Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus

Andrew P Desbois, Keelan C Lawlor, Andrew P Desbois, Keelan C Lawlor

Abstract

New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically.

Figures

Figure 1
Figure 1
Killing kinetics of six LC-PUFAs against a S. aureus ATCC43300 inoculum of ~2.6 × 105 colony forming unit (CFU)/mL in phosphate-buffered saline (PBS) showing that each LC-PUFA killed the bacteria rapidly. n = 3; mean ± one standard deviation (not all error bars are visible). Please note that a single kill curve is shown for DHA, EPA, HETrE and 15-OHEPA because the values were identical and the kill curves overlapped exactly.
Figure 2
Figure 2
Molecular structures of the six LC-PUFAs used in this present study. All double bonds are in cis orientation except for the n-7 bonds of 15-HETrE and 15-OHEPA that are in trans orientation.

References

    1. Bojar R.A., Holland K.T. Acne and Propionibacterium acnes. Clin. Dermatol. 2004;22:375–379. doi: 10.1016/j.clindermatol.2004.03.005.
    1. Harper J.C. An update on the pathogenesis and management of acne vulgaris. J. Am. Acad. Dermatol. 2004;51:S36–S38. doi: 10.1016/j.jaad.2004.01.023.
    1. Motswaledi M.H. Superficial skin infections and the use of topical and systemic antibiotics in general practice. S. Afr. Fam. Pract. 2011;53:139–142.
    1. Joint Formulary Committee . British National Formulary. 61st ed. British Medical Association and Royal Pharmaceutical Society of Great Britain; London, UK: 2011.
    1. Upton A., Lang S., Heffernan H. Mupirocin and Staphylococcus aureus: A paradigm of emerging antibiotic resistance. J. Antimicrob. Chemother. 2003;51:613–617. doi: 10.1093/jac/dkg127.
    1. El-Zimaity D., Kearns A.M., Dawson S.J., Price S., Harrison G.A.J. Survey, characterisation and susceptibility to fusidic acid of Staphylococcus aureus in the Carmarthen area. J. Antimicrob. Chemother. 2004;54:441–446. doi: 10.1093/jac/dkh373.
    1. Moon S.H., Roh H.S., Kim Y.H., Kim J.E., Ko J.Y., Ro Y.S. Antibiotic resistance of microbial strains isolated from Korean acne patients. J. Dermatol. 2012;39:833–837. doi: 10.1111/j.1346-8138.2012.01626.x.
    1. Simonart T., Dramaix M. Treatment of acne with topical antibiotics: Lessons from clinical studies. Br. J. Dermatol. 2005;153:395–403. doi: 10.1111/j.1365-2133.2005.06614.x.
    1. Desbois A.P., Smith V.J. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010;85:1629–1642. doi: 10.1007/s00253-009-2355-3.
    1. Desbois A.P. Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat. Antiinfect. Drug Discov. 2012;7:111–122. doi: 10.2174/157489112801619728.
    1. Berge J.P., Barnathan G. Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 2005;96:49–125.
    1. Desbois A.P., Mearns-Spragg A., Smith V.J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA) Mar. Biotechnol. 2009;11:45–52. doi: 10.1007/s10126-008-9118-5.
    1. Desbois A.P. Antimicrobial properties of eicosapentaenoic acid (C20: 5n-3) In: Kim S.-K., editor. Marine Microbiology: Bioactive Compounds and Biotechnological Applications. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2013. pp. 351–367.
    1. Coonrod J.D. Rôle of surfactant free fatty acids in antimicrobial defences. Eur. J. Respir. Dis. 1987;153:209–214.
    1. Feldlaufer M.F., Knox D.A., Lusby W.R., Shimanuki H. Antimicrobial activity of fatty acids against Bacillus larvae, the causative agent of American foulbrood disease. Apidologie. 1993;24:95–99. doi: 10.1051/apido:19930202.
    1. Maia M.R.G., Chaudhary L.C., Figueres L., Wallace R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007;91:303–314. doi: 10.1007/s10482-006-9118-2.
    1. Huang C.B., Ebersole J.L. A novel bioactivity of omega-3 polyunsaturated fatty acids and their ester derivatives. Mol. Oral Microbiol. 2010;25:75–80. doi: 10.1111/j.2041-1014.2009.00553.x.
    1. Butcher G.W., King G., Dyke K.G.H. Sensitivity of Staphylococcus aureus to unsaturated fatty acids. J. Gen. Microbiol. 1976;94:290–296. doi: 10.1099/00221287-94-2-290.
    1. Asthana R.K., Srivastava A., Kayastha A.M., Nath G., Singh S.P. Antibacterial potential of γ-linolenic acid from Fischerella sp. colonising Neem tree bark. World J. Microbiol. Biotechnol. 2006;22:443–448. doi: 10.1007/s11274-005-9054-8.
    1. Huang C.B., George B., Ebersole J.L. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms. Arch. Oral Biol. 2010;55:555–560. doi: 10.1016/j.archoralbio.2010.05.009.
    1. Zhang H., Zhang L., Peng L., Dong X., Wu D., Wu V.C., Feng F. Quantitative structure-activity relationships of antimicrobial fatty acids and derivatives against Staphylococcus aureus. J. Zhejiang Univ. Sci. B. 2012;13:83–93.
    1. Kristmundsdóttir T., Skúlason S. Lipids as active ingredients in pharmaceuticals, cosmetics and health foods. In: Thormar H., editor. Lipids and Essential Oils as Antimicrobial Agents. John Wiley & Sons, Ltd.; Philadelphia, PA, USA: 2011. pp. 151–177.
    1. Mullen A., Loscher C.E., Roche H.M. Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J. Nutr. Biochem. 2010;21:444–450. doi: 10.1016/j.jnutbio.2009.02.008.
    1. Kalan L., Wright G.D. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev. Mol. Med. 2011;13:1–17. doi: 10.1017/S1462399410001729.
    1. Odds F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003;52:1. doi: 10.1093/jac/dkg301.
    1. Ko H.L., Heczko P.B., Pulverer G. Differential susceptibility of Propionibacterium acnes, P. granulosum and P. avidum to free fatty acids. J. Invest. Dermatol. 1978;71:363–365.
    1. Nakatsuji T., Kao M.C., Fang J.-Y., Zouboulis C.C., Zhang L., Gallo R.L., Huang C.M. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J. Invest. Dermatol. 2009;129:2480–2488. doi: 10.1038/jid.2009.93.
    1. Decker L.C., Deuel D.M., Sedlock D.M. Role of lipids in augmenting the antibacterialk activity of benzoyl peroxide against Propionibacterium acnes. Antimicrob. Agents Chemother. 1989;33:326–330. doi: 10.1128/AAC.33.3.326.
    1. Pannu J., McCarthy A., Martin A., Hamouda T., Ciotti S., Ma L., Sutcliffe J., Baker J.R., Jr. In vitro antibacterial activity of NB-003 against Propionibacterium acnes. Antimicrob. Agents Chemother. 2011;55:4211–4217. doi: 10.1128/AAC.00561-11.
    1. Blondeau J.M. New concepts in antimicrobial susceptibility testing: the mutant prevention concentration and mutant selection window approach. Vet. Dermatol. 2009;20:383–396. doi: 10.1111/j.1365-3164.2009.00856.x.
    1. Shin S.Y., Bajpai V.K., Kim H.R., Kang S.C. Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria. Int. J. Food Microbiol. 2007;113:233–236. doi: 10.1016/j.ijfoodmicro.2006.05.020.
    1. Knapp H.R., Melly M.A. Bactericidal effects of polyunsaturated fatty acids. J. Infect. Dis. 1986;154:84–94. doi: 10.1093/infdis/154.1.84.
    1. Nair M.K.M., Joy J., Vasudevan P., Hinckley L., Hoagland T.A., Venkitanarayanan K.S. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J. Dairy Sci. 2005;88:3488–3495. doi: 10.3168/jds.S0022-0302(05)73033-2.
    1. Bergsson G., Arnfinnsson J., Steingrímsson Ó., Thormar H. Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS. 2001;109:670–678.
    1. Wille J.J., Kydonieus A. Palmitoleic acid isomer (C16:1Δ6) in human skin sebum is effective against Gram-positive bacteria. Skin Pharmacol. Appl. Skin Physiol. 2003;16:176–187. doi: 10.1159/000069757.
    1. Clarke S.R., Mohamed R., Bian L., Routh A.F., Kokai-Kun J.F., Mond J.J., Tarkowski A., Foster S.J. The Staphylococcus aureus surface protein isdA mediates resistance to innate defences of human skin. Cell Host Microb. 2007;1:1–14. doi: 10.1016/j.chom.2007.02.008.
    1. Chamberlain N.R., Mehrtens B.G., Xiong Z., Kapral F.A., Boardman J.L., Rearick J.I. Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect. Immun. 1991;59:4332–4337.
    1. Shin S.Y., Bajpai V.K., Kim H.R., Kang S.C. Antibacterial activity of eicosapentaenoic acid (EPA) against foodborne and food spoilage microorganisms. LWT. 2007;40:1515–1519. doi: 10.1016/j.lwt.2006.12.005.
    1. Giamarellos-Bourboulis E.J., Grecka P., Dionyssiou-Asteriou A., Giamarellou H. Impact of n-6 polyunsaturated fatty acids on growth of multidrug-resistant Pseudomonas aeruginosa: Interactions with amikacin and ceftazidime. Antimicrob. Agents Chemother. 2000;44:2187–2189. doi: 10.1128/AAC.44.8.2187-2189.2000.
    1. Kitahara T., Aoyama Y., Hirakata Y., Kamihira S., Kohno S., Ichikawa N., Nakashima M., Sasaki H., Higuchi S. In vitro activity of lauric acid or myristylamine in combination with six antimicrobial agents against methicillin-resistant Staphylococcus aureus (MRSA) Int. J. Antimicrob. Agents. 2006;27:51–57. doi: 10.1016/j.ijantimicag.2005.08.020.
    1. Kravchenko I.A., Golovenko N.Y., Larionov V.B., Aleksandrova A.I., Ovcharenko N.V. Effect of lauric acid on transdermal penetration of phenazepam in vivo. Bull. Exp. Biol. Med. 2003;6:579–581.
    1. Saraiva R.A., Matias E.F.F., Coutinho H.D.M., Costa J.G.M., Souza H.H.F., Fernandes C.N., Rocha J.B.T., Menezes I.R.A. Synergistic action between Caryocar coriaceum Wittm. fixed oil with aminoglycosides in vitro. Eur. J. Lipid Sci. Technol. 2011;113:967–972. doi: 10.1002/ejlt.201000555.
    1. Chen C.-H., Wang Y., Nakatsuji T., Liu Y.-T., Zouboulis C.C., Gallo R.L., Zhang L., Hsieh M.F., Huang C.M. An innate bactericidal oleic acid affective against skin infection of methicillin-resistant Staphylococcus aureus: A therapy concordant with evolutionary medicine. J. Microbiol. Biotechnol. 2011;21:391–399.
    1. Huang C.-M., Chen C.-H., Pornpattananangkul D., Zhang L., Chan M., Hsieh M.-F., Zhang L. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials. 2011;32:214–221. doi: 10.1016/j.biomaterials.2010.08.076.
    1. Hart R., Bell-Syer S.E.M., Crawford F., Torgerson D.J., Young P., Russell I. Systematic review of topical treatments for fungal infections of the skin and nails of the feet. BMJ. 1999;319:79–82. doi: 10.1136/bmj.319.7202.79.
    1. Georgel P., Crozat K., Lauth X., Makrantonaki E., Seltmann H., Sovath S., Hoebe K., Du X., Rutschmann S., Jiang Z., Bigby T., Nizet V., Zouboulis C.C., Beutler B. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect. Immun. 2005;73:4512–4521. doi: 10.1128/IAI.73.8.4512-4521.2005.
    1. Drake D.R., Brogden K.A., Dawson D.V., Wertz P.W. Antimicrobial lipids at the skin surface. J. Lipid Res. 2008;49:4–11. doi: 10.1194/jlr.R700016-JLR200.
    1. Brogden N.K., Mehalick L., Fischer C.L., Wertz P.W., Brogden K.A. The emerging role of peptides and lipids as antimicrobial epidermal barriers and modulators of local inflammation. Skin Pharmacol. Physiol. 2012;25:167–181. doi: 10.1159/000337927.
    1. Thormar H., Hilmarsson H. The role of microbicidal lipids in host defense against pathogens and their potential as therapeutic agents. Chem. Phys. Lipids. 2007;150:1–11. doi: 10.1016/j.chemphyslip.2007.06.220.
    1. Fluhr J.W., Kao J., Jain M., Ahn S.K., Feingold K.R., Elias P.M. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J. Invest. Dermatol. 2001;117:44–51. doi: 10.1046/j.0022-202x.2001.01399.x.
    1. Lee D.-Y., Huang C.-M., Nakatsuji T., Thiboutot D., Kang S.-A., Monestier M., Gallo R.L. Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Invest. Dermatol. 2009;129:2489–2496. doi: 10.1038/jid.2009.106.
    1. Desbois A.P., Gemmell C.G., Coote P.J. In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections. Int. J. Antimicrob. Agents. 2010;35:559–565. doi: 10.1016/j.ijantimicag.2010.01.016.
    1. Clinical and Laboratory Standards Institute . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2008. Approved Standard M07-A8.
    1. Clinical and Laboratory Standards Institute . Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2001. Approved Standard M11-A5.
    1. American Society for Microbiology . Synergism testing: Broth microdilution checkerboard and broth macrodilution methods. In: Isenberg H.D., editor. Clinical Microbiology Procedures Handbook. ASM Press; Washington, DC, USA: 1992.

Source: PubMed

3
Abonnieren