Addition of transcranial direct current stimulation to quadriceps strengthening exercise in knee osteoarthritis: A pilot randomised controlled trial

Wei-Ju Chang, Kim L Bennell, Paul W Hodges, Rana S Hinman, Carolyn L Young, Valentina Buscemi, Matthew B Liston, Siobhan M Schabrun, Wei-Ju Chang, Kim L Bennell, Paul W Hodges, Rana S Hinman, Carolyn L Young, Valentina Buscemi, Matthew B Liston, Siobhan M Schabrun

Abstract

A randomised, assessor- and participant-blind, sham-controlled trial was conducted to assess the safety and feasibility of adding transcranial direct current stimulation (tDCS) to quadriceps strengthening exercise in knee osteoarthritis (OA), and provide data to inform a fully powered trial. Participants were randomised to receive active tDCS+exercise (AT+EX) or sham tDCS+exercise (ST+EX) twice weekly for 8 weeks whilst completing home exercises twice per week. Feasibility, safety, patient-perceived response, pain, function, pressure pain thresholds (PPTs) and conditioned pain modulation (CPM) were assessed before and after treatment. Fifty-seven people were screened for eligibility. Thirty (52%) entered randomisation and 25 (84%) completed the trial. One episode of headache in the AT+EX group was reported. Pain reduced in both groups following treatment (AT+EX: p<0.001, partial η2 = 0.55; ST+EX: p = 0.026, partial η2 = 0.18) but no between-group differences were observed (p = 0.18, partial η2 = 0.08). Function improved in the AT+EX (p = 0.01, partial η2 = 0.22), but not the ST+EX (p = 0.16, partial η2 = 0.08) group, between-group differences did not reach significance (p = 0.28, partial η2 = 0.052). AT+EX produced greater improvements in PPTs than ST+EX (p<0.05) (superolateral knee: partial η2 = 0.17; superior knee: partial η2 = 0.3; superomedial knee: partial η2 = 0.26). CPM only improved in the AT+EX group but no between-group difference was observed (p = 0.054, partial η2 = 0.158). This study provides the first feasibility and safety data for the addition of tDCS to quadriceps strengthening exercise in knee OA. Our data suggest AT+EX may improve pain, function and pain mechanisms beyond that of ST+EX, and provides support for progression to a fully powered randomised controlled trial.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Consort diagram for flow of…
Fig 1. Consort diagram for flow of participants through the trial.
Fig 2. Percentage of participants reporting perceived…
Fig 2. Percentage of participants reporting perceived improvement across categories from ‘not changed’ to ‘much improved’.
Note: no participants reported that their condition worsened after either intervention.
Fig 3. Pain and WOMAC physical function…
Fig 3. Pain and WOMAC physical function subscale (mean and 95% confidence interval) pre- and post-interventions.
Active tDCS + exercise produced improvements in pain and function but sham tDCS + exercise only produced improvement in pain.
Fig 4. Group change in pain (left…
Fig 4. Group change in pain (left panel) and WOMAC physical function subscale (right panel).
The graph showed within-group changes (mean and 95% confidence interval) in pain and function following 8 weeks of either active tDCS + exercise or sham tDCS + exercise. Note: larger negative scores indicate greater improvements in pain and function. The dotted line indicates the minimal clinically important change for each outcome.
Fig 5. Pressure pain thresholds (mean and…
Fig 5. Pressure pain thresholds (mean and 95% confidence interval) pre- and post-interventions at three knee sites.
Active tDCS + exercise produced greater improvements in pressure pain thresholds at all three sites following 8 weeks of treatment compared with sham tDCS + exercise (A = superolateral knee; B = superior knee; C = superomedial knee).

References

    1. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. Epub 2012/12/19. doi: .
    1. Gierisch JM, Myers ER, Schmit KM, McCrory DC, Coeytaux RR, Crowley MJ, et al. Prioritization of patient-centered comparative effectiveness research for osteoarthritis. Annals of internal medicine. 2014;160(12):836–41. doi: .
    1. McAlindon TE, Bannuru RR, Sullivan MC, Arden NK, Berenbaum F, Bierma-Zeinstra SM, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(3):363–88. Epub 2014/01/28. doi: .
    1. Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012;64(4):465–74. Epub 2012/05/09. .
    1. Fransen M, McConnell S, Harmer AR, Van der Esch M, Simic M, Bennell KL. Exercise for osteoarthritis of the knee. The Cochrane database of systematic reviews. 2015;1:Cd004376 Epub 2015/01/09. doi: .
    1. Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clinical Neurophysiology. 2006;117:1623–9. doi:
    1. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annual Review of Biomedical Engineering. 2007;9:527–65. doi:
    1. Lang N, Siebner HR, Ward NS, Lee L, Nitsche MA, Paulus W, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495–504. Epub 2005/07/28. doi: ; PubMed Central PMCID: PMCPmc3717512.
    1. Jensen JL, Marstrand PCD, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol. 2005;99(4):1558–68. doi:
    1. Ljubisavljevic M. Transcranial magnetic stimulation and the motor learning-associated cortical plasticity. Exp Brain Res. 2006;173(2):215–22. doi:
    1. Bagce HF, Saleh S, Adamovich SV, Krakauer JW, Tunik E. Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. J Neurophysiol. 2013;109(4):1097–106. doi:
    1. Hirano M, Kubota S, Tanabe S, Koizume Y, Funase K. Interactions Among Learning Stage, Retention, and Primary Motor Cortex Excitability in Motor Skill Learning. Brain stimulation. 2015;8(6):1195–204. . doi:
    1. Schabrun SM, Chipchase LS. Priming the brain to learn: the future of therapy? Man Ther. 2012;17(2):184–6. Epub 2011/12/27. doi: .
    1. Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24(6):590–6. Epub 2011/10/05. doi: .
    1. Schabrun SM, Jones E, Elgueta Cancino EL, Hodges PW. Targeting chronic recurrent low back pain from the top-down and the bottom-up: a combined transcranial direct current stimulation and peripheral electrical stimulation intervention. Brain stimulation. 2014;7(3):451–9. Epub 2014/03/04. doi: .
    1. Nitsche MA, Seeber A, Frommann K, Mein CC, Rochford C, Nitsche MS, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. Journal of Physiology-London. 2005;568(1):291–303. doi:
    1. Fregni F, Boggio PS, Lima MC, Ferreira MJ, Wagner T, Rigonatti SP, et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 2006;122(1–2):197–209. Epub 2006/03/28. doi: .
    1. Fenton BW, Palmieri PA, Boggio P, Fanning J, Fregni F. A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain. Brain stimulation. 2009;2(2):103–7. Epub 2009/04/01. doi: .
    1. Fregni F, Gimenes R, Valle AC, Ferreira MJ, Rocha RR, Natalle L, et al. A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum. 2006;54(12):3988–98. Epub 2006/11/30. doi: .
    1. Koltyn KF, Arbogast RW. Perception of pain after resistance exercise. Br J Sports Med. 1998;32(1):20–4. Epub 1998/04/30. ; PubMed Central PMCID: PMCPmc1756063.
    1. Mendonca ME, Simis M, Grecco LC, Battistella LR, Baptista AF, Fregni F. Transcranial Direct Current Stimulation Combined with Aerobic Exercise to Optimize Analgesic Responses in Fibromyalgia: A Randomized Placebo-Controlled Clinical Trial. Front Hum Neurosci. 2016;10:68 Epub 2016/03/26. doi: ; PubMed Central PMCID: PMCPMC4785149.
    1. Altman R, Asch E, Bloch D, Bole G, Borenstein D, Brandt K, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29(8):1039–49. Epub 1986/08/01. .
    1. Chang WJ, Bennell KL, Hodges PW, Hinman RS, Liston MB, Schabrun SM. Combined exercise and transcranial direct current stimulation intervention for knee osteoarthritis: protocol for a pilot randomised controlled trial. BMJ open. 2015;5(8):e008482 doi: ; PubMed Central PMCID: PMC4550738.
    1. Giacobbe V, Krebs HI, Volpe BT, Pascual-Leone A, Rykman A, Zeiarati G, et al. Transcranial direct current stimulation (tDCS) and robotic practice in chronic stroke: the dimension of timing. NeuroRehabilitation. 2013;33(1):49–56. Epub 2013/08/21. doi: ; PubMed Central PMCID: PMCPMC4515138.
    1. Juhl C, Christensen R, Roos EM, Zhang W, Lund H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: a systematic review and meta-regression analysis of randomized controlled trials. Arthritis & rheumatology (Hoboken, NJ). 2014;66(3):622–36. Epub 2014/02/28. doi: .
    1. Zaghi S, Thiele B, Pimentel D, Pimentel T, Fregni F. Assessment and treatment of pain with non-invasive cortical stimulation. Restor Neurol Neurosci. 2011;29(6):439–51. Epub 2011/11/30. doi: .
    1. Marlow NM, Bonilha HS, Short EB. Efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation for treating fibromyalgia syndrome: a systematic review. Pain practice: the official journal of World Institute of Pain. 2013;13(2):131–45. Epub 2012/05/29. doi: .
    1. Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain stimulation. 2012;5(3):175–95. Epub 2011/11/01. doi: ; PubMed Central PMCID: PMCPMC3270156.
    1. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845–50. Epub 2006/01/24. doi: .
    1. Lange AK, Vanwanseele B, Fiatarone Singh MA. Strength training for treatment of osteoarthritis of the knee: a systematic review. Arthritis Rheum. 2008;59(10):1488–94. Epub 2008/09/30. doi: .
    1. Carlesso LC, Macdermid JC, Santaguida LP. Standardization of adverse event terminology and reporting in orthopaedic physical therapy: application to the cervical spine. J Orthop Sports Phys Ther. 2010;40(8):455–63. Epub 2010/08/17. doi: .
    1. Williams VJ, Piva SR, Irrgang JJ, Crossley C, Fitzgerald GK. Comparison of reliability and responsiveness of patient-reported clinical outcome measures in knee osteoarthritis rehabilitation. J Orthop Sports Phys Ther. 2012;42(8):716–23. Epub 2012/03/10. doi: ; PubMed Central PMCID: PMCPmc3435439.
    1. Bellamy N. Osteoarthritis clinical trials: candidate variables and clinimetric properties. J Rheumatol. 1997;24(4):768–78. Epub 1997/04/01. .
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15(12):1833–40. Epub 1988/12/01. .
    1. Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, et al. Sensitization in patients with painful knee osteoarthritis. Pain. 2010;149(3):573–81. Epub 2010/04/27. doi: .
    1. Wylde V, Palmer S, Learmonth ID, Dieppe P. Test-retest reliability of Quantitative Sensory Testing in knee osteoarthritis and healthy participants. Osteoarthritis Cartilage. 2011;19(6):655–8. Epub 2011/02/19. doi: .
    1. Lewis GN, Heales L, Rice DA, Rome K, McNair PJ. Reliability of the conditioned pain modulation paradigm to assess endogenous inhibitory pain pathways. Pain research & management: the journal of the Canadian Pain Society = journal de la societe canadienne pour le traitement de la douleur. 2012;17(2):98–102. Epub 2012/04/21. ; PubMed Central PMCID: PMCPmc3393056.
    1. Micalos PS, Drinkwater EJ, Cannon J, Arendt-Nielsen L, Marino FE. Reliability of the nociceptive flexor reflex (RIII) threshold and association with Pain threshold. Eur J Appl Physiol. 2009;105(1):55–62. Epub 2008/09/27. doi: .
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2012;10(1):28–55. Epub 2011/11/01. doi: .
    1. Rizzo V, Terranova C, Crupi D, Sant'angelo A, Girlanda P, Quartarone A. Increased transcranial direct current stimulation after effects during concurrent peripheral electrical nerve stimulation. Brain stimulation. 2014;7(1):113–21. Epub 2014/01/07. doi: .
    1. Van Breukelen GJ. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol. 2006;59(9):920–5. Epub 2006/08/10. doi: .
    1. Tubach F, Ravaud P, Baron G, Falissard B, Logeart I, Bellamy N, et al. Evaluation of clinically relevant changes in patient reported outcomes in knee and hip osteoarthritis: the minimal clinically important improvement. Ann Rheum Dis. 2005;64(1):29–33. Epub 2004/06/23. doi: ; PubMed Central PMCID: PMCPmc1755212.
    1. Ribeiro DC, Sole G, Abbott JH, Milosavljevic S. The effectiveness of a lumbopelvic monitor and feedback device to change postural behavior: a feasibility randomized controlled trial. J Orthop Sports Phys Ther. 2014;44(9):702–11. Epub 2014/08/08. doi: .
    1. Poreisz C, Boros K, Antal A, Paulus W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res Bull. 2007;72(4–6):208–14. Epub 2007/04/25. doi: .
    1. O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH. Non-invasive brain stimulation techniques for chronic pain. A report of a Cochrane systematic review and meta-analysis. Eur J Phys Rehabil Med. 2011;47(2):309–26. Epub 2011/04/16. .
    1. Bennell KL, Kyriakides M, Metcalf B, Egerton T, Wrigley TV, Hodges PW, et al. Neuromuscular versus quadriceps strengthening exercise in patients with medial knee osteoarthritis and varus malalignment: a randomized controlled trial. Arthritis & rheumatology (Hoboken, NJ). 2014;66(4):950–9. Epub 2014/04/24. doi: .
    1. O'Connell NE, Cossar J, Marston L, Wand BM, Bunce D, De Souza LH, et al. Transcranial direct current stimulation of the motor cortex in the treatment of chronic nonspecific low back pain: a randomized, double-blind exploratory study. Clin J Pain. 2013;29(1):26–34. Epub 2012/12/12. doi: .
    1. Mendonca ME, Santana MB, Baptista AF, Datta A, Bikson M, Fregni F, et al. Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain. 2011;12(5):610–7. Epub 2011/04/19. doi: .
    1. Lee SJ, Kim DY, Chun MH, Kim YG. The effect of repetitive transcranial magnetic stimulation on fibromyalgia: a randomized sham-controlled trial with 1-mo follow-up. Am J Phys Med Rehabil. 2012;91(12):1077–85. Epub 2012/11/20. doi: .
    1. Mehta S, McIntyre A, Guy S, Teasell RW, Loh E. Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: a meta-analysis. Spinal Cord. 2015. Epub 2015/07/22. doi: .
    1. Uthman OA, van der Windt DA, Jordan JL, Dziedzic KS, Healey EL, Peat GM, et al. Exercise for lower limb osteoarthritis: systematic review incorporating trial sequential analysis and network meta-analysis. BMJ. 2013;347:f5555 Epub 2013/09/24. doi: ; PubMed Central PMCID: PMCPMC3779121.
    1. Moreton BJ, Tew V, das Nair R, Wheeler M, Walsh DA, Lincoln NB. Pain phenotype in patients with knee osteoarthritis: classification and measurement properties of painDETECT and self-report Leeds assessment of neuropathic symptoms and signs scale in a cross-sectional study. Arthritis Care Res (Hoboken). 2015;67(4):519–28. Epub 2014/08/27. doi: ; PubMed Central PMCID: PMCPMC4407932.
    1. Fingleton C, Smart K, Moloney N, Fullen BM, Doody C. Pain sensitization in people with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2015. Epub 2015/03/10. doi: .
    1. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15. Epub 2010/10/22. doi: ; PubMed Central PMCID: PMCPmc3268359.
    1. Lluch E, Torres R, Nijs J, Van Oosterwijck J. Evidence for central sensitization in patients with osteoarthritis pain: A systematic literature review. Eur J Pain. 2014. Epub 2014/04/05. doi: .
    1. Arendt-Nielsen L, Egsgaard LL, Petersen KK, Eskehave TN, Graven- Nielsen T, Hoeck HC, et al. A mechanism-based pain sensitivity index to characterize knee osteoarthritis patients with different disease stages and pain levels. European Journal of Pain. 2015;19(10):1406–17. doi:
    1. Hoffman MD, Shepanski MA, Ruble SB, Valic Z, Buckwalter JB, Clifford PS. Intensity and duration threshold for aerobic exercise-induced analgesia to pressure pain. Arch Phys Med Rehabil. 2004;85(7):1183–7. Epub 2004/07/09. .
    1. O'Leary S, Falla D, Hodges PW, Jull G, Vicenzino B. Specific therapeutic exercise of the neck induces immediate local hypoalgesia. J Pain. 2007;8(11):832–9. Epub 2007/07/24. doi: .
    1. Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66(6):355–474. Epub 2002/05/30. .
    1. Nijs J, Lluch Girbes E, Lundberg M, Malfliet A, Sterling M. Exercise therapy for chronic musculoskeletal pain: Innovation by altering pain memories. Man Ther. 2014. Epub 2014/08/06. doi: .
    1. Schabrun S, Chipchase L. Priming the brain to learn: the future of therapy? Man Therap. 2012;17(61–66).
    1. Lattari E, Andrade ML, Filho AS, Moura AM, Neto GM, Silva JG, et al. Can transcranial direct current stimulation improves the resistance strength and decreases the rating perceived scale in recreational weight-training experience? J Strength Cond Res. 2016. Epub 2016/04/22. doi: .
    1. Hendy AM, Kidgell DJ. Anodal tDCS applied during strength training enhances motor cortical plasticity. Med Sci Sports Exerc. 2013;45(9):1721–9. Epub 2013/03/09. doi: .

Source: PubMed

3
Abonnieren