Filgrastim, fibrinolysis, and neovascularization

Darwin Eton, Guolin Zhou, Tong-Chuan He, Amelia Bartholomew, Rachana Patil, Darwin Eton, Guolin Zhou, Tong-Chuan He, Amelia Bartholomew, Rachana Patil

Abstract

Segmental recanalization of chronically occluded arteries was observed in patients with chronic limb-threatening ischemia (CLTI) treated with Filgrastim, a granulocyte colony stimulating factor, every 72 h for up to a month, and an infra-geniculate programmed compression pump (PCP) for 3 h daily. Molecular evidence for fibrinolysis and neovascularization was sought. CLTI patients were treated with PCP alone (N = 19), or with Filgrastim and PCP (N = 8 and N = 6, at two institutions). Enzyme-Linked Immunosorbent Assay was used to measure the plasma concentration of plasmin and of fibrin degradation products (FDP), and the serum concentration of proteins associated with neovascularization. In the PCP-alone group, blood was sampled on Day 1 (baseline) and after 30 days of daily PCP. In the Filgrastim and PCP group, blood was drawn on Day 1, and 1 day after the 5th and the 10th Filgrastim doses. Each blood draw occurred before and after 2 h of supervised PCP. Significant (p < 0.01) PCP independent increases in the plasma concentration of plasmin (>10-fold) and FDP (>5-fold) were observed 1 day after both the 5th and the 10th Filgrastim doses, compared to Day 1. Significant (p < 0.05) increases in the concentration of pro-angiogenic proteins (e.g., HGF, MMP-9, VEGF A) were also observed. Filgrastim at this novel dosimetry induced fibrinolysis without causing acute hemorrhage, in addition to inducing a pro-angiogenic milieu conducive to NV. Further clinical testing is warranted at this novel dosimetry in CLTI, as well as in other chronically ischemic tissue beds. Trial registration. https://ichgcp.net/clinical-trials-registry/NCT02802852.

Keywords: Filgrastim; angiogenesis; arteriogenesis; chronic limb ischemia; fibrinolysis; neovascularization.

Conflict of interest statement

Authors report no specific financial conflict of interest. ACI Medical, LLC Inc (Ed Arkans CEO) provided funding for some of the UC assays and provided the ArtAssist devices for patients. Darwin Eton: Science and clinical advisor at Vasogenesis Inc (Brookline, MA). [Correction added on 21 March 2021, after first online publication: Conflict of Interest have been updated to reflect full company name and correct spelling of CEO in the second sentence and correct company name in the third sentence.]

© 2022 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
(a) CT angiogram of an ischemic left leg in a diabetic lady after two failed bypasses and 5‐cm ulcers on anterior and posterior ankle. The bright signals in the left leg are surgical hemoclips. (b) The pre‐treatment catheter angiogram showing attenuated left infrageniculate flow. (c) An angiogram 1 year after treatment showing recanalization of tibial arteries and cork‐screw collaterals expected with neovascularization. Her foot wounds healed. She still has her limb 12 years later
FIGURE 2
FIGURE 2
75‐year‐old insulin‐dependent diabetic male (Patient 1403) was initially treated with an infrageniculate bypass for dry gangrene. When this failed, he was treated with atherectomy and laser angioplasty of the anterior tibial and dorsalis pedis artery. When this failed, he presented with wet gangrene of toes 1, 2, and 3. Following open amputation, he was treated with G‐CSF and PCP in lieu of below knee amputation. (a,b) Pre‐treatment distal calf and foot angiogram. (c,d) Operative angiogram with hand injection of contrast through 4F catheter in femoral artery showing recanalization and neovascularization at 9 months after onset of therapy. Patient healed his open toe amputations
FIGURE 3
FIGURE 3
Filgrastim effect on the concentration of plasmin (“[Plasmin]”) for each patient on the day after the 5th and 10th doses, relative to Day 1 (at T = 0). The [Plasmin] was higher in plasma (a) than in serum (b). Patients P008, 1403, and 1406 had recent post intervention thromboses; their elevated [plasmin] and [FDP] on Day 1 (blue*) likely reflect endogenous fibrinolysis following thrombosis. ^Patient 1406 only had 7 doses of filgrastim: [plasmin] after the 7th dose is substituted for the 10th dose
FIGURE 4
FIGURE 4
Filgrastim effect on the concentration of FDP (“[FDP]”) for each patient on the day after the 5th and 10th doses, relative to Day 1. The [FDP] was higher in plasma (a) than in serum (b). Patients P008, 1403, and 1406 had recent post‐intervention thromboses; their elevated [plasmin] and [FDP] on Day 1 (blue*) likely reflect endogenous fibrinolysis following thrombosis. ^Patient 1406 only had 7 doses of filgrastim: [FDP] after the 7th dose is substituted for the 10th dose

References

    1. Abdel‐Latif, A. , Bolli, R. , Zuba‐Surma, E. K. , Tleyjeh, I. M. , Hornung, C. A. , & Dawn, B . (2008). G‐CSF therapy for cardiac repair after acute myocardial infarction: A systematic review and meta‐analysis of randomized controlled trials. American Heart Journal. 156(2), 216–226.e9. 10.1016/j.ahj.2008.03.024
    1. Almasri, J. , Adusumalli, J. , Asi, N. , Lakis, S. , Alsawas, M. , Prokop, L. J. , Bradbury, A. , Kolh, P. , Conte, M. S. , & Murad, M. H. (2018). A Systematic review and meta‐analysis of revascularization outcomes of infrainguinal chronic limb‐threatening ischemia. Journal of Vascular Surgery, 68(2), 624–633. PMID: 29804736 10.1016/j.jvs.2018.01.066
    1. Arai, M. , Misao, Y. , Nagai, H. , Kawasaki, M. , Nagashima, K. , Suzuki, K. , Tsuchiya, K. , Otsuka, S. , Uno, Y. , Takemura, G. , Nishigaki, K. , Minatoguchi, S. , & Fujiwara, H. (2006). Granulocyte colony‐stimulating factor: A noninvasive regeneration therapy for treating atherosclerotic peripheral artery disease. Circulation Journal, 70(9), 1093–1098. PMID: 16936417.
    1. Bussolino, F. , Colotta, F. , Bocchietto, E. , Guglielmetti, A. , & Mantovani, A. (1993). Recent developments in the cell biology of granulocyte‐macrophage colony‐stimulating factor and granulocyte colony‐stimulating factor: Activities on endothelial cells. International Journal of Clinical and Laboratory Research, 23, 8–12. PMID: 7682862.
    1. Bussolino, F. , Wang, J. M. , Defilippi, P. , Turrini, F. , Sanavio, F. , Edgell, C.‐J. S. , Aglietta, M. , Arese, P. , & Mantovani, A. (1989). Granulocyte‐ and granulocyte‐macrophage‐colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature, 337(6206), 471–473. PMID: 2464767. 10.1038/337471a0
    1. Capoccia, B. J. , Shepher, R. M. , & Daniel, C. L. (2006). G‐CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood, 108(7), 2438–2445. PMID: 16735597 PMCID: PMC1895560. 10.1182/blood-2006-04-013755
    1. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nature Medicine, 64, 389–395. PMID: 10742145. 10.1038/74651
    1. Chandler, W. L. , Alessi, M. C. , Aillaud, M. F. , Vague, P. , & Juhan‐Vague, I. (2000). Formation, inhibition and clearance of plasmin in vivo. Haemostasis, 30(4), 204–218. PMID: 11155039. 10.1159/000054136
    1. Chen, L. E. , Liu, K. , Qi, W. N. , Joneschild, E. , Tan, X. , Seaber, A. V. , Stamler, J. S. , & Urbaniak, J. R . (1985). Role of nitric oxide in vasodilation in upstream muscle during intermittent pneumatic compression. Journal of Applied Physiology, 92(2), 559–566. PMID: 11796664. 10.1152/japplphysiol.00365.2001
    1. Conte, M. S. , Bradbury, A. W. , Kolh, P. , White, J. V. , Dick, F. , Fitridge, R. , Mills, J. L. , Ricco, J.‐B. , Suresh, K. R. , Murad, M. H. , Aboyans, V. , Aksoy, M. , Alexandrescu, V.‐A. , Armstrong, D. , Azuma, N. , Belch, J. , Bergoeing, M. , Bjorck, M. , Chakfé, N. , … Wang, S. (2019). Global vascular guidelines on the management of chronic limb‐threatening ischemia. Journal of Vascular Surgery, 69(6), 3S–125S. 10.1016/j.jvs.2019.02.016
    1. Cruciani, M. , Lipsky, B. A. , Mengoli, C. , & de Lalla, F. (2013). Granulocyte‐colony stimulating factors as adjunctive therapy for diabetic foot infections. Cochrane Database of Systematic Reviews, (8), CD006810. 10.1002/14651858.CD006810.pub3
    1. De Falco, S. (2012). The discovery of placenta growth factor and its biological activity. Experimental & Molecular Medicine, 44, 1–9. 10.3858/emm.2012.44.1.025
    1. Eton, D . (2012). Limb threatening ischemia: Promoting arteriogenesis. Circulation, 126, A16455. American Heart Association Annual Meeting, November 6, 2012.
    1. Eton, D. , & Yu, H. (2010). Enhanced cell therapy strategy to treat chronic limb‐threatening ischemia. Journal of Vascular Surgery, 52(1), 199–204. PMID: 20347552.
    1. Fadini, G. P. , Miorin, M. , Facco, M. , Bonamico, S. , Baesso, I. , Grego, F. , Menegolo, M. , de Kreutzenberg, S. V. , Tiengo, A. , Agostini, C. , & Avogaro, A. (2005). Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. Journal of the American College of Cardiology, 45(9), 1449–1457. 10.1016/j.jacc.2004.11.067
    1. Forbes, J. F. , Adam, D. J. , Bell, J. , Fowkes, F. G. , Gillespie, I. , Raab, G. M , Bradbury, A. W , & BASIL trial Participants . (2010). Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: Health‐related quality of life outcomes, resource utilization, and cost‐effectiveness analysis. Journal of Vascular Surgery, 51(5 Suppl), 43S–51S. PMID: 20435261.
    1. Fricker, S. P. (2013). Physiology and pharmacology of plerixafor. Transfusion Medicine and Hemotherapy, 40(4), 237–245. Epub 2013 Jul 19. PMID: 24179472. 10.1159/000354132
    1. Fujii, K. , Ishimaru, F. , Kozuka, T. , Matsuo, K. , Nakase, K. , Kataoka, I. , Tabayashi, T. , Shinagawa, K. , Ikeda, K. , Harada, M. , & Tanimoto, M. (2004). Elevation of serum hepatocyte growth factor during granulocyte colony‐stimulating factor‐induced peripheral blood stem cell mobilization. British Journal of Haematology, 124(2), 190–194. PMID: 14687029. 10.1046/j.1365-2141.2003.04745.x
    1. Gloekler, S. , Oezdemir, B. , Indermuehle, A. , Traupe, T. , Vogel, R. , de Marchi, S. , & Seiler, C. (2013). G‐CSF induced arteriogenesis in humans: Molecular insights into a randomized controlled trial. Current Vascular Pharmacology, 11(1), 38–46. PMID: 23391421.
    1. Goumans, M. J. , Liu, Z. , & ten Dijke, P. (2009). TGF‐beta signaling in vascular biology and dysfunction. Cell Research, 19(1), 116–127. PMID: 19114994. 10.1038/cr.2008.326
    1. Greenbaum, A. M. , & Link, D. C. (2011). Mechanisms of G‐CSF‐mediated hematopoietic stem and progenitor mobilization. Leukemia, 25, 211–217. 10.1038/leu.2010.248
    1. Heil, M. , Eitenmüller, I. , Schmitz‐Rixen, T. , & Schaper, W. (2006). Arteriogenesis versus angiogenesis: Similarities and differences. Journal of Cellular and Molecular Medicine, 10(1), 45–55. PMID: 16563221, PMCID: PMC3933101. 10.1111/j.1582-4934.2006.tb00290.x
    1. Hellberg, C. , Ostman, A. , & Heldin, C. H . (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114. PMID: 20033380. 10.1007/978-3-540-78281-0_7
    1. Kaga, T. , Kawano, H. , Sakaguchi, M. , Nakazawa, T. , Taniyama, Y. , & Morishita, R. (2012). Hepatocyte growth factor stimulated angiogenesis without inflammation: Differential actions between hepatocyte growth factor, vascular endothelial growth factor and basic fibroblast growth factor. Vascular Pharmacology, 57(1), 3–9. Epub 2012 Feb 14. PMID: 22361334. 10.1016/j.vph.2012.02.002
    1. Kavros, S. J. , Delis, K. T. , Turner, N. S. , Voll, A. E. , Liedl, D. A. , Gloviczki, P. , & Rooke, T. W. (2008). Improving limb salvage in critical ischemia with intermittent pneumatic compression: A controlled study with 18‐month follow‐up. Journal of Vascular Surgery, 47(3), 543–549. 10.1016/j.jvs.2007.11.043
    1. Kelm, M. , Preik‐Steinhoff, H. , Preik, M. , & Strauer, B. E. (1999). Serum nitrite sensitively reflects endothelial NO formation in human forearm vasculature: Evidence for biochemical assessment of the endothelial L‐arginine‐NO pathway. Cardiovascular Research, 41(3), 765–772. 10.1016/s0008-6363(98)00259-4
    1. Koh, G. Y. (2013). Orchestral actions of angiopoietin‐1 in vascular regeneration. Trends in Molecular Medicine, 19(1), 31–39. Epub 2012 Nov 23. PMID: 23182855. 10.1016/j.molmed.2012.10.010
    1. Kojima, S. , Tadenuma, H. , Inada, Y. , & Saito, S. (1989). Enhancement of plasminogen activator activity in cultured endothelial cells by granulocyte colony‐stimulating factor. Journal of Cellular Physiology, 138, 192–196. 10.1002/jcp.1041380125
    1. Leibovich, S. J. , Polverini, P. J. , Shepard, H. M. , Wiseman, D. M. , Shively, V. , & Nuseir, N. (1987). Macrophage‐induced angiogenesis is mediated by tumour necrosis factor‐alpha. Nature, 329(6140), 630–632. PMID: 2443857. 10.1038/329630a0
    1. Lin, S. , Zhang, Q. , Shao, X. , Zhang, T. , Xue, C. , Shi, S. , Zhao, D. , & Lin, Y . IGF‐1 promotes angiogenesis in endothelial cells/adipose‐derived stem cells co‐culture system with activation of PI3K/Akt signal pathway. Cell Proliferation. 2017;50(6):e12390. Epub 2017 Sep 27. PMID: 28960620; PMCID: PMC6529130. 10.1111/cpr.12390
    1. McDermott, M. M. , Ferrucci, L. , Tian, L. , Guralnik, J. M. , Lloyd‐Jones, D. , Kibbe, M. R. , Polonsky, T. , Domanchuk, K. , Stein, J. H. , Zhao, L. , Taylor, D. , Skelly, C. , Pearce, W. , Perlman, H. , McCarthy, W. , Li, L. , Gao, Y. , Sufit, R. , Bloomfield, C. L. , & Criqui, M. H. (2017). Effect of granulocyte‐macrophage colony‐stimulating factor with or without supervised exercise on walking performance in patients with peripheral artery disease: The PROPEL randomized CLTInical trial. JAMA, 318(21), 2089–2098. PMID: 29141087 PMCID: PMC5820720 doi:. 10.1001/jama.2017.17437
    1. Minamino, K. , Adachi, Y. , Okigaki, M. , Ito, H. , Togawa, Y. , Fujitha, K. , Tomita, M. , Suzuki, Y. , Zhang, Y. , Iwasaki, M. , Nakano, K. , Koike, Y. , Matsubara, H. , Iwasaka, T. , Matsumura, M. , & Ikehara, S. (2005). Macrophage colony‐stimulating factor (M‐CSF), as well As granulocyte colony‐stimulating factor (G‐CSF), accelerates neovascularization. Stem Cells, 23, 347–354. PMID: 15749929. 10.1634/stemcells.2004-0190
    1. Nagy, J. A. , Vasile, E. , Feng, D. , Sundberg, C. , Brown, L. F. , Manseau, E. J. , Dvorak, A. M. , & Dvorak, H. F. (2002). VEGF‐A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harbor Symposia on Quantitative Biology, 67, 227–238. PMID: 12858545. 10.1101/sqb.2002.67.227
    1. Okazaki, T. , Ebihara, S. , Asada, M. , Kanda, M. , Sasaki, H. , & Yamaya, M. (2006). Granulocyte colony‐stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr11CD11b1 cells in cancer animal models. International Immunology, 18(1), 1–9. 10.1093/intimm/dxh334
    1. Qadura, M. , Terenzi, D. C. , Verma, S. , Al‐Omran, M. , & Hess, D. A. (2018). Concise review: Cell therapy for critical limb ischemia: An integrated review of PreCLTInical and CLTInical Studies. Stem Cells, 36(2), 161–171. 10.1002/stem.2751
    1. Robinson, W. P. , Hunter Mehaffey, J. , Hawkins, R. B. , Tracci, M. C. , Cherry, K. J. , Eslami, M. , & Upchurch, G. R. (2018). Lower extremity bypass and endovascular intervention for critical limb ischemia fail to meet Society for Vascular Surgery’s objective performance goals for limb‐related outcomes in a contemporary national cohort. Journal of Vascular Surgery, 68, 1438–1445. PMID: 29937289. 10.1016/j.jvs.2018.03.4132
    1. Semad, C. L. , Christopher, M. J. , Liu, F. , Short, B. , Simmons, P. J. , Winkler, I. , Levesque, J. P. , Chappel, J. , Ross, F. P. , & Link, D. C. (2005). Diabetes limits stem cell mobilization following G‐CSF but not plerixafor. Blood, 106(9), 3020–3027. Epub 2005 Jul 21. PMID: 16037394 PMCID: PMC1895331. 10.1182/blood-2004-01-0272
    1. Shaw, B. E. , Confer, D. L. , Hwang, W. , & Pulsipher, M. A. (2015). A review of the genetic and long‐term effects of G‐CSF injections in healthy donors: A reassuring lack of evidence for the development of haematological malignancies. Bone Marrow Transplantation, 50, 334–340. 10.1038/bmt.2014.278
    1. Shyy, Y. J. , Hsieh, H. J. , Usami, S. , & Chien, S . Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proceedings of the National Academy of Sciences of the U S A. 1994;91(11):4678‐4682. PMID: 8197118; PMCID: PMC43851. 10.1073/pnas.91.11.4678
    1. Stief, T. (2006). G‐CSF enhances cellular fibrinolysis. Clinical and Applied Thrombosis, 12, 122. 10.1177/107602960601200123
    1. Subramaniyam, V. , Waller, E. K. , Murrow, J. R. , Manatunga, A. , Lonial, S. , Kasirajan, K. , Sutcliffe, D. , Harris, W. , Taylor, W. R. , Alexander, R. W. , & Quyyumi, A. A. (2009). Bone marrow mobilization with granulocyte macrophage colony‐stimulating factor improves endothelial dysfunction and exercise capacity in patients with peripheral arterial disease. American Heart Journal, 158(1), 53–60. PMID: 19540392. 10.1016/j.ahj.2009.04.014
    1. Sultan, S. , Hamada, N. , Soylu, E. , Fahy, A. , Hynes, N. , & Tawfick, W. (2011). Sequential compression biomechanical device in patients with critical limb ischemia and nonreconstructible peripheral vascular disease. Journal of Vascular Surgery, 54, 440–447. 10.1016/j.jvs.2011.02.057
    1. Tazzyman, S. , Lewis, C. E. , & Murdoch, C. (2009). Neutrophils: Key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 90(3), 222–231. PMID: 19563607. 10.1111/j.1365-2613.2009.00641.x
    1. van Royen, N. , Schirmer, S. H. , Atasever, B. , Behrens, C. Y. H. , Ubbink, D. , Buschmann, E. E. , Voskuil, M. , Bot, P. , Hoefer, I. , Schlingemann, R. O. , Biemond, B. J. , Tijssen, J. G. , Bode, C. , Schaper, W. , Oskam, J. , Legemate, D. A. , Piek, J. J. , & Buschmann, I. (2005). START trial: A pilot study on stimulation of arteriogenesis using subcutaneous application of granulocyte‐macrophage colony‐stimulating factor as a new treatment for peripheral vascular disease. Circulation, 112(7), 1040–1046. PMID: 16087795. 10.1161/CIRCULATIONAHA.104.529552
    1. Villar‐Fincheira, P. , Sanhueza‐Olivares, F. , Norambuena‐Soto, I. , Cancino‐Arenas, N. , Hernandez‐Vargas, F. , Troncoso, R. , Gabrielli, L. , & Chiong, M. (2021). Role of interleukin‐6 in vascular health and disease. Frontiers in Molecular Bioscience, 8, 641734. 10.3389/fmolb.2021.641734
    1. Wahlberg, E. (2003). Angiogenesis and arteriogenesis in limb ischemia. Journal of Vascular Surgery, 38, 198–203. 10.1016/S0741-5214(03)00151-4
    1. Wang, X. , & Khalil, R. A. (2018). Matrix metalloproteinases, vascular remodeling, and vascular disease. Advances in Pharmacology, 81, 241–330. 10.1016/bs.apha.2017.08.002
    1. Willis, F. , Theti, D. , Gordon‐Smith, E. , & Pettengell, R. (2008). Matrix metalloproteinase 9 levels are increased in pegfilgrastim and filgrastim induced mobilisation but do not predict efficiency of mobilisation. Blood, 112, 5399. 10.1182/blood.V112.11.5399.5399

Source: PubMed

3
Abonnieren