Radioactive holmium acetylacetonate microspheres for interstitial microbrachytherapy: an in vitro and in vivo stability study

Wouter Bult, Hendrik de Leeuw, Olav M Steinebach, Martijn J van der Bom, Hubert Th Wolterbeek, Ron M A Heeren, Chris J G Bakker, Alfred D van Het Schip, Wim E Hennink, J Frank W Nijsen, Wouter Bult, Hendrik de Leeuw, Olav M Steinebach, Martijn J van der Bom, Hubert Th Wolterbeek, Ron M A Heeren, Chris J G Bakker, Alfred D van Het Schip, Wim E Hennink, J Frank W Nijsen

Abstract

Purpose: The clinical application of holmium acetylacetonate microspheres (HoAcAcMS) for the intratumoral radionuclide treatment of solid malignancies requires a thorough understanding of their stability. Therefore, an in vitro and an in vivo stability study with HoAcAcMS was conducted.

Methods: HoAcAcMS, before and after neutron irradiation, were incubated in a phosphate buffer at 37°C for 6 months. The in vitro release of holmium in this buffer after 6 months was 0.5%. Elemental analysis, scanning electron microscopy, infrared spectroscopy and time of flight secondary ion mass spectrometry were performed on the HoAcAcMS.

Results: After 4 days in buffer the acetylacetonate ligands were replaced by phosphate, without altering the particle size and surface morphology. HoAcAcMS before and after neutron irradiation were administered intratumorally in VX2 tumor-bearing rabbits. No holmium was detected in the faeces, urine, femur and blood. Histological examination of the tumor revealed clusters of intact microspheres amidst necrotic tissue after 30 days.

Conclusion: HoAcAcMS are stable both in vitro and in vivo and are suitable for intratumoral radionuclide treatment.

Figures

Fig. 1
Fig. 1
Release of holmium from HoAcAcMS (diamonds) and 166HoAcAcMS irradiated for either 3 h (triangles) or 6 h (squares) during incubation in phosphate buffer for 6 months. The data are presented as the mean of two measurements.
Fig. 2
Fig. 2
Scanning electron micrographs of HoAcAcMS and 166HoAcAcMS after incubation for different times in phosphate buffer. (ac) HoAcAcMS, (a) after 1 month, (b) after 3 months and (c) after 6 months of incubation. (df) 166HoAcAcMS neutron irradiated for 3 h at a neutron flux of 5 × 1012 n cm−2 s−1 (d) after 1 month, (e) after 3 months and (f) after 6 months of incubation. (gi) 166HoAcAcMS neutron irradiated for 6 h at a neutron flux of 5 × 1012 n cm−2 s−1 (g) after 1 month, (h) after 3 months and (i) after 6 months of incubation. The magnification in all images is 1000x, the bar represents 50 μm.
Fig. 3
Fig. 3
TOF-SIMS spectra from control HoAcAcMS (HoAcAcMS) and buffer incubated HoAcAcMS (HoAcAcMS buffer). The micrographs show total ion count images in the negative (−ve) and the positive (+ve) secondary ion mode. The peaks of interest are indicated with an arrow.
Fig. 4
Fig. 4
(a) Schematic outline of rabbit anatomy on X-ray CT image (L=liver, T=tumor, S=stomach, I=intestine). (b) X-ray CT image of rabbit before intratumoral administration of 166HoAcAcMS showing the tumor, (c) X-ray CT image of rabbit after intratumoral administration of 166HoAcAcMS showing the selective deposition in the tumor as white artifacts, (d) X-ray CT image 4 weeks after administration, before termination, the white area in the tumor is still present as a cluster, although the shape has changed.
Fig. 5
Fig. 5
Serum enzyme levels (ASAT, ALAT, γ-GT, ALP and albumin) of rabbits that received non-radioactive HoAcAcMS (solid line) and radioactive 166HoAcAcMS (dotted line) in time. Bars represent SD.
Fig. 6
Fig. 6
Light micrographs at 400x magnification of a H&E stained section of tumor tissue showing microspheres amidst necrotic tissue. (a) non-radioactive HoAcAcMS. (b) 166HoAcAcMS. The microspheres in red are clustered amidst necrotic tissue. The bar represents 20 μm.

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49. doi: 10.3322/caac.20006.
    1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108. doi: 10.3322/canjclin.55.2.74.
    1. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5(4):321–7. doi: 10.1038/nrc1591.
    1. McGahan JP, Browning PD, Brock JM, Tesluk H. Hepatic ablation using radiofrequency electrocautery. Invest Radiol. 1990;25(3):267–70. doi: 10.1097/00004424-199003000-00011.
    1. Ter Haar G, Sinnett D, Rivens I. High intensity focused ultrasound–a surgical technique for the treatment of discrete liver tumours. Phys Med Biol. 1989;34(11):1743–50. doi: 10.1088/0031-9155/34/11/021.
    1. Tian JH, Xu BX, Zhang JM, Dong BW, Liang P, Wang XD. Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J Nucl Med. 1996;37(6):958–63.
    1. Liapi E, Geschwind JF. Transcatheter and ablative therapeutic approaches for solid malignancies. J Clin Oncol. 2007;25(8):978–86. doi: 10.1200/JCO.2006.09.8657.
    1. Vente MA, Wondergem M, van der Tweel I, van den Bosch MA, Zonnenberg BA, Lam MG, van het Schip AD, Nijsen JF. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol. 2009;19:951–9. doi: 10.1007/s00330-008-1211-7.
    1. Lewandowski RJ, Geschwind JF, Liapi E, Salem R. Transcatheter intraarterial therapies: rationale and overview. Radiology. 2011;259(3):641–57. doi: 10.1148/radiol.11081489.
    1. Kim JK, Han KH, Lee JT, Paik YH, Ahn SH, Lee JD, Lee KS, Chon CY, Moon YM. Long-term clinical outcome of phase IIb clinical trial of percutaneous injection with holmium-166/chitosan complex (Milican) for the treatment of small hepatocellular carcinoma. Clin Cancer Res. 2006;12(2):543–8. doi: 10.1158/1078-0432.CCR-05-1730.
    1. Seevinck PR, Seppenwoolde JH, de Wit TC, Nijsen JF, Beekman FJ, van het Schip AD, Bakker CJ. Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents. Anticancer Agents Med Chem. 2007;7:317–34. doi: 10.2174/187152007780618153.
    1. Bult W, Seevinck PR, Krijger GC, Visser T, Kroon-Batenburg LM, Bakker CJ, Hennink WE, van het Schip AD, Nijsen JF. Microspheres with ultrahigh holmium content for radioablation of malignancies. Pharm Res. 2009;26(6):1371–8. doi: 10.1007/s11095-009-9848-8.
    1. Bult W, Kroeze SGC, Elschot M, Seevinck PR, Beekman FJ, Luijten PR, Hennink WE, van het Schip AD, Bosch JLHR, Nijsen JFW, Jans JJM. Intratumoral administration of holmium-166 acetylacetonate microspheres as a novel minimally-invasive treatment for small kidney tumors. Thesis Utrecht University, 2010. p. 89–105.
    1. Bult W, Vente MAD, Vandermeulen E, Gielen I, Seevinck PR, Saunders J, van het Schip AD, Bakker CJG, Krijger GC, Peremans K, Nijsen JFW. Interstitial microbrachytherapy using holmium-166 acetylacetonate microspheres: a pilot study in feline liver cancer patients. Brachytherapy, accepted for publication
    1. Vente MA, Nijsen JF, de Roos R, van Steenbergen MJ, Kaaijk CN, Koster-Ammerlaan MJ, de Leege PF, Hennink WE, van het Schip AD, Krijger GC. Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study. Biomed Microdevices. 2009;11(4):763–72. doi: 10.1007/s10544-009-9291-y.
    1. Zielhuis SW, Nijsen JFW, Krijger GC, van het Schip AD, Hennink WE. Holmium-loaded poly(L-lactic acid) microspheres: In vitro degradation study. Biomacromolecules. 2006;7(7):2217–23. doi: 10.1021/bm060230r.
    1. Chughtai K, Heeren RM. Mass spectrometric imaging for biomedical tissue analysis. Chem Rev. 2010;110(5):3237–77. doi: 10.1021/cr100012c.
    1. van Es RJ, Franssen O, Dullens HF, Bernsen MR, Bosman F, Hennink WE, Slootweg PJ. The VX2 carcinoma in the rabbit auricle as an experimental model for intra-arterial embolization of head and neck squamous cell carcinoma with dextran microspheres. Lab Anim. 1999;33(2):175–84. doi: 10.1258/002367799780578372.
    1. Nijsen JFW. Radioactive holmium poly(L-lactic acid) microspheres for treatment of hepatic malignancies: efficacy in rabbits. Thesis Utrecht University, 2001. p. 109–122.
    1. Smits ML, Nijsen JF, van den Bosch MA, Lam MG, Vente MA, Huijbregts JE, van het Schip AD, Elschot M, Bult W, de Jong HW, Meulenhoff PC, Zonnenberg BA. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70. doi: 10.1186/1756-9966-29-70.
    1. Bult W, Varkevisser R, Soulimani F, Seevinck PR, de Leeuw H, Bakker CJ, Luijten PR, van Het Schip AD, Hennink WE, Nijsen JF. Holmium nanoparticles: preparation and in vitro characterization of a new device for radioablation of solid malignancies. Pharm Res. 2010;27(10):2205–12. doi: 10.1007/s11095-010-0226-3.
    1. Lide DR, ed. CRC handbook of chemistry and physics, 89th Edition (Internet Version 2009). Boca Raton, FL: CRC Press/Taylor and Francis.
    1. Dong X, Gusev A, Hercules DM. Characterization of polysiloxanes with different functional groups by time-of-flight secondary ion mass spectrometry. J Am Soc Mass Spectrom. 1998;9(4):292–8. doi: 10.1016/S1044-0305(98)00003-8.
    1. Kijkowska R, LeGeros RZ. Preparation and properties of lanthanide phosphates. Key Eng Mater. 2005;246/248(1/2):79–82.
    1. Rouxel J, Tournoux M. Chimie douce with solid precursors, past and present. Solid State Ionics. 1996;84(3–4):141–9. doi: 10.1016/0167-2738(96)00019-7.
    1. Lu C, Ding ZF, Lipson RH. A new chimie douce approach to crystalline vanadium pentoxide nanobelts. J Mater Chem. 2009;19(36):6512–5. doi: 10.1039/b904510d.
    1. Harlan CJ, Kareiva A, MacQueen DB, Cook R, Barron AR. Yttrium-doped alumoxanes: A chimie douce route to Y3Al5O12 (YAG) and Y4Al2O9 (YAM) Adv Mater. 1997;9(1):68–71. doi: 10.1002/adma.19970090116.
    1. Suzuki YS, Momose Y, Higashi N, Shigematsu A, Park KB, Kim YM, Kim JR, Ryu JM. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J Nucl Med. 1998;39(12):2161–6.
    1. Sinton TJ, Cowley DM, Bryant SJ. Reference intervals for calcium, phosphate, and alkaline phosphatase as derived on the basis of multichannel-analyzer profiles. Clin Chem. 1986;32(1 Pt 1):76–9.
    1. Vente MAD, Nijsen JFW, de Wit TC, Seppenwoolde JH, Krijger GC, Seevinck PR, Huisman A, Zonnenberg BA, Van den Ingh TSGAM, van het Schip AD. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L: -lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging. 2008;35(7):1259–71. doi: 10.1007/s00259-008-0747-8.
    1. Salem R, Thurston KG, Carr BI, Goin JE, Geschwind JF. Yttrium-90 microspheres: radiation therapy for unresectable liver cancer. J Vasc Interv Radiol. 2002;13(9 Pt 2):S223–9. doi: 10.1016/S1051-0443(07)61790-4.
    1. Durbin PW. Metabolic characteristics within a chemical family. Health Phys. 1960;2:225–38. doi: 10.1097/00004032-195907000-00001.

Source: PubMed

3
Abonnieren