds M.S.J. Metabolomic analysis of saponins in crude extracts of Quillaja saponaria by liquid chromatography/mass spectrometry for product authentication. Rapid Commun. Mass Spectrom. 2004;18:2859–2870. doi: 10.1002/rcm.1698.
    1. Jacobsen N.E., Fairbrother W.J., Kensil C.R., Lim A., Wheeler D.A., Powell M.F. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by1H and natural abundance13C-NMR spectroscopy. Carbohydr. Res. 1996;280:1–14. doi: 10.1016/0008-6215(95)00278-2.
    1. Kauffmann C., Machado A.M., Fleck J.D., Provensi G., Pires V.S., Guillaume D., Sonnet P., Reginatto F.H., Schenkel E.P., Gosmann G. Constituents from leaves of Quillaja brasiliensis. Nat. Prod. Res. 2004;18:153–157. doi: 10.1080/14786410310001608055.
    1. Guo S., Lennart K., Lundgren L.N., Rönnberg B., Sundquist B.G. Triterpenoid saponins from Quillaja saponaria. Phytochemistry. 1998;48:175–180. doi: 10.1016/S0031-9422(97)00716-4.
    1. Guo S., Kenne L. Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina. Phytochemistry. 2000;55:419–428. doi: 10.1016/S0031-9422(00)00340-X.
    1. Guo S., Kenne L. Characterization of some O-acetylated saponins from Quillaja saponaria Molina. Phytochemistry. 2000;54:615–623. doi: 10.1016/S0031-9422(00)00161-8.
    1. Nyberg N.T., Kenne L., Rönnberg B., Sundquist B.G. Separation and structural analysis of some saponins from Quillaja saponaria Molina. Carbohydr. Res. 1999;323:87–97. doi: 10.1016/S0008-6215(99)00227-X.
    1. Nyberg N.T., Baumann H., Kenne L. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria. Anal. Chem. 2003;75:268–274. doi: 10.1021/ac025725v.
    1. Hassan S.M., Byrd J.A., Cartwright A.L., Bailey C.A. Hemolytic and Antimicrobial Activities Differ Among Saponin-rich Extracts From Guar, Quillaja, Yucca, and Soybean. Appl. Biochem. Biotechnol. 2010;162:1008–1017. doi: 10.1007/s12010-009-8838-y.
    1. Makkar H.P.S., Sen S., Blümmel M., Becker K. Effects of fractions containing saponins from Yucca schidigera, Quillaja saponaria, and Acacia auriculoformis on rumen fermentation. J. Agric. Food Chem. 1998;46:4324–4328. doi: 10.1021/jf980269q.
    1. Wallace R.J., Arthaud L., Newbold C.J. Influence of Yucca shidigera extract on ruminal ammonia concentrations and ruminal microorganisms. Appl. Environ. Microbiol. 1994;60:1762–1767.
    1. Bangham A.D., Horne R.W. Action of saponin on biological cell membranes. Nature. 1962;196:952–955. doi: 10.1038/196952a0.
    1. Oda K., Matsuda H., Murakami T., Katayama S., Ohgitani T., Yoshikawa M. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol. Chem. 2000;381:67–74. doi: 10.1515/BC.2000.009.
    1. Baumann E., Stoya G., Vo A., Richter W., Lemke C., Linss W. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem. 2000;35 doi: 10.1078/0065-1281-00534.
    1. Walther R.U., Padilla L., González J., Otero R. Quillaja saponaria wood extract Refined processing and forestry management guarantee sustainability and ecological benefits. Compend. Deterg. 2011;2:3–4.
    1. Bachran C., Sutherland M., Heisler I., Hebestreit P., Melzig M.F., Fuchs H. The saponin-mediated enhanced uptake of targeted saporin-based drugs is strongly dependent on the saponin structure. Exp. Biol. Med. 2006;231:412–420. doi: 10.1177/153537020623100407.
    1. Arabski M., We A., Czerwonka G., Lankoff A., Kaca W. Effects of Saponins against Clinical E. coli Strains and Eukariotic Cell Line. J. Biomed. Biotechnol. 2012:1–6. doi: 10.1155/2012/286216.
    1. Sewlikar S., D’Souza D.H. Antimicrobial Effects of Quillaja saponaria Extract Against Escherichia coli O157:H7 and the Emerging Non-O157 Shiga Toxin-Producing E. coli. J. Food Sci. 2017;82:1171–1177. doi: 10.1111/1750-3841.13697.
    1. Antolak H., Mizerska U., Berlowska J., Otlewska A., Krȩgiel D. Quillaja saponaria Saponins with potential to enhance the effectiveness of disinfection processes in the beverage industry. Appl. Sci. 2018;8:368. doi: 10.3390/app8030368.
    1. Yoshiki Y., Kudou S., Okubo K. Relationship between Chemical Structures and Biological Activities of Triterpenoid Saponins from Soybean. Biosci. Biotechnol. Biochem. 1998;62:2291–2299. doi: 10.1271/bbb.62.2291.
    1. Patra A.K., Saxena J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 2009;22:204–219. doi: 10.1017/S0954422409990163.
    1. Bei L., Hu T., Qian Z.M., Shen X. Extracellular Ca2+ regulates the respiratory burst of human neutrophils. Biochim. Biophys. Acta. 1998;1404:475–483. doi: 10.1016/S0167-4889(98)00081-0.
    1. Chapagain B.P., Wiesman Z., Tsror (Lahkim) L. L. In vitro study of the antifungal activity of saponin-rich extracts against prevalent phytopathogenic fungi. Ind. Crops Prod. 2007;26:109–115. doi: 10.1016/j.indcrop.2007.02.005.
    1. Grabensteiner E., Arshad N., Hess M. Differences in the in vitro susceptibility of mono-eukaryotic cultures of Histomonas meleagridis, Tetratrichomonas gallinarum and Blastocystis sp. to natural organic compounds. Parasitol. Res. 2007;101:193–199. doi: 10.1007/s00436-007-0459-1.
    1. Rocha T.D., De Brum Vieira P., Gnoatto S.C.B., Tasca T., Gosmann G. Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitol. Res. 2012;110:2551–2556. doi: 10.1007/s00436-011-2798-1.
    1. Francis G., Kerem Z., Makkar H.P.S., Becker K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2002;88:587–605. doi: 10.1079/BJN2002725.
    1. Wang Z.-P. Saponins as Anticancer Agent. United States Pat. Appl. Publ. 2005;2005/01756:1–10.
    1. Ebbesen P., Dalsgaard K. Prolonged survival of AKR mice treated with the Saponin adjuvant Quil A. Acta Path. Microbiol. 1976;84:358–360. doi: 10.1111/j.1699-0463.1976.tb00128.x.
    1. Hu K., Berenjian S., Larsson R., Gullbo J., Nygren P., Lövgren T., Morein B. Nanoparticulate Quillaja saponin induces apoptosis in human leukemia cell lines with a high therapeutic index. Int. J. Nanomedicine. 2010;5:51–62. doi: 10.2147/IJN.S7879.
    1. Ahmed Abdel-Reheim M., Messiha B.A.S., Abo-Saif A.A. Quillaja saponaria bark saponin protects Wistar rats against ferrous sulphate-induced oxidative and inflammatory liver damage. Pharm. Biol. 2017;55:1972–1983. doi: 10.1080/13880209.2017.1345950.
    1. Lee K.J., Choi J.H., Kim H.G., Han E.H., Hwang Y.P., Lee Y.C., Chung Y.C., Jeong H.G. Protective effect of saponins derived from the roots of Platycodon grandiflorum against carbon tetrachloride induced hepatotoxicity in mice. Food Chem. Toxicol. 2008;46:1778–1785. doi: 10.1016/j.fct.2008.01.017.
    1. Yu H., Zheng L., Yin L., Xu L., Qi Y., Han X., Xu Y., Liu K., Peng J. Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. Int. Immunopharmacol. 2014;19:233–244. doi: 10.1016/j.intimp.2014.01.019.
    1. Rao D., Gurfinkel D. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metab. Drug Interact. 2000;17:211–236.
    1. Bomford R., Stapleton M., Winsor S., Beesley J.E., Jessup E.A., Price K.R., Fenwick G.R. Adjuvanticity and ISCOM formation by structurally diverse saponins. Vaccine. 1992;10:572–577. doi: 10.1016/0264-410X(92)90435-M.
    1. van Setten D.C., van de Werken G. Molecular Structures of Saponins from Quillaja saponaria Molina. In: Waller G.R., Yamasaki K., editors. Saponins Used in Traditional and Modern Medicine. Springer; Boston, MA, USA: 1996. pp. 185–193.
    1. Ríos J.-L. Effects of triterpenes on the immune system. J. Ethnopharmacol. 2010;128:1–14. doi: 10.1016/j.jep.2009.12.045.
    1. Guo H., Callaway J.B., Ting J.P.-Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015;21:677–687. doi: 10.1038/nm.3893.
    1. Coffman R.L., Sher A., Seder R.A. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity. 2010;33:492–503. doi: 10.1016/j.immuni.2010.10.002.
    1. Ahlberg V., Hjertner B., Wallgren P., Hellman S., Lövgren Bengtsson K., Fossum C. Innate immune responses induced by the saponin adjuvant Matrix-M in specific pathogen free pigs. Vet. Res. 2017;48:30. doi: 10.1186/s13567-017-0437-2.
    1. Podolak I., Galanty A., Sobolewska D. Saponins as cytotoxic agents: A review. Phytochem. Rev. 2010;9:425–474. doi: 10.1007/s11101-010-9183-z.
    1. Fernando G.J.P., Stewart T.J., Tindle R.W., Frazer I.H. Vaccine-induced Th1-type responses are dominant over Th2-type responses in the short term whereas pre-existing Th2 responses are dominant in the longer term. Scand. J. Immunol. 1998;47:459–465. doi: 10.1046/j.1365-3083.1998.00327.x.
    1. Katayama S., Mine Y. Quillaja saponin can modulate ovalbumin-induced IgE allergic responses through regulation of Th1/Th2 balance in a murine model. J. Agric. Food Chem. 2006;54:3271–3276. doi: 10.1021/jf060169h.
    1. Newman M.J., Wu J.Y., Gardner B.H., Anderson C.A., Kensil C.R., Recchia J., Coughlin R.T., Powell M.F. Induction of cross-reactive cytotoxic T-lymphocyte responses specific for HIV-1 gp120 using saponin adjuvant (QS-21) supplemented subunit vaccine formulations. Vaccine. 1997;15:1001–1007. doi: 10.1016/S0264-410X(96)00293-9.
    1. Marciani D.J. Elucidating the Mechanisms of Action of Saponin-Derived Adjuvants. Trends Pharmacol. Sci. 2018;39:573–585. doi: 10.1016/j.tips.2018.03.005.
    1. Stills H.F. Adjuvants and Antibody Production: Dispelling the Myths Associated with Freund’s Complete and Other Adjuvants. ILAR J. 2005;46:280–293. doi: 10.1093/ilar.46.3.280.
    1. Awate S., Babiuk L.A., Mutwiri G. Mechanisms of action of adjuvants. Front. Immunol. 2013;4:1–10. doi: 10.3389/fimmu.2013.00114.
    1. Barr I.G., Sjölander A., Cox J.C. ISCOMs and other saponin based adjuvants. Adv. Drug Deliv. Rev. 1998;32:247–271. doi: 10.1016/S0169-409X(98)00013-1.
    1. Garcia A., Lema D. An Updated Review of ISCOMSTM and ISCOMATRIXTM Vaccines. Curr. Pharm. Des. 2016;22:6294–6299. doi: 10.2174/1381612822666160915161302.
    1. Sjölander A., Cox J.C., Barr I.G. ISCOMs: An adjuvant with multiple functions. J. Leukoc. Biol. 1998;64:713–723. doi: 10.1002/jlb.64.6.713.
    1. Karandikar S., Mirani A., Waybhase V., Patravale V.B., Patankar S. Nanovaccines for Oral Delivery-Formulation Strategies and Challenges. Elsevier Inc.; London, UK: 2017.
    1. Garçon N., Chomez P., Van Mechelen M. GlaxoSmithKline Adjuvant Systems in vaccines: Concepts, achievements and perspectives. Expert Rev. Vaccines. 2007;6:723–739. doi: 10.1586/14760584.6.5.723.
    1. Garg R., Babiuk L., van Drunen Littel-van den Hurk S., Gerdts V. A novel combination adjuvant platform for human and animal vaccines. Vaccine. 2017;35:4486–4489. doi: 10.1016/j.vaccine.2017.05.067.
    1. Lacaille-Dubois M.A., Wagner H. A review of the biological and pharmacological activities of saponins. Phytomedicine. 1996;2:363–386. doi: 10.1016/S0944-7113(96)80081-X.
    1. Slovin S.F., Ragupathi G., Fernandez C., Jefferson M.P., Diani M., Wilton A.S., Powell S., Spassova M., Reis C., Clausen H., et al. A bivalent conjugate vaccine in the treatment of biochemically relapsed prostate cancer: A study of glycosylated MUC-2-KLH and Globo H-KLH conjugate vaccines given with the new semi-synthetic saponin immunological adjuvant GPI-0100 OR QS-21. Vaccine. 2005;23:3114–3122. doi: 10.1016/j.vaccine.2005.01.072.
    1. Jansen C., Kuipers B., Van Der Biezen J., De Cock H., Van Der Ley P., Tommassen J. Immunogenicity of in vitro folded outer membrane protein PorA of Neisseria meningitidis. FEMS Immunol. Med. Microbiol. 2000;27:227–233. doi: 10.1111/j.1574-695X.2000.tb01434.x.
    1. Shu Q., Bird S.H., Gill H.S., Duan E., Xu Y., Hillard M.A., Rowe J.B., Industry B., Health H., North P., et al. Antibody Response in Sheep Following Immunization with Streptococcus bovis in Different Adjuvants. Vet. Res. Commun. 2001;25:43–54. doi: 10.1023/A:1026757917968.
    1. Da Fonseca D.P.A.J., Frerichs J., Singh M., Snippe H., Verheul A.F.M. Induction of antibody and T-cell responses by immunization with ISCOMS containing the 38-kilodalton protein of Mycobacterium tuberculosis. Vaccine. 2000;19:122–131. doi: 10.1016/S0264-410X(00)00102-X.
    1. Boyaka P.N., Marinaro M., Jackson R.J., van Ginkel F.W., Cormet-Boyaka E., Kirk K.L., Kensil C.R., McGhee J.R. Oral QS-21 requires early IL-4 help for induction of mucosal and systemic immunity. J. Immunol. 2001;166:2283–2290. doi: 10.4049/jimmunol.166.4.2283.
    1. Kumar S., Malhotra D.V., Dhar S., Nichani A.K. Vaccination of donkeys against Babesia equi using killed merozoite immunogen. Vet. Parasitol. 2002;106:19–33. doi: 10.1016/S0304-4017(02)00027-4.
    1. Liu G., Anderson C., Scaltreto H., Barbon J., Kensil C.R. QS-21 structure/function studies: Effect of acylation on adjuvant activity. Vaccine. 2002;20:2808–2815. doi: 10.1016/S0264-410X(02)00209-8.
    1. Borja-Cabrera G.P., Correia Pontes N.N., Da Silva V.O., Paraguai De Souza E., Santos W.R., Gomes E.M., Luz K.G., Palatnik M., Palatnik De Sousa C.B. Long lasting protection against canine kala-azar using the FML-QuilA saponin vaccine in an endemic area of Brazil (São Gonçalo do Amarante, RN) Vaccine. 2002;20:3277–3284. doi: 10.1016/S0264-410X(02)00294-3.
    1. Stittelaar K.J., Vos H.W., Van Amerongen G., Kersten G.F.A., Osterhaus A.D.M.E., De Swart R.L. Longevity of neutralizing antibody levels in macaques vaccinated with Quil A-adjuvanted measles vaccine candidates. Vaccine. 2002;21:155–157. doi: 10.1016/S0264-410X(02)00453-X.
    1. Marciani D.J., Ptak R.G., Voss T.G., Reynolds R.C., Pathak A.K., Chamblin T.L., Scholl D.R., May R.D. Corrigendum to “Degradation of Quillaja saponaria Molina saponins: Loss of the protective effects of a herpes simplex virus 1 subunit vaccine” [International Immunopharmacology 2/12 (2002) 1703–1711] Int. Immunopharmacol. 2005;5:1658. doi: 10.1016/j.intimp.2005.05.002.
    1. De Jonge M.I., Vidarsson G., Van Dijken H.H., Hoogerhout P., Van Alphen L., Dankert J., Van der Ley P. Functional activity of antibodies against the recombinant OpaJ protein from Neisseria meningitidis. Infect. Immun. 2003;71:2331–2340. doi: 10.1128/IAI.71.5.2331-2340.2003.
    1. Zhang P., Yang Q.B., Marciani D.J., Martin M., Clements J.D., Michalek S.M., Katz J. Effectiveness of the quillaja saponin semi-synthetic analog GPI-0100 in potentiating mucosal and systemic responses to recombinant HagB from Porphyromonas gingivalis. Vaccine. 2003;21:4459–4471. doi: 10.1016/S0264-410X(03)00438-9.
    1. Borja-Cabrera G.P., Mendes A.C., Paraguai De Souza E., Okada L.Y.H., Trivellato F.A.D.A., Kawasaki J.K.A., Costa A.C., Reis A.B., Genaro O., Batista L.M.M., et al. Effective immunotherapy against canine visceral leishmaniasis with the FML-vaccine. Vaccine. 2004;22:2234–2243. doi: 10.1016/j.vaccine.2003.11.039.
    1. Regner M., Culley F., Fontannaz P., Hu K., Morein B., Lambert P.H., Openshaw P., Siegrist C.A. Safety and efficacy of immune-stimulating complex-based antigen delivery systems for neonatal immunisation against respiratory syncytial virus infection. Microbes Infect. 2004;6:666–675. doi: 10.1016/j.micinf.2004.03.005.
    1. Palatnik De Sousa C.B., Santos W.R., Casas C.P., Paraguai De Souza E., Tinoco L.W., Da Silva B.P., Palatnik M., Parente J.P. Protective vaccination against murine visceral leishmaniasis using aldehyde-containing Quillaja saponaria sapogenins. Vaccine. 2004;22:2470–2479. doi: 10.1016/j.vaccine.2004.01.072.
    1. Demana P.H., Fehske C., White K., Rades T., Hook S. Effect of incorporation of the adjuvant Quil A on structure and immune stimulatory capacity of liposomes. Immunol. Cell Biol. 2004;82:547–554. doi: 10.1111/j.0818-9641.2004.01276.x.
    1. Skeiky Y.A.W., Alderson M.R., Ovendale P.J., Guderian J.A., Brandt L., Dillon D.C., Campos-Neto A., Lobet Y., Dalemans W., Orme I.M., et al. Differential Immune Responses and Protective Efficacy Induced by Components of a Tuberculosis Polyprotein Vaccine, Mtb72F, Delivered as Naked DNA or Recombinant Protein. J. Immunol. 2004;172:7618–7628. doi: 10.4049/jimmunol.172.12.7618.
    1. Meraldi V., Romero J.F., Kensil C., Corradin G. A strong CD8+T cell response is elicited using the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei together with the adjuvant QS-21: Quantitative and phenotypic comparison with the vaccine model of irradiate. Vaccine. 2005;23:2801–2812. doi: 10.1016/j.vaccine.2004.10.044.
    1. Hu K.F., Regner M., Siegrist C.A., Lambert P., Chen M., Bengtsson K.L., Morein B. The immunomodulating properties of human respiratory syncytial virus and immunostimulating complexes containing Quillaja saponin components QH-A, QH-C and ISCOPREPTM703. FEMS Immunol. Med. Microbiol. 2005;43:269–276. doi: 10.1016/j.femsim.2004.08.010.
    1. Cristillo A.D., Wang S., Caskey M.S., Unangst T., Hocker L., He L., Hudacik L., Whitney S., Keen T., Chou T.H.W., et al. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology. 2006;346:151–168. doi: 10.1016/j.virol.2005.10.038.
    1. Oliveira-Freitas E., Casas C.P., Borja-Cabrera G.P., Santos F.N., Nico D., Souza L.O.P., Tinoco L.W., da Silva B.P., Palatnik M., Parente J.P., et al. Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis. Vaccine. 2006;24:3909–3920. doi: 10.1016/j.vaccine.2006.02.034.
    1. Pickering R.J., Smith S.D., Strugnell R.A., Wesselingh S.L., Webster D.E. Crude saponins improve the immune response to an oral plant-made measles vaccine. Vaccine. 2006;24:144–150. doi: 10.1016/j.vaccine.2005.07.097.
    1. López-Abán J., Casanueva P., Nogal J., Arias M., Morrondo P., Diez-Baños P., Hillyer G.V., Martínez-Fernández A.R., Muro A. Progress in the development of Fasciola hepatica vaccine using recombinant fatty acid binding protein with the adjuvant adaptation system ADAD. Vet. Parasitol. 2007;145:287–296. doi: 10.1016/j.vetpar.2006.12.017.
    1. Parra L.E., Borja-Cabrera G.P., Santos F.N., Souza L.O.P., Palatnik-de-Sousa C.B., Menz I. Safety trial using the Leishmune®vaccine against canine visceral leishmaniasis in Brazil. Vaccine. 2007;25:2180–2186. doi: 10.1016/j.vaccine.2006.11.057.
    1. Quenelle D.C., Collins D.J., Marciani D.J., Kern E.R. Effect of immunization with herpes simplex virus type-1 (HSV-1) glycoprotein D (gD) plus the immune enhancer GPI-0100 on infection with HSV-1 or HSV-2. Vaccine. 2006;24:1515–1522. doi: 10.1016/j.vaccine.2005.10.017.
    1. Deng K., Adams M.M., Damani P., Livingston P.O., Ragupathi G., Gin D.Y. Synthesis of QS-21-xylose: Establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew. Chemie Int. Ed. 2008;47:6395–6398. doi: 10.1002/anie.200801885.
    1. Kaba S.A., Price A., Zhou Z., Sundaram V., Schnake P., Goldman I.F., Lal A.A., Udhayakumar V., Todd C.W. Immune responses of mice with different genetic backgrounds to improved multiepitope, multitarget malaria vaccine candidate antigen FALVAC-1A. Clin. Vaccine Immunol. 2008;15:1674–1683. doi: 10.1128/CVI.00164-08.
    1. Borja-Cabrera G.P., Santos F.N., Bauer F.S., Parra L.E., Menz I., Morgado A.A., Soares I.S., Batista L.M.M., Palatnik-de-Sousa C.B. Immunogenicity assay of the Leishmune®vaccine against canine visceral leishmaniasis in Brazil. Vaccine. 2008;26:4991–4997. doi: 10.1016/j.vaccine.2008.07.029.
    1. Quenelle D.C., Collins D.J., Rice T.L., Prichard M.N., Marciani D.J., Kern E.R. Effect of an immune enhancer, GPI-0100, on vaccination with live attenuated herpes simplex virus (HSV) type 2 or glycoprotein D on genital HSV-2 infections of guinea pigs. Antiviral Res. 2008;80:223–224. doi: 10.1016/j.antiviral.2008.05.011.
    1. Radošević K., Rodriguez A., Mintardjo R., Tax D., Bengtsson K.L., Thompson C., Zambon M., Weverling G.J., UytdeHaag F., Goudsmit J. Antibody and T-cell responses to a virosomal adjuvanted H9N2 avian influenza vaccine: Impact of distinct additional adjuvants. Vaccine. 2008;26:3640–3646. doi: 10.1016/j.vaccine.2008.04.071.
    1. Skene C.D., Doidge C., Sutton P. Evaluation of ISCOMATRIXTM and ISCOMTM vaccines for immunisation against Helicobacter pylori. Vaccine. 2008;26:3880–3884. doi: 10.1016/j.vaccine.2008.05.004.
    1. Karanam B., Gambhira R., Peng S., Jagu S., Kim D.-J., Ketner G.W., Stern P.L., Adams R.J., Roden R.B.S. Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine. 2009;27:1040–1049. doi: 10.1016/j.vaccine.2008.11.099.
    1. Buendía A.J., Ortega N., Caro M.R., Del Río L., Gallego M.C., Sánchez J., Navarro J.A., Cuello F., Salinas J. B cells are essential for moderating the inflammatory response and controlling bacterial multiplication in a mouse model of vaccination against Chlamydophila abortus infection. Infect. Immun. 2009;77:4868–4876. doi: 10.1128/IAI.00503-09.
    1. Ragupathi G., Damani P., Srivastava G., Srivastava O., Sucheck S.J., Ichikawa Y., Livingston P.O. Synthesis of sialyl Lewisa (sLea, CA19-9) and construction of an immunogenic sLea vaccine. Cancer Immunol. Immunother. 2009;58:1397–1405. doi: 10.1007/s00262-008-0654-7.
    1. Tafaghodi M., Rastegar S. Preparation and in vivo study of dry powder microspheres for nasal immunization. J. Drug Target. 2010;18:235–242. doi: 10.3109/10611860903434035.
    1. Duewell P., Kisser U., Heckelsmiller K., Hoves S., Stoitzner P., Koernig S., Morelli A.B., Clausen B.E., Dauer M., Eigler A., et al. ISCOMATRIX Adjuvant Combines Immune Activation with Antigen Delivery to Dendritic Cells In Vivo Leading to Effective Cross-Priming of CD8+ T Cells. J. Immunol. 2011;187:55–63. doi: 10.4049/jimmunol.1004114.
    1. Mohaghegh M., Tafaghodi M. Dextran microspheres could enhance immune responses against PLGA nanospheres encapsulated with tetanus toxoid and Quillaja saponins after nasal immunization in rabbit. Pharm. Dev. Technol. 2011;16:36–43. doi: 10.3109/10837450903479962.
    1. Tafaghodi M., Khamesipour A., Jaafari M.R. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol. Res. 2011;108:1265–1273. doi: 10.1007/s00436-010-2176-4.
    1. Ahmed F.K., Clark B.E., Burton D.R., Pantophlet R. An engineered mutant of HIV-1 gp120 formulated with adjuvant Quil A promotes elicitation of antibody responses overlapping the CD4-binding site. Vaccine. 2012;30:922–930. doi: 10.1016/j.vaccine.2011.11.089.
    1. Ariaee F.M., Tafaghodia M. Mucosal adjuvant potential of Quillaja saponins and cross-linked dextran microspheres, co-administered with liposomes encapsulated with tetanus toxoid. Iran. J. Pharm. Res. 2012;11:723–732.
    1. Reimer J.M., Karlsson K.H., Lövgren-Bengtsson K., Magnusson S.E., Fuentes A., Stertman L. Matrix-mTM adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS ONE. 2012;7:e41451. doi: 10.1371/journal.pone.0041451.
    1. da Cunha I.A.L., Zulpo D.L., Bogado A.L.G., de Barros L.D., Taroda A., Igarashi M., Navarro I.T., Garcia J.L. Humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. Vet. Parasitol. 2012;186:216–221. doi: 10.1016/j.vetpar.2011.11.034.
    1. Barhate G., Gautam M., Gairola S., Jadhav S., Pokharkar V. Quillaja saponaria extract as mucosal adjuvant with chitosan functionalized gold nanoparticles for mucosal vaccine delivery: Stability and immunoefficiency studies. Int. J. Pharm. 2013;441:636–642. doi: 10.1016/j.ijpharm.2012.10.033.
    1. Buglione-Corbett R., Pouliot K., Marty-Roix R., West K., Wang S., Lien E., Lu S. Serum Cytokine Profiles Associated with Specific Adjuvants Used in a DNA Prime-Protein Boost Vaccination Strategy. PLoS ONE. 2013;8:e74820. doi: 10.1371/journal.pone.0074820.
    1. Fernández-Tejada A., Chea E.K., George C., Gardner J.R., Livingston P.O., Ragupathi G., Tan D.S., Gin D.Y. Design, synthesis, and immunologic evaluation of vaccine adjuvant conjugates based on QS-21 and tucaresol. Bioorg. Med. Chem. 2014;22:5917–5923. doi: 10.1016/j.bmc.2014.09.016.
    1. Didierlaurent A.M., Collignon C., Bourguignon P., Wouters S., Fierens K., Fochesato M., Dendouga N., Langlet C., Malissen B., Lambrecht B.N., et al. Enhancement of Adaptive Immunity by the Human Vaccine Adjuvant AS01 Depends on Activated Dendritic Cells. J. Immunol. 2014;193:1920–1930. doi: 10.4049/jimmunol.1400948.
    1. Selenica M.L.B., Davtyan H., Housley S.B., Blair L.J., Gillies A., Nordhues B.A., Zhang B., Liu J., Gestwicki J.E., Lee D.C., et al. Epitope analysis following active immunization with tau proteins reveals immunogens implicated in tau pathogenesis. J. Neuroinflammation. 2014;11:1–12. doi: 10.1186/s12974-014-0152-0.
    1. Dye J.M., Warfield K.L., Wells J.B., Unfer R.C., Shulenin S., Vu H., Nichols D.K., Aman M.J., Bavari S. Virus-like particle vaccination protects nonhuman primates from lethal aerosol exposure with marburgvirus (VLP vaccination protects macaques against aerosol challenges) Viruses. 2016;8:94. doi: 10.3390/v8040094.
    1. Konduru K., Shurtleff A.C., Bradfute S.B., Nakamura S., Bavari S., Kaplan G. Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge. PLoS ONE. 2016;11:e0162446. doi: 10.1371/journal.pone.0162446.
    1. Ng H.I., Fernando G.J.P., Depelsenaire A.C.I., Kendall M.A.F. Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing. Sci. Rep. 2016;6:29368. doi: 10.1038/srep29368.
    1. Detienne S., Welsby I., Collignon C., Wouters S., Coccia M., Delhaye S., Van Maele L., Thomas S., Swertvaegher M., Detavernier A., et al. Central role of CD169+lymph node resident macrophages in the adjuvanticity of the QS-21 component of AS01. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep39475.
    1. Rivera F., Espino A.M. Adjuvant-enhanced antibody and cellular responses to inclusion bodies expressing FhSAP2 correlates with protection of mice to Fasciola hepatica. Exp. Parasitol. 2016;160:31–38. doi: 10.1016/j.exppara.2015.11.002.
    1. Cibulski S.P., Silveira F., Mourglia-Ettlin G., Teixeira T.F., dos Santos H.F., Yendo A.C., de Costa F., Fett-Neto A.G., Gosmann G., Roehe P.M. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp. Immunol. Microbiol. Infect. Dis. 2016;45:1–8. doi: 10.1016/j.cimid.2016.01.004.
    1. Lambracht-Washington D., Fu M., Frost P., Rosenberg R.N. Evaluation of a DNA Aβ42 vaccine in adult rhesus monkeys (Macaca mulatta): Antibody kinetics and immune profile after intradermal immunization with full-length DNA Aβ42 trimer. Alzheimer’s Res. Ther. 2017;9:1–14. doi: 10.1186/s13195-017-0257-7.
    1. Welsby I., Detienne S., N’Kuli F., Thomas S., Wouters S., Bechtold V., De Wit D., Gineste R., Reinheckel T., Elouahabi A., et al. Lysosome-dependent activation of human dendritic cells by the vaccine adjuvant QS-21. Front. Immunol. 2017;7:1–16. doi: 10.3389/fimmu.2016.00663.
    1. Genito C.J., Beck Z., Phares T.W., Kalle F., Limbach K.J., Stefaniak M.E., Patterson N.B., Bergmann-Leitner E.S., Waters N.C., Matyas G.R., et al. Liposomes containing monophosphoryl lipid A and QS-21 serve as an effective adjuvant for soluble circumsporozoite protein malaria vaccine FMP013. Vaccine. 2017;35:3865–3874. doi: 10.1016/j.vaccine.2017.05.070.
    1. Poirier D., Renaud F., Dewar V., Strodiot L., Wauters F., Janimak J., Shimada T., Nomura T., Kabata K., Kuruma K., et al. Hepatitis B surface antigen incorporated in dissolvable microneedle array patch is antigenic and thermostable. Biomaterials. 2017;145:256–265. doi: 10.1016/j.biomaterials.2017.08.038.
    1. Cibulski S.P., Rivera-Patron M., Mourglia-Ettlin G., Casaravilla C., Yendo A.C.A., Fett-Neto A.G., Chabalgoity J.A., Moreno M., Roehe P.M., Silveira F. Quillaja brasiliensis saponin-based nanoparticulate adjuvants are capable of triggering early immune responses. Sci. Rep. 2018;8:13582. doi: 10.1038/s41598-018-31995-1.
    1. Wenbin Tuo D.Z. QS-21: A Potent Vaccine Adjuvant. Nat. Prod. Chem. Res. 2015;03 doi: 10.4172/2329-6836.1000e113.
    1. Lacaille-Dubois M.A., Wagner H. New perspectives for natural triterpene glycosides as potential adjuvants. Phytomedicine. 2017;37:49–57. doi: 10.1016/j.phymed.2017.10.019.
    1. Cibulski S., Rivera-Patron M., Suárez N., Pirez M., Rossi S., Yendo A.C., de Costa F., Gosmann G., Fett-Neto A., Roehe P.M., Silveira F. Leaf saponins of Quillaja brasiliensis enhance long-term specific immune responses and promote dose-sparing effect in BVDV experimental vaccines. Vaccine. 2018;36:55–65. doi: 10.1016/j.vaccine.2017.11.030.
    1. Naknukool S., Horinouchi I., Hatta H. Stimulating Macrophage Activity in Mice and Humans by Oral Administration of Quillaja Saponin. Biosci. Biotechnol. Biochem. 2011;75:1889–1893. doi: 10.1271/bbb.110182.
    1. Gilewski T., Ragupathi G., Bhuta S., Williams L.J., Musselli C., Zhang X.-F., Bencsath K.P., Panageas K.S., Chin J., Hudis C.A., et al. Immunization of metastatic breast cancer patients with a fully synthetic globo H conjugate: A phase I trial. Proc. Natl. Acad. Sci. 2001;98:3270–3275. doi: 10.1073/pnas.051626298.
    1. Krug L.M., Ragupathi G., Ng K.K., Hood C., Jennings H.J., Guo Z., Kris M.G., Miller V., Pizzo B., Tyson L., et al. Vaccination of Small Cell Lung Cancer Patients with Polysialic Acid or N-Propionylated Polysialic Acid Conjugated to Keyhole Limpet Hemocyanin. Clin. Cancer Res. 2004;10:916–923. doi: 10.1158/1078-0432.CCR-03-0101.
    1. Thera M.A., Doumbo O.K., Coulibaly D., Diallo D.A., Sagara I., Dicko A., Diemert D.J., Heppner D.G., Stewart V.A., Angov E., et al. Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial. PLoS Clin. Trials. 2006;1:e34. doi: 10.1371/journal.pctr.0010034.
    1. Mbawuike I., Zang Y., Couch R.B. Humoral and cell-mediated immune responses of humans to inactivated influenza vaccine with or without QS21 adjuvant. Vaccine. 2007;25:3263–3269. doi: 10.1016/j.vaccine.2007.01.073.
    1. Evans T.G., McElrath M.J., Matthews T., Montefiori D., Weinhold K., Wolff M., Keefer M.C., Kallas E.G., Corey L., Gorse G.J., et al. QS-21 promotes an adjuvant effect allowing for reduced antigen dose during HIV-1 envelope subunit immmunization in humans. Vaccine. 2001;19:2080–2091. doi: 10.1016/S0264-410X(00)00415-1.
    1. Leroux-Roels G., Van Belle P., Vandepapeliere P., Horsmans Y., Janssens M., Carletti I., Garçon N., Wettendorff M., Van Mechelen M. Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination. Vaccine. 2015;33:1084–1091. doi: 10.1016/j.vaccine.2014.10.078.
    1. Krug L.M., Ragupathi G., Hood C., George C., Hong F., Shen R., Abrey L., Jennings H.J., Kris M.G., Livingston P.O. Immunization with N-propionyl polysialic acid–KLH conjugate in patients with small cell lung cancer is safe and induces IgM antibodies reactive with SCLC cells and bactericidal against group B meningococci. Cancer Immunol. Immunother. 2012;61:9–18. doi: 10.1007/s00262-011-1083-6.
    1. Kruit W.H.J., Suciu S., Dreno B., Mortier L., Robert C., Chiarion-Sileni V., Maio M., Testori A., Dorval T., Grob J.J., et al. Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: Results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J. Clin. Oncol. 2013;31:2413–2420. doi: 10.1200/JCO.2012.43.7111.
    1. Vandepapelière P., Rehermann B., Koutsoukos M., Moris P., Garçon N., Wettendorff M., Leroux-Roels G. Potent enhancement of cellular and humoral immune responses against recombinant hepatitis B antigens using AS02A adjuvant in healthy adults. Vaccine. 2005;23:2591–2601. doi: 10.1016/j.vaccine.2004.11.034.
    1. Kester K.E., McKinney D.A., Tornieporth N., Ockenhouse C.F., Heppner D.G., Hall T., Wellde B.T., White K., Sun P., Schwenk R., et al. A phase I/IIa safety, immunogenicity, and efficacy bridging randomized study of a two-dose regimen of liquid and lyophilized formulations of the candidate malaria vaccine RTS,S/AS02A in malaria-naïve adults. Vaccine. 2007;25:5359–5366. doi: 10.1016/j.vaccine.2007.05.005.
    1. Roestenberg M., Remarque E., de Jonge E., Hermsen R., Blythman H., Leroy O., Imoukhuede E., Jepsen S., Ofori-Anyinam O., Faber B., et al. Safety and immunogenicity of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with AlhydrogelTM, Montanide ISA 720 or AS02. PLoS ONE. 2008;3:e3960. doi: 10.1371/journal.pone.0003960.
    1. Sacarlal J., Aponte J.J., Aide P., Mandomando I., Bassat Q., Guinovart C., Leach A., Milman J., Macete E., Espasa M., et al. Safety of the RTS,S/AS02A malaria vaccine in Mozambican children during a Phase IIb trial. Vaccine. 2008;26:174–184. doi: 10.1016/j.vaccine.2007.11.003.
    1. Thera M.A., Doumbo O.K., Coulibaly D., Diallo D.A., Kone A.K., Guindo A.B., Traore K., Dicko A., Sagara I., Sissoko M.S., et al. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: Results of a phase 1 randomized controlled trial. PLoS ONE. 2008;3:e1465. doi: 10.1371/journal.pone.0001465.
    1. O’Cearbhaill R.E., Ragupathi G., Zhu J., Wan Q., Mironov S., Yang G., Spassova M.K., Iasonos A., Kravetz S., Ouerfelli O., et al. A phase i study of unimolecular pentavalent (Globo-H-GM2-sTn-TF-Tn) immunization of patients with epithelial ovarian, fallopian tube, or peritoneal cancer in first remission. Cancers (Basel) 2016;8:46. doi: 10.3390/cancers8040046.
    1. Coccia M., Collignon C., Hervé C., Chalon A., Welsby I., Detienne S., Van Helden M.J., Dutta S., Genito C.J., Waters N.C., et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. npj Vaccines. 2017;2 doi: 10.1038/s41541-017-0027-3.
    1. Rönnberg B., Fekadu M., Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine. 1995;13:1375–1382. doi: 10.1016/0264-410X(95)00105-A.
    1. Marciani D.J., Pathak A.K., Reynolds R.C., Seitz L., May R.D. Altered immunomodulating and toxicological properties of degraded Quillaja saponaria Molina saponins. Int. Immunopharmacol. 2001;1:813–818. doi: 10.1016/S1567-5769(01)00016-9.
    1. Rönnberg B., Fekadu M., Behboudi S., Kenne L., Morein B. Effects of carbohydrate modification of Quillaja saponaria Molina QH-B fraction on adjuvant activity, cholesterol-binding capacity and toxicity. Vaccine. 1997;15:1820–1826. doi: 10.1016/S0264-410X(97)00139-4.
    1. Abdulla S., Oberholzer R., Juma O., Kubhoja S., Machera F., Membi C., Omari S., Urassa A., Mshinda H., Jumanne A., et al. Safety and Immunogenicity of RTS,S/AS02D Malaria Vaccine in Infants. N. Engl. J. Med. 2008;359:2533–2544. doi: 10.1056/NEJMoa0807773.
    1. Jiang X., Cao Y., von Gersdorff Jørgensen L., Strobel B.W., Hansen H.C.B., Cedergreen N. Where does the toxicity come from in saponin extract? Chemosphere. 2018;204:243–250. doi: 10.1016/j.chemosphere.2018.04.044.
    1. de Koning C., Beekhuijzen M., Tobor-Kapłon M., de Vries-Buitenweg S., Schoutsen D., Leeijen N., van de Waart B., Emmen H. Visualizing Compound Distribution during Zebrafish Embryo Development: The Effects of Lipophilicity and DMSO. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2015;104:253–272. doi: 10.1002/bdrb.21166.
    1. Vinay T.N., Park C.S., Kim H.Y., Jung S.J. Toxicity and dose determination of quillaja saponin, aluminum hydroxide and squalene in olive flounder (Paralichthys olivaceus) Vet. Immunol. Immunopathol. 2014;158:73–85. doi: 10.1016/j.vetimm.2013.03.007.

Source: PubMed

3
Abonnieren